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Abstract
Preeclampsia occurs more frequently in women of African ancestry. The cause of this hypertensive complication is unclear, but
placental oxidative stressmay play a role. Because mitochondria are the major sites of oxidativephosphorylation, we hypothesized that
placentas of preeclamptic pregnancies harbor mitochondrial DNA (mtDNA) mutations. Next-generation sequencing of placental
mtDNA in African American preeclamptics (N¼ 30) and controls (N¼ 38) from Chicago revealed significant excesses in preeclamp-
tics of nonsynonymous substitutions in protein-coding genes and mitochondrially encoded nicotinamide adenine dinucleotide dehy-
drogenase 5 gene and an increase in the substitution rate (P¼ .0001). Moreover, 88% of preeclamptics and 53% of controls carried at
least one nonsynonymous substitution (P¼ .005; odds ratio [OR]¼ 6.36, 95% confidence interval [CI]: 1.5-39.1). These results were
not replicated in a sample of African American preeclamptics (N¼ 162) and controls (N¼ 171) from Detroit. Differences in study
design and heterogeneity may account for this lack of replication. Nonsynonymous substitutions in mtDNA may be risk factors for
preeclampsia in some African American women, but additional studies are required to establish this relationship.
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Introduction

Preeclampsia, a leading cause of maternal and fetal morbidity

and mortality worldwide,1 complicates *5% of pregnancies

in the United States,2 where African ancestry is a significant

risk factor for the disease.3-5 Preeclampsia is a hypertensive

proteinuric disorder with multisystem manifestations.6 Cur-

rently, the only effective treatment is delivery of the placenta,

one reason why the pathogenesis of preeclampsia has been

attributed to defects in placentation.7

The etiology of preeclampsia remains elusive, but 3 lines of

evidence suggest a role for aberrations in oxidative phosphor-

ylation due to mutations in mitochondrial genes. First, both

increased generation of reactive oxygen species (ROS) and

decreased levels of the antioxidants that normally scavenge

ROS have been observed both in placental tissue and in the

maternal circulation during preeclampsia.8-11 Second, mito-

chondria are the major sites of ROS production and removal,

and mutations in mitochondrial genes result in increased ROS

production.12 Lastly, an increased prevalence of preeclampsia

in families and individuals with myopathies due to

mitochondrial mutations has been reported.13-15 Collectively,

these observations suggest that mitochondrial dysfunction may

contribute directly to the pathobiology of preeclampsia.13,16-18

1 Department of Obstetrics and Gynecology, The University of Chicago,

Chicago, IL, USA
2 Department of Human Genetics, The University of Chicago, Chicago , IL,

USA
3 Department of Obstetrics and Gynecology, Wayne State University School

of Medicine, Detroit, MI, USA
4 HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
5 Perinatal Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA
6 Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, USA
7 Department of Medicine, The University of Chicago, Chicago , IL, USA
8 Department of Statistics, The University of Chicago, Chicago , IL, USA

Corresponding Author:

Nicole M. Scott, Carole Ober, University of Chicago 920 E. 58th St. CLSC 425

Chicago, IL 60637, USA

Email: nicolescott1@gmail.com

Reproductive Sciences
19(12) 1343-1351
ª The Author(s) 2012
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1933719112450337
http://rs.sagepub.com



The mitochondrial genome, comprising a circular, double-

stranded, maternally inherited chromosome of 16 569 bp,

encodes only 37 genes, all involved in mitochondrial oxidative

phosphorylation pathways. Thirteen encode enzymatic subu-

nits of the complexes participating in the respiratory chain; the

remaining encode transfer (t)RNA and ribosomal (r)RNA that

are involved in protein synthesis in the mitochondria. Because

the products of all mitochondrial genes participate in critical

and overlapping pathways, mutations in any of these can result

in disease and mutations in different mitochondrial genes can

cause the same disease.19

We hypothesized that the placentas of preeclamptic preg-

nancies harbor mtDNA mutations that disrupt these critical

pathways. Previous studies of mtDNA in preeclampsia inter-

rogated only a few known common mtDNA polymorphisms

and failed to detect associations between these common

sequence variants and preeclampsia.8,20 However, because

mutations in any of the mitochondrial genes could contrib-

ute to pathology, an interrogation of variation in all the

mitochondrial genes is necessary to reveal an enrichment

of the mitochondrial mutations in pregnancies with pree-

clampsia. Importantly, deep sequencing of the entire mito-

chondrial chromosome will allow the detection of rare,

and previously unknown, variants, as well as heteroplasmy,

a unique property of mtDNA reflecting the presence of

nonidentical mtDNA genomes in a single individual, analo-

gous to mosaicism in the nuclear genome. Therefore, to

comprehensively survey mitochondrial mutations and to

specifically identify novel variants and heteroplasmic

nucleotides, we used next-generation high-throughput

sequencing21 of the entire mitochondrial chromosome in

placental DNA from African American pregnancies with

preeclampsia and normotensive term deliveries. The results

of those studies are reported here.

Materials and Methods

Participants in the Discovery Sample

African American women were identified through retrospec-

tive surveys of the Chicago Lying-In Pregnancy Program

(CLIPP) Biobank. These women, all self-identified as African

American, had pregnancies that were either diagnosed with

preeclampsia or normotensive term deliveries. Preeclampsia

was defined as blood pressure of 140/90 mm Hg with read-

ings at least 6 hours apart and proteinuria (300 mg/24 h or

�30 mg/dL on random urine analysis).22,23 Controls, selected

from normotensive women with term deliveries (weeks

37-41), were matched to the patients with preeclampsia for

age, parity, and type of insurance (public or private). Women

with chronic hypertension, gestational hypertension, precon-

ceptual or gestational diabetes mellitus, multiple gestation, or

fetal anomalies were excluded. Placental DNA from 30 pre-

eclamptic and 38 normotensive (control) pregnancies had

sufficient amounts of high-quality DNA and was included

in the mitochondrial sequencing study.

This study was approved by the University of Chicago Insti-

tutional Review Board; all participants gave written informed

consent.

Isolation of Trophoblast Tissue and DNA

Placental villous tissue (*100 mg), dissected manually from

the placenta and rinsed in sterile Hank’s balanced salt solution

(HBSS; Life Technologies, Carlsbad, CA 92008), was dis-

sected under a microscope at 40� power and decidual or other

maternally derived tissues were removed. The cleaned tissue

was rinsed a final time in HBSS to remove any traces of blood.

Whole genome DNA, including mtDNA, was extracted using

the Pure-Gene kit (Gentra Systems, Minneapolis, Minnesota).

DNA concentration and purity were measured by UV spectro-

photometry and automated fluorimetric quantification (Pico-

Green dsDNA Quantitation Kit; Molecular Probes, Eugene,

Oregon).

Mitochondrial Genome Sequencing

Mitochondrial genome libraries were prepared by amplifica-

tion of the complete mtDNA genome using 2 sets of overlap-

ping primers. These fragments were pooled in molar

equivalent amounts, sonicated to randomly fragment the DNA,

and then prepared for sequencing by Illumina’s recommended

protocol (Illumina, San Diego, California), with minor modifi-

cations to the adaptors to introduce base-balanced indexes that

allowed 12 samples to be simultaneously sequenced in the

same sequencing lane at the HudsonAlpha Institute for Bio-

technology (Huntsville, Alabama).

The completed libraries were sequenced to produce millions

of short 27 to 37 bp sequence reads using the Illumina Genome

Analyzer IIx (Illumina). Two quality filters were used on the

reads. First, exact duplicate reads were reduced to 10 to reduce

polymerase chain reaction-based amplification error. Second,

only reads with Phred scores for each base greater than 23 were

used to reduce base-calling error to less than 5%. Reads that

passed both quality filters were then used to determine align-

ment and read depth. To determine the consensus sequence for

each sample, we aligned the short reads to the revised mito-

chondrial Cambridge Reference Sequence (rCRS, GenBank

accession NC_012920) using Bowtie software.24 Samples with

less than 95% of reads aligning to the reference sequence were

further excluded.

Analysis of Sequence Data

Human mitochondrial chromosomes evolved from a common

ancestral chromosome that accumulated mutations along des-

cendant branches.25 The result of this hierarchical tree-like

structure is the clustering of mtDNA into groups, called hap-

logroups, based on shared genetic variants due to common

ancestry.26 As a result, haplogroups are geographically based

such that certain haplogroups occur at higher frequencies in

specific geographical regions.27 The most common haplogroup
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in Africa, and the deepest branch of the mitochondrial tree, is

the ‘‘L’’ haplogroup.26-29 Because we only studied African

Americans, and to avoid spurious associations arising from

mitochondrial population structure, our analyses were

restricted to individuals carrying variants that ‘‘tag’’ the L hap-

logroup (T10873C and C10400C).26 Haplogroups were

assigned using the program mtPhyl v.2.9030 using the full mito-

chondrial sequence. All subsequent analyses focused only on

the coding region (ie, excluding sequences in the hypervariable

regions) because we were interested in variants that might

directly affect mitochondrial function.

Sequence variants (point mutations and insertion/deletions)

were identified and annotated with respect to the rCRS. Nonsy-

nonymous and synonymous substitutions were annotated with

respect to an L haplotype from 1 Yoruban individual (GenBank

accession AF347015.1).31

To test our hypothesis, we first examined all sequence var-

iants, and then all nonsynonymous and synonymous substitu-

tions. Insertions or deletions causing frameshifts were

counted as single substitutions and included in the analyses

of nonsynonymous substitutions. We conducted each of these

analyses (all variants, nonsynonymous substitutions, synon-

ymous substitutions) on (i) all genes grouped together, (ii)

genes grouped by membership in mitochondrial complexes,

and (iii) individual genes. Complex I includes the

mitochondria-encoded nicotinamide adenine dinucleotide

(NADH) dehydrogenase genes, MT-ND1, MT-ND2, MT-ND3,

MT-ND4, MT-ND4L, MT-ND5, MT-ND6, which comprise part

of the intermembrane enzyme complex I. Complex III includes

the cytochrome B gene, MT-CYB, which contributes to the ubi-

quinol–cytochrome c reductase complex. Complex IV includes

the cytochrome c oxidase I to III genes, MT-COI, MT-COII,

and MT-COIII, which contribute to the cytochrome oxidase

complex. The adenosine triphosphate (ATP) synthase 6 and 8

genes, MT-ATP6 and MT-ATP8, make up part of complex V

and are referred to here as ATP synthase. The 22 tRNA genes

and the 3 rRNA were each grouped for analysis.

Heteroplasmic sites were identified from the reads of each

mtDNA sample aligned to their fully assembled sequence, and

were called as such when both reference and mutant alleles were

present. To distinguish true heteroplasmy from sequencing error,

we used a Bayesian method based on the frequency and quality

of the reads, base location within the read, and a prior based on

the rCRS base call (provided by the HudsonAlpha Institute for

Biotechnology). We considered sites to be heteroplasmic only

if their Bayesian posterior probability was greater than 0.1 and

the credible interval was greater than or included 0.1.

Association with the phenotype was tested using the number

of non-reference alleles in a gene or complex and significance

was empirically assessed using 10 000 permutations of the

sample under the null hypothesis. A Kolmogorov-Smirnov test

was used to test for differences in the distribution of missing

data in cases compared to controls in the Detroit sample. The

Fisher exact test and Wilcoxon rank sum test were used where

indicated. To account for tables with low counts, Haldane’s

continuity correction was applied to calculate the odds ratio

and 95% confidence interval (CI); the one instance of this is

noted in the text.

Sanger Sequencing of the NADH Dehydrogenase 5
(MT-ND5) Gene in a Replication Cohort

To replicate our findings in the Chicago samples, we performed

Sanger sequencing of the MT-ND5 gene in umbilical cord

blood DNA from 162 African American pregnancies with pre-

eclampsia and 171 African American uncomplicated pregnan-

cies who delivered in Detroit, Michigan. These pregnancies

were identified by searching the clinical database and the bank

of biological specimens of the Perinatology Research Branch

and Wayne State University, Detroit, Michigan. All patients

provided written informed consent for the collection and use

of samples for research purposes (including DNA) under the

protocols approved by the institutional review boards of Wayne

State University and the Eunice Kennedy Shriver National

Institute of Child Health and Human Development, National

Institutes of Health, Department of Health and Human Services

(NICHD/NIH/DHHS).

Patients with preeclampsia and uncomplicated pregnancies

who had cord blood available were included. Ethnicity was

based on self-reporting by the mother. Pregnancies were

excluded if they were associated with chronic hypertension in

the mother, known major fetal or chromosomal anomaly in the

current pregnancy, or multiple gestations. All women delivered

at Hutzel Women’s Hospital, Detroit, Michigan. Preeclampsia

was diagnosed using the similar criteria to that used in the Chi-

cago sample. The control pregnancies were considered uncom-

plicated if there were no major medical, obstetrical, or surgical

complications, and delivery occurred at term (�37 weeks) with

an infant whose birth weight was appropriate for gestational

age (10th-90th percentile), according to the reference range

of Alexander et al32 for the United States.

Genomic DNA was isolated from 150 mL of buffy coat with

EZ1 DNA Blood 350 mL kit (Qiagen) using EZ1 instrument

(Qiagen). The whole genome amplification from genomic

DNA was performed using the REPLI-g Midi kit (Qiagen),

according to manufacturer’s instruction. The amplified DNA

was stored at �20�C.

The MT-ND5 gene was amplified in 8 overlapping segments,

which were sequenced by dideoxy Sanger sequencing.33

Sequencing protocols are available upon request. Individuals

and sites with more than 5% missing data were excluded from

all analyses. L haplogroup (African) membership of the infants

was confirmed using a custom TaqMan assay (Applied Biosys-

tems, Foster City, California) for the T10873C variant that tags

this haplogroup, and participants with a non-L haplogroup mito-

chondrial chromosome were removed from further analyses.

Results

The clinical characteristics of the participants in the discovery

sample after exclusion of women with non-L haplogroup mito-

chondria are shown in Table 1. There were no significant
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differences between the preeclamptic and normotensive term

(control) pregnancies in this sample for the variables examined,

except for an increase in the maximum systolic and diastolic

blood pressures in labor in the preeclamptics (P < .02), as

expected.

Whole mtDNA sequencing in 30 preeclamptic and 38 con-

trol placentas resulted in an average of 1.9 million reads per

sample and an average alignment to rCRS of 95.47%. The

mean read depth per sample did not significantly differ

between preeclamptic and control placentas (P ¼ .86, Wil-

coxon rank sum test). Five preeclamptics (16.7%) and 2 con-

trols (5.3%) were excluded from analyses because they

carried a non-L haplogroup mitochondrial chromosome. How-

ever, including these participants did not alter any of the signif-

icant findings (data not shown). The distribution of

mitochondrial L haplogroups was similar in cases and controls

(Fisher exact test, P¼ 0.14; using Haldane’s continuity correc-

tion), although the L0 haplogroup was present only in the pre-

eclamptics ( Supplement Figure 1).

The overall mean number of variants per individual was

greater in the preeclamptic compared with control pregnancies,

with significant excesses in complex I genes (P ¼ .02), ATP

synthase genes (P ¼ .004), all protein-coding genes combined

(P ¼ .04), and all rRNA genes (0.03; Table 2). The mean num-

ber of nonsynonymous substitutions was increased in the pree-

clamptics for complex I genes (P ¼ .02), ATP synthase genes

(P ¼ .02), and all protein-coding genes (P ¼ .02; Table 2); and

the mean number of synonymous substitutions was increased in

the preeclamptics for the ATP synthase genes (P ¼ .02) and all

protein-coding genes (P ¼ .02; Table 2).

Among the 13 protein-coding genes, the overall mean num-

ber of variants was significantly increased in the preeclamptics

for MT-ND2 (P ¼ .01), MT-ND4 L (P ¼ .03), MT-ATP6 (P ¼
.01), and MT-ATP8 (P ¼ .01; Table 3); nonsynonymous substi-

tutions were increased for MT-ND2 (P ¼ .02), MT-ND5 (P ¼
.0001), MT-CYB (P ¼ .04), and MT-ATP6 (P ¼ .04; Table 3);

and synonymous substitutions were increased for MT-ND2

(P¼ .02), MT-ND3 (P¼ .01), MT-ND4L (P¼ .02), MT-ATP8

(P ¼ .03; Table 3).

The overall mean number of heteroplasmic sites per individ-

ual was 6.39 (standard deviation [SD] ¼ 8.24) in the combined

sample, 6.64 (SD¼ 9.22) in the preeclamptics, and 6.22 (SD¼
7.61) in the control placentas. The mean number of heteroplas-

mic sites per individual did not differ significantly between the

2 groups overall or for any complexes or individual genes (data

not shown).

The only association that remained significant after adjusting

for the number of tests using a Bonferroni correction for 13 gene

tests was the excess of nonsynonymous mutations in the MT-ND5

gene (0.05/13¼ .0038; observed P¼ .0001, Table 3). This excess

Table 1. Clinical Characteristics of the Sequencing Study Sample After Excluding Participants With Non-L Haplogroup Mitochondriaa

Preeclampsia Control

Sample size 25 36
Mean age, SD (years) 23.1 (5.4) 23.9 (4.3)
Mean weight at first visit, SD (lbs)b 204.9 (57.9) 188.5 (41.2)
Nulliparous, % 60.0 58.3
Parity (range) 0-5 0-3
Nulligravidous, % 48.0 41.6
Gravidity (range) 1-6 1-4
Mean gestational age at delivery, SD (weeks) 36.5 (4.5) 39.0 (1.1)
Mean maximum systolic (SD) blood pressure in labor (mm Hg)b 150.2 (23.4) 136.0 (16.7)
Average maximum diastolic (SD) blood pressure in labor (mm Hg)b 92.5 (19.1) 84.7 (13.8)

a None of the differences between women with preeclampsia and normotensive and term (control) pregnancies are significant (P > .05), except for an increase in
the maximum systolic and diastolic blood pressures in labor in the preeclamptics (P < .02).
bData only available for 13 preeclamptic women (see Supplement Table 1).

Figure 1. Haplotypes of the MT-ND5 gene in the Chicago sample; only
nonsynonymous substitutions are shown. The haplotype for each of
the individuals is displayed as a single horizontal line. Nonsynonymous
substitutions that differ from the Yoruban L haplotype are shown as
filled colored squares. Filled triangles show insertions causing frame-
shift mutations. Preeclamptics are individuals 1 to 25 (red squares) and
controls are individuals 26 to 61 (blue squares). The site of the
Met314Val variant is shown by an arrow. Haplogroups are shown
on the right y-axis. See Supplement Table 1 for additional details.
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included an enrichment of a single nonsynonymous substitu-

tion (rs2853502, Met314Val) in cases compared with controls

(Fisher exact test, P ¼ .007; odds ratio [OR] ¼ 15.74, 95% CI

1.42-166.36; using Haldane’s continuity correction). The Val

allele at this variant site tags the L0 mitochondrial haplogroup,

which was present only in 5 preeclamptics (Figure 1). Of

note, however, is that there are proportionally more nonsy-

nonymous substitutions in MT-ND5 in the preeclamptics on

nearly all haplogroup backgrounds (Figure 1). As a result,

more cases (22 of 25; 88%) than controls (19 of 36; 53%)

carried at least 1 nonsynonymous substitution in MT-ND5

(excluding the common Ile172Gly and Val257Ile variants;

Fisher exact test, P ¼ .005; OR ¼ 6.36, 95% CI: 1.5-

39.1). The clinical characteristics, MT-ND5 mutations, and

haplogroups for the Chicago pregnancies with preeclampsia

are shown in Supplement Table 1.

Because the Val allele occurs only on the L0 haplogroup

background, and the L0 haplogroup was present only in pre-

eclamptics, it was possible that the excess of nonsynonymous

variants for other genes or complexes also occurred on this

same background and did not represent independent associa-

tions with preeclampsia. To explore this possibility, we

excluded the 5 cases with the Val allele (L0 haplogroup) and

repeated analyses of all results in Tables 2 and 3 with P <

.05. Excesses of nonsynonymous substitutions remained for

all protein-coding genes, for complex I genes, and for the

MT-ND5 gene (P < .02) indicating an overall enrichment

of nonsynonymous substitutions in the preeclamptics that are

independent of the L0 haplotype and the Met314Val poly-

morphism. Next, all nonsynonymous substitutions in the

MT-ND5 gene were excluded. An excess of nonsynonymous

substitutions in protein-coding genes overall remained (P ¼
.01), primarily due to an enrichment of mutations in the

MT-ND2, MT-ATP6, and MT-CYB genes (data not shown).

Taken together, these analyses reveal independent enrich-

ments of nonsynonymous substitutions in MT-ND5 (in addi-

tion to the Met314Val variant), MT-ND2, MT-CYB, and

MT-ATP6 in African American placentas from preeclamptic

pregnancies.

To replicate our findings of the increased number of nonsy-

nonymous sites in the MT-ND5 gene, we sequenced this gene

in African American preeclamptic infant cases and infant

controls from Detroit. Prior to sequencing, we genotyped the

607 samples for the T1087C variant that tags the L hap-

logroup and excluded 9 patients (3.5%) and 26 controls

(7.6%) because their mitochondrial chromosome did not

belong to the L haplogroup. Among the remaining 361 parti-

cipants (179 patients with preeclampsia and 182 controls),

28 (17 patients, 11 controls) were excluded after sequencing

because they had >5% missing data (Supplement Figure 3).

The overall distribution of missing sites was not significantly

different between cases and controls (Kolmogorov-Smirnov

test, P ¼ .38, Supplement Figure 3). The final sample included

162 infants from preeclamptic pregnancies and 171 infants from

normal, term pregnancies. In this sample, the mean number of

MT-ND5 nonsynonymous substitutions were 2.26 (SD ¼ 1.54)

and 2.31 (SD ¼ 1.24 P ¼ 0.67) and synonymous substitutions

were 2.35 (SD ¼ 1.84) and 2.37 (SD ¼ 1.88, P ¼ .84) in pree-

clamptic and control pregnancies, respectively. The Val allele

at amino acid 314 in the MT-ND5 gene occurred in 3.4% of cases

and 6.6% of controls (Fisher exact test, P¼ .13, OR¼ 0.41 [95%
CI: 0.11-1.28]).

Thus, the excess of nonsynonymous substitutions in the

MT-ND5 gene observed in the Chicago patients with pree-

clampsia compared with controls was not replicated in the

Detroit sample, in which 51.2% of cases and 53.8% of controls

carried at least 1 nonsynonymous substitution in the MT-ND5

gene compared to 88% and 53% of Chicago cases and con-

trols, respectively. The mean numbers of nonsynonymous sub-

stitutions in MT-ND5 in the Detroit preeclamptic infants (2.26)

and control infants (2.31) were also similar to the Chicago

control placentas (2.25), all of which were significantly lower

than the mean number of nonsynonymous variants in the

Chicago patients with preeclampsia (3.12). Moreover, the

frequency of the Val allele at the Met314Val polymorphism

occurred in 3.4% and 6.6% of Detroit patients and controls,

respectively, compared with 25.0% and 0% in the Chicago

patients and controls, respectively.

Table 2. Mean Number (Standard Deviation) of Variants Per Individual by Gene Groups for Protein-Coding and Noncoding (RNA) Genesa

Complex
I

Complex
III

Complex
IV

ATP
Synthase

All Protein
Coding

All
rRNA

All
tRNA

All variants Controls 16.06 (6.36) 4.06 (1.17) 7.31 (3.26) 2 (1.14) 29.42 (10.11) 5 (3.43) 1.94 (1.31)
Preeclampsia 19.72 (8.14) 4.04 (1.21) 8.16 (3.65) 3.24 (1.98) 35.16 (12.85) 6.44 (3.48) 2.52 (1.64)
P value .04b .39 .17 .004b .04b 0.03 0.11

Nonsynonymous
substitutions

Controls 3.91 (2.66) 0.77 (0.79) 0.67 (0.98) 0.44 (0.77) 5.81 (3.71)
Preeclampsia 5.08 (1.85) 1 (0.58) 1.2 (1.41) 0.72 (0.61) 8 (3.30)
P value .02b .05 .08 .02 .01b

Synonymous substitutions Controls 12.92 (5.29) 2.75 (2.64) 5.78 (2.87) 0.92 (1.27) 22.36 (9.64)
Preeclampsia 15.12 (5.82) 3.44 (3.04) 6.84 (3.88) 2.40 (2.78) 27.80 (12.19)
P value .08 .15 .20 .02 .02

Abbreviations: ATP, adenosine triphosphate; rRNA, ribosomal RNA; tRNA, transfer RNA.
a Protein-coding genes are shown on a shaded background. P values based on 10 000 permutations.
b P value remains significant (P < .05) when carriers of the L0 haplogroup are removed (see text for details).
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Discussion

The underlying cause of the component phenotypes of

preeclampsia has been ascribed to an antiangiogenic state

characterized by excessive concentrations of antiangiogenic

factors, including soluble vascular endothelial growth factor

receptor-1 and soluble endoglin, and low concentrations of

the angiogenic placental growth factors,34-38 but why the

placenta overproduces these proteins remains obscure. One

plausible hypothesis is that this results from excess ROS

in the placentas of preeclamptics due to mtDNA mutations

that disrupt critical pathways in oxidative phosphorylation.

We tested this hypothesis by sequencing the entire mito-

chondrial chromosome in a discovery sample of African

American pregnancies with preeclampsia and normotensive

term pregnancies from Chicago, and then sequencing the

MT-ND5 gene in African American pregnancies with pree-

clampsia and normal term pregnancies from Detroit.

Our studies in the Chicago sample revealed a significant

excess of nonsynonymous sites in the preeclamptic compared

to control placentas, especially in the MT-ND5 gene. Mutations

in MT-ND5 are frequently involved in mitochondrial diseases

with defects in oxidative phosphorylation, such as Leber’s her-

editary optic neuropathy,39,40 mitochondrial encephalomyopa-

thy, lactic acidosis, stroke-like episode syndrome,41,42 and

Leigh syndrome.42 This has led to the suggestion that MT-

ND5 is a mutational hot spot for oxidative phosphorylation

defects.41,42 Although MT-ND5 participates as only one of the

enzymatic subunits of complex I in the respiratory chain, in

vivo studies have shown that MT-ND5 is not only necessary for

complex I assembly and function, but that its synthesis is a rate-

limiting step in respiration.43 However, the increase in nonsy-

nonymous substitutions was not replicated in the larger Detroit

sample, in which both cases and controls had rates of variation

similar to the Chicago controls.

There are a number of potential explanations for these dis-

crepant results. In particular, our discovery sample was quite

small, consisting of only 25 patients with preeclampsia cases

and 36 normotensive controls. It is possible, therefore, that

we selected by chance a subset of the cases with a skewed dis-

tribution of nonsynonymous sites in their mitochondrial gen-

ome. The preeclamptic pregnancies included in the discovery

sample were selected from the larger CLIPP Biobank samples

because they met the definition of preeclampsia used in this

study and had a sufficient amount of high-quality placenta

DNA available for sequencing. Subsequent to sequencing,

participants with mitochondrial chromosomes that did not

belong to the L-haplogroup (ie, non–African mitochondrial

chromosomes) were excluded. Thus, there are no obvious

biases in the selection of the Chicago preeclampsia pregnancy

samples compared to those from Detroit, yet it remains possible

that the significant results in the discovery sample were type 1

errors in a small sample.

On the other hand, differences in the study designs in

the Chicago and Detroit samples could have influenced these

results. First, sequencing studies in the Chicago samples were

performed in placental-derived DNA, whereas sequencing stud-

ies in the Detroit samples were performed in DNA derived from

cord blood. While we expect the placental genome to reflect the

fetal (cord blood) genome, it is possible that mutation rates are

higher in rapidly dividing placental cells compared to cord blood

cells, particularly in mitochondrial DNA (mtDNA), which has

higher mutation rates than nuclear DNA.44-46 However, the fact

that we did not see increased rates of heteroplasmy or of synon-

ymous substitutions in the placental DNA in the Chicago samples,

suggests that increased de novo mutations rates in preeclamptic

placentas are not likely to underlie the observed differences.

Moreover, the occurrence of the same variants in multiple indi-

viduals further argues against this theory.

A second difference between the studies in the Chicago and

Detroit samples was that we used next-generation sequencing

of the entire mitochondrial chromosome in the Chicago samples

and dideoxy Sanger sequencing of just the MT-ND5 gene in the

Detroit samples. In addition, the studies in the Detroit samples

were performed in whole genome amplified DNA, resulting in

an overall higher frequency of missing data in the Detroit com-

pared to Chicago samples (Supplement Figures 2 and 3).

Although these differences could result in overall different rates

of detected variants in the MT-ND5 gene between the 2 samples,

it is unlikely that sequencing technology or DNA quality would

result in differences between cases and controls in the Chicago

samples only. However, we cannot exclude the possibility that the

Detroit preeclamptic pregnancies harbor excesses nonsynon-

ymous variants in mitochondrial genes other than MT-ND5. Due

to practical considerations, we could not sequence the entire

mitochondrial chromosome in the Detroit samples, so we selected

the MT-ND5 gene for targeted sequencing because it harbored the

greatest excesses of variation in the Chicago cases. However, the

Chicago patients with preeclampsia also showed significant

excesses of nonsynonymous variation in the MT-ND2,

MT-ATP6, and MT-CYB genes that were independent of the

MT-ND5 findings. Therefore, it is possible that the patients with

preeclampsia from Detroit harbor increased rates of nonsynon-

ymous substitutions in mitochondrial genes other than MT-ND5.

Lastly, cryptic heterogeneity may exist between the Chicago

and Detroit samples, such that mutations in mitochondrial

genes contribute more to the onset of preeclampsia in the Chi-

cago cases than in the Detroit cases. Preeclampsia is a hetero-

geneous condition with many different potential etiologies, all

of which result in the onset of hypertension and proteinuria dur-

ing pregnancy. We focused these studies in African American

pregnancies both because African ancestry is a risk factor for

preeclampsia3-5 and because mitochondrial chromosomes from

Africa harbor more variations due their deep ancestral

roots.47,48 However, African Americans are genetically very

heterogeneous, with respect both to proportions of European

admixture, ranging from 6.8% to 22.5%,49 and to specific

ancestry within Africa.50 Although our study included African

American participants from 2 Midwestern US cites, the propor-

tions of mitochondrial chromosomes that were not members of

the L (African) haplogroup were 10.3% of the Chicago sample

(16.7% of cases, 5.3% of controls) and 5.8% of the Detroit
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sample (3.5% of cases, 7.6% of controls), suggesting more Eur-

opean admixture in the Chicago preeclamptic pregnancies.

Because mtDNA reveals ancestry just through maternal

lineages it provides an incomplete picture of overall admixture

rates in the 2 samples, but nonetheless suggests differences in

European admixture that could have influenced our results. For

example, if the risk for preeclampsia associated with mitochon-

drial nonsynonymous substitutions requires interaction with an

autosomal European genetic background, increased rates of

European admixture could enhance the effects of mitochon-

drial mutations. Such interactions have been demonstrated for

other mitochondrial-associated diseases, for which mutations

in both autosomal and mitochondrial genes result in more

severe phenotypes51 and mutations in autosomal and mitochon-

drial genes result in the same phenotype.52-54 It is possible

therefore that mutations in autosomal genes as well as in all

mitochondrial genes involved in oxidative phosphorylation

pathways need to be considered in future studies.

Whether a higher background rate of mitochondrial muta-

tions among women of African descent contributes to the

increased risk for preeclampsia and related health disparities

among African American women3-5 remains to be determined.

Future studies of mitochondrial sequence variants from larger

samples of African American placentas from preeclamptic

pregnancies and normotensive pregnancies are required to

address this important outstanding question.
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