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Abstract

methods in prioritizing genes for complex traits.

Background: The genetic make-up of humans and other mammals (such as mice) affects their resistance to
influenza virus infection. Considering the complexity and moral issues associated with experiments on human
subjects, we have only acquired partial knowledge regarding the underlying molecular mechanisms. Although
influenza resistance in inbred mice has been mapped to several quantitative trait loci (QTLs), which have greatly
narrowed down the search for host resistance genes, only few underlying genes have been identified.

Results: To prioritize a list of promising candidates for future functional investigation, we applied network-based
approaches to leverage the information of known resistance genes and the expression profiles contrasting suscep-
tible and resistant mouse strains. The significance of top-ranked genes was supported by different lines of evidence
from independent genetic associations, QTL studies, RNA interference (RNAI) screenings, and gene expression
analysis. Further data mining on the prioritized genes revealed the functions of two pathways mediated by tumor
necrosis factor (TNF): apoptosis and TNF receptor-2 signaling pathways. We suggested that the delicate balance
between TNF's pro-survival and apoptotic effects may affect hosts’ conditions after influenza virus infection.

Conclusions: This study considerably cuts down the list of candidate genes responsible for host resistance to
influenza and proposed novel pathways and mechanisms. Our study also demonstrated the efficacy of network-based

Background

Influenza is a highly contagious, seasonal respiratory ill-
ness caused by the influenza virus. The progression and
outcome of pathogenic infections are influenced by host
genetic factors [1-7]. Further studies showed that this
finding may also hold true for influenza A virus infection
[8-12]. Thus host genetic factors should be identified to
gain insights into the molecular mechanisms underlying
host resistance and accelerate the development of new
therapeutic regimes for patients. Several genome-wide
quantitative trait locus (QTL) mapping studies have
been conducted using different mouse strains to identify
host genetic factors that contribute to the resistance to
influenza virus infection [10,13-16]. The identified QTLs
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have greatly narrowed the scope of genetic factors from
the whole genome to a set of genomic intervals. How-
ever, identifying the underlying genes from a large
number of candidates within these regions remains a
challenge. In this study, in silico approaches were used
to prioritize a list of the most promising candidate genes
from these QTL regions for future investigations.

The basic idea for most computational gene prioritization is
that for a heritable trait with genetic heterogeneity, different
trait-related genes should show similarities with one another
based on some particular measure. Assuming that the known
disease genes (termed “seed genes” or “seeds”) represent all of
the genes responsible for a specific disease, then the unknown
disease genes can potentially be distinguished from other
candidates based on their similarities to the seeds (so called
“seed-based” strategy). With the accumulation of high-
throughput protein-protein interaction data, network-based
similarity measures were demonstrated to be effective in
prioritizing human disease genes using the seed-based
strategy [17]. We first showed that a scoring method based on
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these measures could have reasonable power to predict
known host resistance genes. However, the “seed-based”
methods have several drawbacks stemming from an inherent
limitation: these methods rely on known disease genes,
which are incomplete in some studies and may introduce
considerable bias. Meanwhile, many microarray experiments
comparing the gene expression profiles of cases and controls
have been performed. These studies contained rich informa-
tion regarding trait-related genetics, but the information
has not been fully exploited. Previous studies showed
that disease genes are often surrounded by differentially
expressed neighbors in a gene network, but not necessarily
highly differentially expressed themselves [18,19]. We further
demonstrated that host resistance genes also share this prop-
erty in a protein association network. Several scoring
approaches using DE levels of network neighbors were
evaluated to prioritize known host resistance genes. Our
evaluation suggested that DE-based methods could also
effectively prioritize the genes responsible for host resistance
to influenza.

By applying both strategies to prioritize genes within
mouse QTLs associated with host resistance to influ-
enza, we identified functional relevant genes that were
supported by multiple lines of evidence from previous
studies. A list of promising candidate genes strongly
supported by literatures was totally missed when seed-
based methods were used. Using the DE-based method,
we were able to identify these genes. This result indi-
cated that the DE-based strategy can complement the
seed-based strategy to obtain novel candidates without
the influence of limited knowledge. In addition, evi-
dence-supported genes were significantly enriched in
top-ranked genes prioritized by both seed- and DE-
based strategies. Hence, DE-based strategy can also
enhance the credibility of the inference of a candidate’s
role in the pathogenesis of a disease. The results of func-
tional enrichment analysis further showed that genes
prioritized by both strategies revealed several biological
processes that may exert critical functions in influencing
host outcomes after influenza virus infection. In sum-
mary, our results suggested that the DE-based strategy
can provide additional benefits and reduce the bias from
a limited set of known disease genes. These results can
also enhance our understanding of the pathological
pathways of influenza.

Results and discussion

The overall prioritization strategy was shown in Figure 1.
Each candidate gene within the QTL intervals associated
with host resistance to influenza was scored using seed-
(Figure 1a) and DE-based strategies (Figure 1b). We used
the gene association network compiled by the STRING
database (version 9) [20] to derive the similarity mea-
sures and network neighbors. Top 10% of the genes
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within each QTL region ranked by either seed- or DE-
based scoring strategy were considered as prioritized. All
of the prioritized genes were then subject to systematic
literature survey and gene set enrichment analysis.

Optimizing the network similarity measures for
seed-based methods

For the first seed-based scoring strategy (Figure la), 14
genes were collected as seeds that harbor variants (either
natural polymorphisms or knockouts in model organisms)
associated with the traits related to host resistance after in-
fluenza virus infection (Table 1). To best capture the rela-
tionships among host resistance genes, we evaluated the
performance of several different network similarity mea-
sures: direct interaction ranking (DIR), STRING association
ranking (SAR), random walk with restart (RWR), and seed-
based heat kernel diffusion ranking (sHKDR). The DIR
measure for a gene corresponds to the number of direct in-
teractions (above a specific threshold) with seeds; SAR is
the sum of direct interaction scores. More sophisticated
methods were also applied. One method uses the arrival
probability in the steady state of random walks
with restart from seeds in the gene network (RWR); the
other measures the average distances to the seeds repre-
sented by a diffusion heat kernel matrix (sHKDR). The
mathematical details of these scoring methods can be found
in Additional file 1. To evaluate the model performance, we
randomly chose 99 genes as background for each seed.
Each seed and its corresponding random background were
then scored by the model built from the remaining seed
genes. This step is called the leave-one-out cross validation
(LOOCV) test (Materials and methods). The model per-
formance can be reflected by the ranks of the seed genes
over the background and quantified as the area under the
curve (AUC) of the receiver operating characteristic (ROGC;
Figure 2) [21]. The model parameters in sHKDR (diffusion
factor /5 and iteration time 1) were tuned to optimize the
performance (Additional file 1: Table S1). Figure 2 shows
that RWR (AUC = 0.905) and sHKDR (AUC = 0.906), both
of which consider indirect interactions, exhibit similar per-
formances and outperform SAR (AUC=0.899) and DIR
(AUC = 0.804) in terms of AUC values. Therefore, we chose
RWR and sHKDR as the measures for the seed-based scor-
ing strategy. Furthermore, the ROC curves also suggested
that known resistance genes can be ranked at the top 10%
in the simulated candidate sets among 85% of total
prioritization processes using RWR, which is superior to
other measures at the same ranking percentage.

Evaluating the performance of DE-based network strategy
To apply the DE-based network strategy, we empirically
surveyed the DE levels of 14 known host resistance
genes and their neighborhoods in the STRING network.
We first obtained the whole-genome expression profiles of
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Figure 1 Overview of the network approaches based on seed genes and differential expression. The gene network is constructed from
STRING database and represented by an undirected graph consisting of nodes (genes) and weighed edges (links between gene pairs with associated
scores). (@) For the seed-based strategy, the score vector for all seeds and other genes within the genome is initialized with the entries corresponding
to the seed genes assigned with equal scores whose sum is equal to 1. The vector is iteratively updated by a random walk process over the network
until it reaches convergence. Candidate genes are ranked by their scores in the converged vector, which can be interpreted as the steady-state
probabilities of staying at the nodes representing the candidate genes. A high probability for the candidate corresponds to a higher similarity to the
seeds. As a computationally efficient alternative, a heat kernel diffusion matrix can be used to approximate the distances between all pairs of genes.
The candidate genes are then scored according to their average distances to the seeds based on the kernel matrix. (b) The DE-based method does
not rely on the definition of seeds but uses a trait-related microarray expression profile to obtain the DE levels of the genes. DE levels were then
mapped onto the network. For each candidate gene, the score is calculated as a weighted average of the DE levels of the gene and its network
neighbors with the weights derived from the network distances between genes. In this study, the candidate genes within each QTL were scored using
two different strategies, and the top 10% ranked by each method was chosen as prioritized genes (winners).
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Table 1 The collection of 14 known host resistance genes
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Entrez Gene Gene description Mouse Cytoband Supporting evidence
ID symbol ortholog
4599 MX1 myxovirus (influenza virus) Mx1, Mx2 219223 Mouse strains homozygous for Mx null allele
resistance 1 fail to synthesize Mx protein and are influenza
virus susceptible [22].
9437 NCRI1 natural cytotoxicity Ncrl 1991342 Necrl™™ 129/Sv and C57BL/6 mice were lethal
triggering receptor 1 after influenza virus infection [23].
1234 CCRS chemokine (C-C motif) Cers 3p21.31 Deaths among Ccr5~/~ mice increase after infection
receptor 5 with influenza A virus [22]. A large proportion of
heterozygosity for the CCR5A32 allele among white
patients with severe disease was also found [24].
114548 NLRP3 NLR family, pyrin domain Nirp3 1g44 Mice lacking Nirp3 exhibited dramatically increased
containing 3 mortality and a reduced immune response after exposure
to the influenza virus [25]. Gene polymorphisms in the
NALP3 inflammasome are associated with interleukin-1
production and severe inflammation in human [26].
3105 HLA-A major histocompatibility H2-D1 6p21.3 The magnitude and specificity of influenza A virus-specific
complex, class |, A cytotoxic T-lymphocyte responses in humans is associated
3106 HLA-B major histocompatibility with the HLA-A and -B phenotypes [27].
complex, class |, B
2212 FCGR2A  Fc fragment of IgG, low Fcgr3 1923 rs1801274 on FCGR2A is significantly (p < 0.0001, OR=2.68,
affinity lla, receptor (CD32) 95% Cl: 1.69-4.25) associated with sever pneumonia after
A/HINT infection in human [28].
84268  RPAIN RPA interacting protein Rpain 17p13.2 rs8070740 on RPAIN is significantly (p < 0.0001, OR=2.67,
95% Cl: 1.63-4.39) associated with sever pneumonia after
A/HINT infection in human [28].
3456 IFNB1 interferon, beta 1, Ifnb1 9p21 IFN-B-deficient mice carrying functional Mx1 alleles showed
fibroblast 20-fold lower in the 50% lethal dose of H7N7; and also
substantially reduced resistance to HINT infection [29].
3586 IL10 interleukin 10 1o 1931-g32 A promoter polymorphism conferred a significantly
decreased risk of adverse response to inactivated
influenza vaccine [30].
708 C108P complement component 1, q Clgbp 17p13.3 rs3786054 on C1QBP is significantly (p < 0.0001, OR=3.13,
subcomponent binding protein 95% Cl: 1.89-5.17 ) associated with sever pneumonia after
A/H1INT infection in human [28].
3811 KIR3DLT  killer cell immunoglobulin-like Kir3dl1 199134 KIR3DL1/S1 and 2DL1 ligand-negative pairs were
receptor, three domains, long enriched among HIN1 ICU cases [31].
cytoplasmic tail, 1
3803 KIR2DL2  Kkiller cell immunoglobulin-like Kir3dl2 199134 KIR2DL2/L3 ligand-positive pairs were enriched
receptor, two domains, long among HIN1 ICU cases [31].
cytoplasmic tail, 2
10410 IFITM3 interferon induced Ifitm3 11p15.5 Mice lacking /fitm3 display fulminant viral pneumonia

transmembrane protein 3

when challenged with a normally low-pathogenicity
influenza virus. A statistically significant number of
hospitalized subjects were also shown enrichment

for a minor IFITM3 allele that alters a splice acceptor site [32].

44 pre-Collaborative Cross (CC) mice after being infected
by influenza virus (GSE30506 [33]). The DE level was mea-
sured as the log2 ratios of the mean expression values
between 26 susceptible strains and 18 resistant strains. A
sub-network comprising all of the seed genes and their
interacting neighbors was extracted from the STRING net-
work (Figure 3a). The node sizes and shades of colors were
used to represent the DE levels. We found that most of the
seeds here were surrounded by differentially expressed
neighbors. Some of the seeds, such as Clgbp, which is not
directly linked to other seed genes, may lose their priority

when seed-based methods were used (highlighted by a yel-
low circle; the sub-network of this gene and its neighbors
are shown in Additional file 1: Figure Sla). Some of the
seed genes, such as H2-D1, Ifnarl, and Ifitm3, were not
highly differentially expressed, but these genes were sur-
rounded by highly differentially expressed neighbors in the
network (Additional file 1: Figure S1 b-d). These observa-
tions suggested the feasibility of incorporating the DE levels
of network neighbors to prioritize host resistance genes.

To quantitatively assess the hypothesis that the genes
responsible for host resistance to influenza virus
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Figure 2 Performance evaluation of seed-based network strategy. The ROC curves of the seed-based methods in LOOCV test on known
host resistance genes. Four different methods (DIR, SAR, RWR, and sHKDR) as described in the main text were compared. The prioritization
performance can be measured as AUC presented next to each method.

infection are surrounded by network neighbors differen-
tially expressed between resistant and susceptible mouse
strains, we evaluated three DE-based scoring methods to
prioritize known resistance genes. These methods in-
clude: Differential Expression Ranking (DER, scoring
each gene based on its own DE level), Direct Neighbor-
hood Ranking (DNR, weighted sum of the gene’s own
DE level and the average of all direct neighbors), and
DE-based HKDR (deHKDR, weighted sum of the gene’s
own DE level and the weighted average of direct and in-
direct neighbors based on heat kernel diffusion ranking;
Materials and methods, Additional file 1). The perfor-
mances of DE-based methods were also assessed by the
ranks of seeds relative to the randomly sampled genes
and quantified as the AUC of ROC. In contrast to the
LOOCYV used for seed-based methods, seeds and back-
ground genes were all scored using DE-based methods.
The required parameters (steady factor a in DNR;
B and m in deHKDR) were tuned to maximize the AUC
for each method (Additional file 1: Tables S2 and S3). In
Figure 3b, the method that aggregated weighted DE
levels of all surrounding genes (deHKDR, AUC = 0.919)
showed better performance than the ranking methods
that relied on DE alone (AUC =0.829 for DER) or the
method that only considered the unweighted DE levels

of direct neighbors (AUC =0.854 for DNR). The per-
formance of deHKDR was comparable to that of the
seed-based methods (RWR and sHKDR) in terms of
AUC. The ROC curve also suggested that the known re-
sistance gene can be found among the top 10% of the
scored genes with probability higher than 0.75. These re-
sults indicated that the known resistance genes were
possibly surrounded by differentially expressed neigh-
bors; therefore, DE-based scoring methods can be ap-
plied to prioritize host resistance genes.

Prioritizing candidate genes within mouse QTLs

We applied seed- and DE-based strategies to score and
rank the candidate genes in 17 reported mouse QTLs
(Table 2). We aimed to use a mouse model to inform
human diseases; thus only conserved mouse genes with
human orthologs were selected as candidates (Materials
and methods). For each QTL region, the candidate genes
ranked at the top 10% by each method (RWR, sHKDR,
and deHKDR) were considered as prioritized genes for a
specific method. The number of the genes prioritized
using the three methods was shown as a Venn diagram
in Figure 4a (detailed functional annotations are given in
Additional file 2: Table S4). Among the 258 genes, 46
were prioritized by at least one seed-based method



Bao et al. BMC Genomics 2013, 14:816
http://www.biomedcentral.com/1471-2164/14/816

Page 6 of 16

—— DER :0.829
—— DNR:0.854
—— deHKDR : 0.919

04 06 0.8 1.0
False Positive Rate

Figure 3 Empirical survey and performance evaluation of DE-based network strategy. (a) The known influenza host resistance genes are
surrounded by differentially expressed genes between resistant and susceptible mouse strains. To visualize the gene expression levels within a
network context, a sub-network consisting of only the seed genes and their directly linked neighbors in the STRING database was extracted and
visualized using Cytoscape [34] under the edge-weighed spring embedded layout. The distances between seeds and their neighbors were set
proportional to their interaction scores. Differential expression levels between resistance and susceptible mouse strains are mapped to the size
and color shade of each node. The significant differentially expressed genes were highlighted by unifying the colors of genes with DE levels that
ranked at the top 5% (DE level = 0.32) among the whole genome in red and the genes with DE levels that ranked at the bottom 5% (DE level
< —0.15) in blue (as illustrated in the inset). All seed genes are highlighted using the same node size and bold fonts of their names. (b) The ROC
curves of DE-based methods in the validation test on known host resistance genes. Three methods (DER, DNR, and deHKDR) as described in the
main text were compared. The performance measured as AUC is shown next to the name of each method.

b

(RWR or sHKDR) and a DE-based method (deHKDR);
these genes were then termed as 2-strategy winners
(Figure 4a). To systematically collect supporting evi-
dence for prioritized genes, we searched the following
four types of studies that are related to host resistance
or response to influenza virus infection (Materials and
methods): genetic association studies [22,27,35-41], QTL
studies [10,14-16,33], RNA interference (RNAi) screen-
ings [42-46], and microarray gene expression profiles
[47-49]. Among the top-ranked genes, 12 of them were
reporeted to harbor polymorphisms associated with the
outcome related to influenza infection, including ACE
[50], HLA-DQBI1 [35], LTA, TNF [36], PSMB9 [37],
EIF2AK?2 [38], C5 [39,40], ILIRN [41], ILI2RB2 [41],
MX1 [22], HLA-A, and HLA-B [27], which strongly sup-
port their roles as host genetic factors. MXI, HLA-A,
and HLA-B were the seeds used for the seed-based strat-
egy; however, these genes, except for HLA-A, were also
identified using the DE-based strategy. Another 64 genes
are considered as promising candidates responsible for
host resistance by QTL studies or genes related to host

response to influenza virus infection by RNAI screenings
or gene expression analysis (Additional file 2: Table S4).
Other literature supporting for the function of a gene in
host resistance or response to influenza infection were
listed in the last two columns of Additional file 2: Table
S4. Top-ranked genes supported by multiple types of
studies (genetic association, QTL, RNAI, or expression
studies), with a total of 19 genes, are listed in Table 3.
Among these genes, seven were identified by both seed-
and DE-based strategies; seven were specifically priori-
tized by the DE-based strategy; the remaining genes
were identified by the seed-based strategy (Table 3). This
observation suggested that the DE-based strategy, using
a completely different prioritization mechanism from
seed-based strategy, can complement the seed-based
strategy to identify promising disease genes.

To provide an overview of the functional significance
of top-ranked genes from seed- and DE-based strategies
or both, we summarized the proportions of the winners
supported by particular evidence in each winner set. The
four types of supporting sources were catergorized into
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Table 2 QTL studies for candidate genes collection

Study” QTL regions' Influenza Mouse
virus strains

Toth et al, chr6:48676555-75397704 H3N2 CXB
1999 [13]
Boon et al, chr2:33-52 Mb; H5N1 BXD
2009110] chr7:107-121 Mb;

chr11:101-107 Mb;

chr15:51-57 Mb;

chr17:68-84 Mb
Nedelko et al, chr2:56-68 Mb; HIN1 BXD
2012 15] chr5:140-153 Mb;

chr16:64-78 Mb;

chr17:30-44 Mb;

chr19:37-45 Mb
Boivin et al,  chr2:24-38 Mb; H3N2 AcB
2012 14] chr17:37-48 Mb
Ferris et al., chr1:21767867—- HIN1 preCC
2013 [16] 29085401;

chr16:97500418-

08213493;

chr7:89130587-

96764352;

chr15:77427235-

86625488

“The QTL regions were collected from genome-wide scans of phenotypes
related to the outcome of influenza virus infection in inbred mouse.
"The genomic positions are based on the coordinates of NCBI build 37.

two classes of evidence: genetic evidence (including gen-
etic association studies and QTL studies) and functional
evidence (including RNAi screenings and expression
analysis; Materials and Methods). Top-ranked genes spe-
cifically identified by the DE-based strategy (DE-only) or
the seed-based strategy (seed-only) or the winners prior-
itized by both strategies (2-strategy) were grouped into
three winner sets and mapped to the genes supported by
genetic evidence and functional evidence or both
(Figure 4b). We used the hypergeometric test to evaluate
the statistical significance of observing a specific propor-
tion of the supported winners in a winner set given all
prioritized winners as background. A significant increase
in the proportions of winners supported by all types of
supporting sources was observed in the 2-strategy win-
ner set (>45%) compared with the single-strategy winner
set (<25%), with a hypergeometric p-value of 3.4e—4.
The proportion of the DE-only winners supported by
genetic evidence (approximately 10%) was similar to that
of seed-only winners; by comparison, a higher percent-
age (approximately 20%) of functional evidence was ob-
served among the DE-only winners compared with the
seed-only winners (approximately 16%). Although mic-
roarray expression data were also used in our DE-based
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strategy, they are independent of the data used in
supporting evidence. This finding suggested that the
DE-based strategy can provide additional advantages in
identifying promising candidates by fully exploiting the
rich information from the microarray expression data.

Pathways and biological functions revealed by
top-ranked genes

The following gene sets deposited in the DAVID knowl-
edgebase [55] (version 6.7) were used in the functional
enrichment analyses: BIOCARTA (http://www.biocarta.
com/), KEGG (http://www.genome.jp/kegg/), REAC-
TOME (http://www.genomeknowledge.org/), PANTHER
(http://www.pantherdb.org/; including biological process,
BP, and molecular function, MF), and Gene Ontology
FAT (including BP, MF, and cellular component, CC;
Materials and methods). All of the gene sets enriched by
each group of winners (2-strategy, deHKDR, sHKDR,
or RWR winners) at the nominal significance level of
p < 0.01 are shown in Additional file 3. Figure 5 illus-
trates the pathways significantly enriched (p < 0.01 and
false discovery rate, FDR < 0.25) by at least one winner
group as a heatmap. The significant results of gene
ontology (GO) enrichment (in terms of BP, MF, and CC)
are provided in Additional file 1: Figure S2. Figure 5 fur-
ther shows that the genes prioritized by seed-based
methods were more enriched in immune-related path-
ways (e.g., allograft rejection, NOD-like receptor signal-
ing pathway, and signaling in immune system) compared
with those prioritized by the DE-based method. It may
reflect the inherent bias of seed-based method: neigh-
boring genes in the STRING network tended to share
the same pathways, and seed genes were mostly immune
related, so we expected to see winners of seed-based
methods to enrich in general immune related pathways.
Alternatively, shared gene with other immune related
processes can be interpreted as shared genetic causes
(pleiotropy) of immune related phenotypes. The genes
prioritized by the DE-based method specifically revealed
two pathways: TNF/stress-related signaling (p = 2.39e-3)
and signaling by GPCR (p = 3.96e—4). Similar observa-
tion as pathway enrichment analysis could also be found
in GO enrichment analysis (Additional file 1: Figure S2).
In particular, TAP complexes, TAP-binding proteins
(TAPBP), and MHC-I presentation (the translocation
and peptide loading of this process are accomplished
by TAP complexes and TAPBP) were highlighted with
the introduction of the DE-based prioritization.
In addition, 2-strategy winners indicated the significance
of several pathways: type I diabetes mellitus (DM,
p = 9.40e-4); antigen processing and presentation
(p = 3.42e-5); TNFR2 signaling (p = 6.81e-3); and apop-
tosis pathway (REACTOME: apoptosis, p = 5.27e-3;
PANTHER: apoptosis signaling pathway, p = 8.55e-3).
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Figure 4 An overview of the prioritized genes from mouse QTLs. (a) A total of 258 genes (winners) were ranked at the top 10% in each
QTL region by the seed- (RWR, sHKDR) or DE-based method (deHKDR). The numbers of winners identified by one, two, or all three methods
are shown in a Venn diagram. The winners identified by at least one of the seed-based methods and by the DE-based method were termed
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2-strategy winners. The remaining winners (identified by the seed-based methods only or by DE-based method only) were termed single-strategy
winners. (b) 2-strategy winners are better supported by the genetic or functional evidence compared with single-strategy winners. Each set of
winners(2-strategy winners, DE-only winners, seed-only winners) was annotated by genetic evidence and functional evidence. The proportion of
winners supported by one class of evidence or both was plotted as a stacked cylinder. One-tailed hypergeometric test was used to determine
the enrichment significance of the supported winners (either supported by genetic or functional evidences) in a winner set, given all prioritized

winners as background. P values were annotated above the corresponding cylinders.

The two pathways highlighted by 2-strategy winners,
namely, TNFR2 and apoptosis signaling pathways
(Figure 6), share three top-ranked genes: TNE, conserved
helix-loop-helix ubiquitous kinase (CHUK, also known
as IKK-a), and nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor-epsilon (NF-IxBe, also
known as IkBe). Among these genes, the polymorphisms
on TNF were reported to influence the severity of infec-
tion caused by HIN1 virus [36]. Moreover, the genetic
polymorphism on [kBe is associated with invasive
pneumococcal disease [56], a serious complication of
seasonal and HIN1 influenza infection in 2009 [57].
These observations have suggested that the two path-
ways containing these genes may exert an important
function in influenza host genetics. The results of the
expression analysis in a previous study [33] (Supporting
Information, File S4 in [33]) further showed that TNF is
significantly upregulated (q-value = 1.98e—11) in severely
infected mice compared with mildly infected mice, sug-
gesting that the TNF expression is associated with the
severity of host outcomes after influenza infection. Viral
replication in lung epithelial cells is inhibited by TNF-a,
and the virulence of H5N1 may be partly related to virus
resistance to host TNF-a [58]. As such, anti-TNF can be
administered to treat influenza infections [59]. However,

the effectiveness of the TNF treatment remains contro-
versial [60,61]. The anti-TNF medicines demostrated ef-
ficacy in some patients but posed risk of increasing the
severeity of influenza in others [62]. Faustman, et al
[63] have summarized the functions of TNF-mediated
TNEFR2 signaling pathway in autoimmune diseases and
provided some information that may shed light on this
perplexing question. For instance, systemic toxicity ob-
served in some cancer patients receiving TNF treatment
may be attributed to the widespread expression of
TNER1 in contrast to the limited distribution of TNFR2.
TNF is a key signaling protein in the immune system
[63] and can bind to two structurally distinct membrane
receptors on target cells; these receptors are TNFR1
(also known as TNFRSF1A) and TNFR2 (also known as
TNFRSF1B) [64], for diverse functions. In particular,
TNF depends on TNFR1 in apoptosis; TNF also depends
on TNRF2 to perform T-cell survival-related functions.
The basis for anti-TNF medicines is to reduce the con-
centration of free TNF that can bind to functional T cells
and lower the concentrations of TNFR2; as a result,
TNF-mediated inflammation is reduced. Considering the
relatively pervasive expression of TNFR1 compared with
TNER2, reduced TNF expression may play an even
greater role in affecting the TNFR1-mediated apoptosis
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Gene symbol Gene description Prioritization Supporting source*
method

Seed- DE-  Genet- QTL RNAi Expr

based based Assoc

Functional annotation and/or
literature support

IFI35 interferon-induced protein 35 + + +

EIF2AK2 eukaryotic translation initiation + + + + +
factor 2-alpha kinase 2

TNF tumor necrosis factor (TNF + + +
superfamily, member 2)

TRIM26 tripartite motif-containing 26 + + +
IFIHT interferon induced with helicase C + + +
domain 1
TAP2 transporter 2, ATP-binding cassette, + +
sub-family B (MDR/TAP)
FOLH1 folate hydrolase (prostate-specific + + +
membrane antigen) 1
HLA-E major histocompatibility complex, + +
class I, E
LST1 leukocyte specific transcript 1 + +
FAMI135A + + +
PLA2G7 phospholipase A2, group VIl (platelet- + +
activating factor acetylhydrolase,
plasma)
TAPBP TAP binding protein (tapasin) + + +
PSMB9 proteasome (prosome, macropain) + + + +

subunit, beta type, 9 (large
multifunctional peptidase 2, LMP2)

ILTRN interleukin 1 receptor antagonist + + +

+

Ifi35 can be up-regulated upon exposure to
interferon and modulate the cytokine signaling
[35]. It also has antiviral properties against bo-
vine foamy virus via inhibiting its replication
[41].

The encoded protein is a serine/threonine
protein kinase that is activated after binding to
dsRNA during the course of a viral infection.
Mice lacking this gene displayed increased
susceptibility to influenza virus infection [38].

The encoded protein is a multifunctional
proinflammatory cytokine, involved in the
regulation of a wide spectrum of biological
processes including apoptosis. It harbored
polymorphisms associated with the severity of
the clinical behavior after infection by the
pandemic influenza A/HIN1 [36].

The encoded protein is a member of the
tripartite motif (TRIM) family.

Innate immune receptor acting as a cytoplasmic
sensor of viral nucleic acids and plays a major
role in the activation of a cascade of antiviral
responses including the induction of type |
interferons and proinflammatory cytokines. The
Ifih1 knock-out mice exhibit an impaired re-
sponse to different viral pathogens [51,52].

Involved in antigen processing and
presentation.

HLA class | molecules play a central role in the
immune system by presenting peptides derived
from the endoplasmic reticulum lumen.

The protein encoded by this gene is a
membrane protein that can inhibit the
proliferation of lymphocytes. In humans, LST7
plays a role in the regulation of the immune
response to inflammatory diseases [53].

The encoded protein a secreted enzyme that
catalyzes the degradation of platelet-activating
factor to biologically inactive products. It har-
bored genetic polymorphisms associated with
imflammatory diseases like atopy and asthma in
humans [49].

Involved in the association of MHC class | with
TAP and in the assembly of MHC class | with
peptide.

The proteasome is a multicatalytic proteinase
complex. The encoded subunit is involved in
antigen processing to generate class | binding
peptides. The LMP2-mutant mice showed
reduced levels of CD8+ T lymphocytes and
generated 5- to 6-fold fewer influenza
nucleoprotein-specific cytotoxic T lymphocyte
precursors [37].

The encoded protein inhibits the activities of
interleukin 1 and modulates a variety of
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Table 3 Prioritized genes supported by multiple types of studies (Continued)

cs complement component 5 + +
DAXX death-domain associated protein +
HLA-DQB1 major histocompatibility complex, + +

class Il, DQ beta 1; similar to major
histocompatibility complex, class Il
DQ beta 1

MX1 myxovirus (influenza virus) resistance  + + +

1, interferon-inducible protein p78
(mouse)

HLA-A
class I, A

HLA-B
class I, B

major histocompatibility complex, + +

major histocompatibility complex, + + +

interleukin 1 related immune and inflammatory
responses. It harbors genetic polymorphisms
significantly related to humoral immune
response to inactivated seasonal influenza
vaccine [41].

+ The encoded protein is the fifth component of
complement, which plays an important role in
inflammatory and cell killing processes. The
C5-deficiency was reported to increase
susceptibility to mouse-adapted influenza
A virus [39,40].

The encoded protein may function to regulate
apoptosis. Influenza virus can escape the
repressional function of Daxx during infection
by binding matrix protein 1 with Daxx [54].

+ HLA-DR7/4,DQB1*0302genotype was
significantly associated (OR = 5.15; 95%Cl = 1.94,
13.67;
p = 0.001) with clinical hyporesponsiveness after
trivalent inactivated influenza vaccine[35]

Mice susceptible to influenza infection harbor
large exonic deletions or nonsense mutations in
the Mx1 gene[22]. (seed gene)

+ The magnitude and specificity of influenza A
virus-specific cytotoxic T-lymphocyte responses
in humans is related to HLA-A and -B phenotype
[27]. (seed gene)

*The following sources of supporting evidence were collected for each prioritized gene. Genet-Assoc: literature supporting for the gene’s genetic association with
host resistance to influenza infection. QTL: candidate genes identified in the original QTL study with independent evidence (harboring founder variants that were
associated with the phenotype; co-localization with a cis-eQTL; etc.). RNAi: host genes important for influenza life circle identified through high-throughput RNAi
screens. Expr: host genes robustly up- or down- regulated after influenza virus infection identified from multiple microarray experiments. Detailed supporting
evidence for each gene was listed in Additional file 2: Table S4. For more details of QTL, RNAi and expression studies, see Additional file 2: Table S5.

signaling pathway. Interestingly, the apoptosis signaling
pathway was reported to play a role in ducks’ resistance
(compared with chicken) to H5N1 infection [65]. We as-
sumed that the high dose of anti-TNF medicines may
significantly influence the process of T cell apoptosis in
addition to the TNFR2 signaling pathway; hence, the
delicate balance between TNF pro-survival and apop-
totic effects is disrupted [66]. A TNFR2-specific agonist
therapeutic strategy, however, would be a valid alter-
native treatment, given the limited distribution of
TNFR2 [63]. Although few studies have been con-
ducted to determine the exact functions of TNF in
balancing the pro-survival effect and apoptosis during
influenza infection, let alone the studies on investigating
the possibility of applying TNFR2-specific antagonist in
influenza treatment; we suggested that the relationship
between apoptosis and TNFR2 signaling pathway would
be a valuable topic in the field of influenza genetics
study.

Conclusions

Disease genes could be directly and efficiently pre-
dicted based on the prior knowledge of the biolo-
gical processes involved in a particular disease.

However, an alternative strategy, which could address
the gaps left by the seed-based strategy, is needed
when host genetics in resistance to influenza is par-
tially understood and only a few known host resist-
ance genes could be used as training set for the
seed-based network strategy. In this study, we ap-
plied an integrated network analysis based on the
known disease genes and DE levels between resist-
ant/susceptible mouse strains. The DE-based strategy
can overcome the inherent limitations of the seed-
based strategy and complement the identification of
promising candidates. In addition, the DE-based
strategy can also add the credibility of a candidate
gene for its role in host resistance to influenza to
some extent. A list of genes suggested by multiple
types of studies was specifically prioritized using the
DE-based strategy. In our study, promising candidate
genes supported by different types of evidence were
significantly enriched in the 2-strategy winner set.
Furthermore, top-ranked genes from both strategies
indicated the significance of several biological pro-
cesses and molecular functions. These results will
enhance our understanding of the pathways associ-
ated with host genetic factors.
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Figure 5 Pathways enriched by the prioritized genes. Pathways (KEGG, BioCarta, Reactome) significantly enriched (p <0.01 and FDR < 0.25) by
the winners of each method (RWR, sHKDR, deHKDR) or by 2-strategy winners are shown as a heatmap. The color intensity of each cell
represents the fold enrichment of the corresponding winner group for each pathway. Only the significantly enriched pathways for each winner

J

Methods

Candidate gene selection

We collected 17 chromosome regions (Table 2) that
were reported as significantly or suggestively [logarithm
of the odds (LOD) > 2.2)] associated with different traits
related to influenza resistance from five independent
genome-wide linkage studies. The human orthologs of
the genes within the QTL regions were queried from
Ensembl database (release 69) [67] by using the BioMart
tool. A total of 876 conserved Mus musculus genes with
human orthologs were obtained. Genes within different
QTL regions formed separate candidate sets as input for
the gene prioritization models. We assumed that at least
one gene within each confirmed QTL region harbored
variants associated with host susceptibilities.

Network-based prioritization methods

To apply the network-based approaches, we evaluated
several similarity measures between genes based on a
protein-protein interaction network (STRING, version
9). STRING is a functional association network that
contains associations inferred from various data sources
(experimentally verified interaction, co-occurences in the

literature, coexpression, and similar genomic context).
The gene-gene interaction scores were extracted from
the interaction scores between their corresponding pro-
tein products. When multiple proteins/isoforms are
encoded by a single gene, all interactions will be consid-
ered if each encoded protein is linked to different pro-
teins, or only the strongest interaction will be retained
when some of the encoded proteins interact with the
same protein. For the seed-based method, 14 genes
(Table 1) related to different host responses to influenza
virus infection were collected as seeds to construct our
model. An initial score vector was constructed, in which
the elements representing “seed genes” were given equal
scores with sum of the probabilities equal to 1; whereas
the scores for the other genes in the genome were ini-
tialized as 0. Four gene-gene similarity measurements
were considered and evaluated in this step: DIR, SAR,
RWR, and sHKDR. DIR ranks candidates according to
the number of directly linked seed genes, whereas SAR
uses the sum of association scores between a gene and
the linked seeds in the STRING network. In RWR, the
similarities between a gene and the seeds are assigned
based on a steady-state probability vector, which is
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Apoptosis signaling pathway

relationships were illustrated in the legend.
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Figure 6 Prioritized genes in apoptosis and TNFR2 signaling pathways. The graphical representation of the pathways is generated by the
ingenuity pathway analysis (IPA) tool. The prioritized genes were highlighted by red dotted circles. The apoptosis and TNFR2 signaling pathways
were extracted from the “canonical pathway” mappings. Genes are color coded by their differential expression levels between resistance and
susceptible mouse strains. In particular, the genes with higher expression in susceptible mice than in resistance mice were colored red; whereas
those having lower expression in susceptible than resistance mice were shown in green. The symbols used to represent molecules and

TNFR2 signaling pathway

obtained after a number of iterative transitions from the
current nodes to their randomly selected neighbors until
convergence. sHKDR estimates the gene-gene similar-
ities based on a diffusion kernel matrix, which is equiva-
lent to a lazy random walker consisting of transitions
from the current node to each of its neighbors with
probability 8 and stay put with a probability of 1 - d,5
(with d; as the degree of node i) [17].

Rather than relying on prior knowledge of the disease,
DE-based methods initialized scores for all genes in the
network with the experimental data of the DE levels be-
tween susceptible and resistant hosts. Considering that
very few public expression profiles for human subjects
are currently available, we used a mouse expression pro-
file (GSE30506) from the GEO database. This dataset
consisted of 44 pre-CC mouse samples, among which 26
mouse lines showed severe (“high”) response (IHC score:
4 or 5, % weight loss > 15%) to influenza virus infection
(HRI mice), whereas 18 lines expressed mild (“low”) re-
sponse (IHC score: 0 or 1, % weight loss < 5%) to infec-
tion (LRI mice). The log2 ratio between the expression
values of the HRI group to those of the LRI group was

used as the DE measure. To investigate the effectiveness
of the DE-based network method in identifying known
host resistance genes, we used three methods: DER, DNR,
and deHKDR. DER prioritizes candidates purely on their
DE levels (represented as log2 ratio statistics) between sus-
ceptible and resistant hosts. DNR and deHKDR calculate a
gene’s score by considering the DE levels of the gene and
its surrounding neighbors. In particular, DNR applies
equal weights for all neighbors; by comparison, deHKDR
considers the initial interaction scores between the studied
gene and its neighbors and applies the final weights from
the heat kernel diffusion matrix. The mathematical details
for each method were given in Additional file 1: Mathem-
atical details of methods.

Evaluation of model performance and screening of
top-ranked genes

The performance of the seed-based network model was
assessed by LOOCYV test. In LOOCYV, each seed gene is
in turn removed from the training set and added to a set
of 99 randomly selected genes from the whole genome.
After prioritization was conducted based on a particular
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model, the rank of the seed genes among the 99 random
genes reflects the discriminative ability of the model to
identify host resistance genes. To quantify the enrich-
ment of the seeds among the top-ranked genes, we calcu-
lated the proportion of the known genes that can be found
at different rank thresholds (top 5%, 10%, 20%, etc.). De-
tection rates were then plotted against different rank
thresholds, and the ROC curve was obtained. AUC was
then used as a measure to assess the performance of a
model. For DE methods, 11 seed genes were scored
against 11*99 randomly selected genes. The ROC curve
was then plotted. AUC was used to compare the effective-
ness of different algorithms. We further tuned the re-
quired parameters to maximize the AUC for each method.

The top 10% candidates in a QTL candidate set priori-
tized by a method were termed as winners for that
method, e.g.,, RWR winners were top-ranked genes by
the RWR method. When a candidate gene was within
multiple (overlapping) loci, each was counted as a separ-
ate prediction for a certain locus. Genes that were top
ranked by both seed- and DE-based methods were re-
ferred to as 2-strategy winners.

Literature annotation

Four types of studies related to host resistance or re-
sponse to influenza, including genetic association studies
[22,27,35-41], QTL studies [10,14-16,33], RNAi screen-
ings [42-46], and microarray gene expression analyses
[47-49], were collected and used to annotate the func-
tional significance of these top-ranked genes. The gen-
etic association studies were collected by conducting a
literature search for the reported associations between
gene variants and host resistance to influenza infection.
QTL studies, in which the QTLs for candidate gene
prioritization were collected, also provided a list of can-
didate genes based on independent evidence. In this
study, supporting evidence from the genetic association
studies and QTL studies was considered as genetic evi-
dence. RNAI screenings [68] and microarray gene ex-
pression profiles [49] have also been extensively applied
to identify host genes implicated in the life cycle of influ-
enza virus and responses to virus infection. We also ob-
tained the candidates recommended by these studies
and referred to these types of supporting evidence as
functional evidence. To accounting for the false positives
in expression microarray, genes must be identified by at
least two studies of expression analysis to be considered
as supported. Additional file 2: Table S5 summarized the
studies that provided supporting evidence including the
criteria used to determine the candidates, number of
identified genes, and corresponding references. Top
ranked-genes suggested by multiple types of studies were
summarized and listed in Table 3. To provide an over-
view of the functional significance of prioritized genes
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from seed- and DE-based network strategies, we grou-
ped the top-ranked genes into 2-strategy winners (genes
identified by both seed-based and DE-based strategy),
DE-only winners (genes specifically identified by deHK
DR method), and seed-only winners (genes specifically
identified by seed-based strategy, either sHKDR or
RWR). The proportions of top-ranked genes supported
by genetic evidence and functional evidence or suggested
by both types of evidence in each winner set were sum-
marized and plotted as a stacked cylinder (Figure 4b).
Using the prioritized genes as background, we evaluated
the significance of the supported genes enrichment in
each winner set by one-tailed hypergeometric test. The p
value for each winner set was annotated above the corre-
sponding cylinder (Figure 4b).

Functional enrichment analysis

The BIOCARTA, KEGG, PANTHER, and REACTOME
systems deposited by DAVID (version 6.7) [55] were ap-
plied in pathway enrichment analysis. GO and PAN-
THER were also used for gene ontology (including BP,
MEF and CC) enrichment analysis.

To reduce the redundancy from broad GO terms, we
applied the GO FAT (GOTERM_BP_FAT, GOTERM_
MF_FAT) categories, which screen out very broad GO
terms based on the measured specificity of each term, in
each top-ranked gene group (2-strategy, deHKDR, RWR,
and sHKDR winners). In the PANTHER system,
PANTHER_BP_ALL and PANTHER_MF_ALL were
used for the gene set enrichment analysis. The enriched
gene sets with p < 0.01 and FDR <0.25 were selected as
significant sets. We classified all functional terms into
four categories: pathway, biological process, molecular
function, and cellular component. For each category, an-
notation terms that were significantly enriched in at least
one winner group were illustrated as a heatmap. Each row
in the heatmap denoted an enriched term, and each col-
umn represented a winner group. The cells were color
coded using the fold enrichment of the annotation term
by the corresponding winner group. All of the gene sets
enriched by each method (2-strategy, deHKDR, RWR, and
sHKDR) at a nominal significant level of p < 0.01, regard-
less of FDR, were listed in Additional file 3.

Pathway analysis

We mapped top-ranked genes to the “canonical path-
way” in ingenuity pathway analysis (IPA). The log2 ratios
between the gene expressions of HRI mice and that of
LRI mice were prepared as a dataset and imported into
“Analyses, Datasets & Lists” OVERLAY in IPA for ana-
lysis. Genes with higher expression in HRI mice than in
LRI were illustrated in red; otherwise, these genes were
represented in green.
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Additional file 1: Supplementary methods and results. Additional
methods and results referred to in the main text can be found here,
including the mathematical details of seed-based (RWR, sHKDR, DIR, and
SAR) and DE-based (deHKDR, DNR, DER) network methods. Tables S1-S3.
show the parameter tuning for sHKDR (8 and m), deHKDR (8 and m),
and DNR (a) method, respectively. Parameters that maximize the AUC
of ROC for each method were selected in prioritizing candidate genes
within mouse QTLs. Figure S1. shows the STRING sub-networks
consisting of seed genes and their directly adjacent neighbors. The seed
genes shown from panel (a) to (d) are: CTgbp, H2-D1, Ifitm3, and IfnarT,
respectively. The networks were visualized in Cytoscape [71] by using
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