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We study the thermodynamic and dynamic behaviors of twist-
induced denaturation bubbles in a long, stretched random se-
quence of DNA. The small bubbles associated with weak twist are
delocalized. Above a threshold torque, the bubbles of several tens
of bases or larger become preferentially localized to AT-rich seg-
ments. In the localized regime, the bubbles exhibit ‘‘aging’’ and
move around subdiffusively with continuously varying dynamic
exponents. These properties are derived by using results of large-
deviation theory together with scaling arguments and are verified
by Monte Carlo simulations.

Localized opening of double-stranded DNA is essential in a
number of cellular processes such as the initiations of gene

transcription and DNA replication (1). Although thermal dena-
turation is highly unlikely under physiological conditions, in vitro
experiments show that local denaturation can be readily induced
by underwinding the DNA double-helix by an amount that is
physiologically reasonable (2–4). The basic physical effect is
simple: An underwound double-helix suffers a reduction in
binding free energy (5–7). Local openings of the double-helix
(referred to as ‘‘denaturation bubbles’’) relieve the twist expe-
rienced by the remainder of the double-helix and are thus
energetically favorable. The denaturation bubbles may be re-
cruited to a specific location of the genome by a designed (e.g.,
AT-rich) sequence, since AT pairs bind more weakly than GC
pairs (8). On the other hand, entropic effect that favors bubble
delocalization is non-negligible for long sequences. Also signif-
icant is the kinetic trapping of the bubbles due to statistical
agglomeration of AT-rich segments in long heterogenous
sequences.

To gain some quantitative understanding on the competing
effects of entropy and sequence heterogeneity, we characterize
in this study the thermodynamic and dynamic properties of
denaturation bubbles in a long, stretched random DNA sequence
with no special sequence design. Previously, there have been a
number of experimental and theoretical studies (9–12) on the
effect of sequence heterogeneity on DNA melting and unzipping
transitions. Our study is along this general direction. The specific
behaviors exhibited by the denaturation bubbles are rather
complex and are typical of those observed in systems dominated
by quenched disorders (13): The bubbles are localized upon
increase of the applied torque beyond a certain threshold. In the
localized regime, their dynamics exhibits ‘‘aging’’ (14, 15) and is
subdiffusive with continuously varying exponents.

Interestingly, twist-induced denaturation presents a rare phys-
ical example of the celebrated random-energy model (REM) of
a disordered system (16). Consequently, detailed analysis of both
the thermodynamics and dynamic properties can be made by
applying the well-developed theory of disordered systems (13),
together with exact results from large-deviation theory familiar
in the related sequence alignment problem (17, 18). We will draw
on detailed experimental knowledge of thermal denaturation
(19–21) throughout the analysis and make our results quantita-
tive whenever possible.

Thermodynamics
Let us consider the application of a torque that underwinds a
long, stretched** piece of double-stranded DNA. We are inter-
ested in the regime where the applied torque T is below the
threshold Td for bulk denaturation, but sufficiently strong so that
denaturation bubbles appear in the system. Due to the highly
cooperative nature of the denaturation process, the typical
distance N� between the large bubbles is large, in which case
treating the bubbles as a dilute gas of particles is appropriate.
Our strategy will be to first characterize analytically the ther-
modynamic behavior of a single bubble, and then use this
knowledge to determine the length scale N� and the many-
bubble states for N �� N�. We will find that N� � O(103) bp
as long as we are not very close to the threshold Td, so that the
dilute gas approximation is reasonable for a large range of
parameters.

The Single-Bubble Model. Consider a denaturation bubble con-
fined in a DNA double-helix between two complementary DNA
strands of N bases each. The double-strand is denoted by the
base sequence b1b2 . . . bN [with bk � {A, C, G, T}] of one of the
strands, ordered from the 5� to 3� end.

To simplify the notation, we assume that the two ends of the
helix are sealed, so that the bubble is always contained in the
segment b1 . . . bN. Let the index of the first and last open pairs
of the open bubble be m and n, with 1 � m � n � N. We denote
the total free energy of the bubble (defined with respect to the
helical state) by �GL(m), where L � n � m � 1 is the number
of open bases and referred to as the bubble length. Then the
partition function of the single-bubble system is given by

Z�N	 � �
L
1

N �
m
1

N�L�1

e���GL�m	, [1]

where ��1 � kBT � 0.62 kcal�mol at 37°C.
In the absence of the external torque, the bubble energy

�GL(m) has two components. First, there is the loss of stacking
energy �Gb,b� between two successive bases b and b�. These
stacking energies are in the range of 0.5 to 2.5 kBTs at 37°C, with
the AT stacks weaker than the GC stacks. Their values have been
measured carefully (19–21). Second, assuming that there is no
secondary pairing between bases in the bubble so that the open
configuration can be regarded as a polymer loop, there is a
well-known polymeric loop entropy cost

�L � �1 � ��kBT ln L [2]
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**A modest stretching force is needed to prevent the applied torque from being absorbed
by super-coiling; see e.g., ref. 6.
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for a bubble of length L, with � � 1.8 (22) for a linearly
extended†† DNA chain. The bubble initiation cost �1 depends on
the base composition at opening and closing ends, ionic strength,
etc., and generally lies‡‡ in the range of 3 to 5 kBT. For relevant
bubble sizes of few tens of bases in length (see below), the total
entropic cost is �L 
 8 � 12 kBT. This large cost justifies the
single bubble approximation (at least to the length scale N� �
e��L � 5 � 103 bp) and contributes significantly to the sharpness
of the observed thermal denaturation transition (21).

An applied negative torque T reduces the thermodynamic
stability of the helical state relative to the denatured one by an
amount equal to the work done to unwind the helix. This effect
is simply modeled here by a linear decrease in the stacking
energy in the relevant parameter range (6), i.e., �Gb,b� 3
�Gb,b� � 	0T, where 	0 
 2
�10.35 is the twist angle per base
of the double-helix. Putting the above together, we have

�GL�m	 � �L � �
k
m

m�L

�Gbk�1,bk
� 	0T�L [3]

as the single-bubble energy, which can be computed once the
DNA sequence b1 . . . bN is given. Note that although Eq. 3 is
formulated specifically for twist-induced denaturation, the gen-
eral form can be used to describe a number of destabilizing
effects, e.g., due to changes in temperature, ionic concentration,
etc.

Sequence Heterogeneity. As the torque T increases from zero
toward the denaturation point Td, denaturation bubbles appear
in the double-strand and grow in size. We want to know whether
the bubbles are free to diffuse along the double-strand, or are
they localized in the high AT regions of the DNA where binding
is the weakest. For simplicity, we will characterize the typical
behavior of an ensemble of random (i.e., independent and
identically distributed) sequences described by the single-
nucleotide frequencies pb, although our approach and qualita-
tive findings are also applicable to sequences with short-range
correlations.

For a given sequence of bases, the partition function Z can, of
course, be efficiently evaluated numerically (including all the
multiple-bubble states) by using available programs such as
MELTSIM (21). All thermodynamic quantities can subsequently
be evaluated from the free energy F 
 �kBT ln Z. To obtain the
typical behavior of the ensemble, we ideally want to compute the
ensemble average of the free energy, F� � �kBT ln Z. [We use
the overline to denote average over the ensemble of random
sequences, i.e., X� � b1, . . . ,bN

Xb1, . . . ,bN
�k
1

N pbk
; this is also

known as the ‘‘disorder average.’’] Computing F� numerically,
however, will require explicit generation of a large number of
random sequences and can be very time consuming for large Ns.
Fortunately, we can apply a large body of knowledge accumu-
lated from the statistical mechanics of random systems (13) and
provide a detailed characterization of the typical behavior of our
system without the need of exhaustive simulation. To introduce
notation and concepts in this approach, we examine first the
simplified problem of a single bubble with a fixed length.

Bubble with Fixed Length. Let us consider a bubble with a fixed
length L (with 1 �� L �� N) embedded in a long, random
sequence b1 . . . bN. The partition function reads

ZL � �
m
1

N�L�1

exp����GL�m	�, [4]

where the scripted variables refer to properties of the fixed-
length bubble. For a random sequence, the energies of the
different states labeled by m are uncorrelated with each other
beyond the distance L. Such systems belong§§ to the class of
REM and was solved exactly in the 1980s by Derrida (16) for a
Gaussian distribution of �Gs. Discrete distribution of �Gs was
studied in the closely related system involving protein–DNA
interaction (26). Below, we will briefly review the salient prop-
erties of REM by using the present example.

The REM has a ‘‘high-temperature’’ phase where many (of
order N) bubble configurations contribute significantly to the
partition sum, and a ‘‘low-temperature’’ phase dominated by
only one or a few lowest energy states. It follows that, in the
former case, the bubble is delocalized and can freely diffuse
along the sequence, whereas in the latter case, the bubble is
localized to the lowest energy position. Transition between the
two phases is driven by competition between the energetic
(variation in �G) and entropic (ln N) effects. In the present
problem, the magnitude of terms in the partition sum 4 can be
tuned not only by varying the temperature, but also by varying
the bubble size L. Hence, at a fixed �, whether a bubble is free
or localized depends both on the bubble size L and the sequence
length N.

An interesting property of the REM is that, in the high-
temperature phase, ZL�N tends to a finite limit given by the
annealed average Z� L�N as N3 �, independent of the particular
realization of the random sequence. This allows us to replace the
average free energy F� � �kBT ln Z by its annealed approxima-
tion F̃ � �kBT ln Z� , which is much easier to calculate. [We will
use the tilde to denote all quantities computed in the annealed
approximation.] Introducing a 4 � 4 matrix M(�) with compo-
nents Mb,b� 
 �pbpb� exp[���Gb,b�], and let the largest eigen-
value of M(�) be �(�), then the disorder average of terms in 4
can be written as

e��k
m
m�L�1�Gbk�1,bk � Tr ML��	L��

�
1�L��	. [5]

It is convenient to introduce the quantity

f��	 � ���1 ln ���	, [6]

with which we have (for N �� L)

Z� L �
Ne���1

L� �e���f��	�	0T��L. [7]

Hence, in the delocalized phase,

F� � F̃ � � kBT ln N � L�f��	 � 	0T � � �L.

The annealed entropy can be calculated from F̃, with¶¶

S̃ � �kB
�1 �F̃

�T
� ln N � ��f��	 � ��	�L, [8]

††The value of � may well be different for unstretched DNA chain and hence relevant for
the thermal denaturation of homogeneous DNA (23, 24). However, as we show below,
essential features of the denaturation process we discuss here do not hinge on the precise
value of �.

‡‡The initiation cost for DNA bubbles are extracted from www.bioinfo.rpi.edu�
applications�mfold�(M. Zuker, private communication). See also ref. 25 for an alternative
source.

§§The correlation in �G between neighboring states is only a minor complication because
it is short-ranged and can be transformed away by coarse graining.

¶¶To focus on the positional entropy, we did not include here the contribution due to loop
entropy, i.e., we treated �L as an energy term despite its entropic origin.
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where (�) � �(����) ln �. It will also be useful to introduce
the relative entropy per base for the fixed-length bubble,

H��	 � �ln N � S̃��L � ��f��	 � ��	�. [9]

Note that being the difference between f and , the quantity H
is a measure of the intrinsic variation in the binding energies �Gs
for a random sequence with nucleotide frequency pb and is
independent of the average binding energy �G, which external
environments such as the temperature or solvent conditions
most directly affect.

Derrida’s solution of REM (16) shows that the annealed
entropy S̃ vanishes at the transition to the low-temperature
phase, beyond which the annealed approximation is no longer
applicable. Using Eqs. 8 and 9, we can write the condition for
phase transition as

Lloc � ln N�H��	, [10]

which gives the minimal bubble size for localization at a given N.
With the values of �Gs obtained from ref. 19 at [Na�] 
 1 M and
37°C, and assuming an equal nucleotide distribution (i.e., pb 

1�4 for all bases), we find f � 1.83 kBT,  � 1.50 kBT, so that
H � 0.33 and Lloc � 20 bp for N � 103 bp. From Eq. 10, it is
clear that as N3 � any fixed-length bubble remains delocalized.

Bubble Without Length Constraint. The full partition function Z is
obtained simply by summing ZL for different Ls. We will again
approach the problem by first applying the annealed approxi-
mation and then determining where it breaks down.
Annealed approximation. The annealed partition function Z� (N) �
L
1

N Z� L has a transition at Ta 
 f(�)�	0, where the exponential
factor in 7 reaches one: The sum over L is finite and Z� � N only
if T � Ta. In this regime, the annealed free energy is simply
F̃ � �kBT ln N � �1. The annealed energy Ẽ � �(����) ln
Z� (�) is also readily computed; it can be expressed as Ẽ 
 �1 �
[(�) � 	0T]�L̃ where L̃(T) � L
1

N3�LZ� L�Z� is the average bubble
length in the annealed approximation. As T approaches Ta, L̃(T)
diverges, and the annealed entropy

S̃ � ln N � ��	0T � ��	��L̃ [11]

becomes negative.
In the limit N 3 �, the annealed free energy F̃ is actually

identical to F� for all T � Ta. This can be seen from the
inequalities ln ZL
1 � ln Z � ln Z� , and ZL
1 � N
min{exp[���G1],1}. Since both the lower and upper bounds
grow as ln N,

F� � �kBT ln Z � �kBT ln N [12]

for all T � Ta.
Ground-state properties. To find the ground state of the uncon-
strained bubble in a long random sequence, we need to study the
statistics of stretches of exceptionally high AT content. If we
neglect the polymeric contribution �L to the bubble energy (to
be justified shortly), then the ground-state energy E* expected
in a sequence of length N can be computed exactly from
large-deviation theory (17, 27), with

E*�N	 � ���1 ln N. [13]

The constant � in Eq. 13 can be expressed as the unique positive
root of the equation

f��	 � 	0T, [14]

where f is defined by the �Gs through Eqs. 5 and 6. Note that,
at T 
 Ta, Eq. 14 is satisfied with � 
 �. In this case, 13 coincides
with 12.

The length of the minimal energy bubble is also known from
large-deviation theory (18, 27), with

L*�T	 � ln N�H*�T	, [15]

where the relative entropy H* is given exactly by

H*�T	 � ��T	��	0T � ��	�. [16]

From the logarithmic dependence of the bubble length L* on N,
it is clear that the corresponding polymeric contribution �L* �
ln(ln N) can indeed be treated as a constant shift of bubble
energy.
Phase transitions. Based on the above discussion, a phase transition
can be formally established in the limit N 3 �. This is seen by
comparing the expressions 12 and 13. For T � Ta, solution to 14
satisfies � � �. Consequently, 12 must break down there, yielding
a phase transition at T 
 Ta. Since F� � E* in general (e.g., for
all T � Ta), and at the phase transition point T 
 Ta the equality
F� 
 E* already holds, i.e., the ground state already dominates,
then we must have the ground state dominating throughout the
localized phase. This is exactly the behavior of the REM (16).

A physical understanding of the transition can be obtained by
examining the importance of the ground-state contribution
exp(��E*) � N�/� to the partition sum Z as the applied twist
T is varied. For T � Ta, the ratio ���(T) is �1. In this case, the
energy gain E*(N) of placing the bubble at the site of the lowest
energy is insufficient to overcome the entropy ln N of placing the
bubble in different positions, hence the bubble is typically small
and delocalized. When T exceeds Ta, the ground-state contri-
bution grows faster than N, signaling dominance of one or a few
low-energy states where the bubble typically resides. The tran-
sition is thus identified as the localization transition of the bubble
at Tloc 
 Ta.

The onset of the zero entropy point can be obtained from Eq.
11 and written as

ln N � H��, T	�L̃��, T	, [17]

where

H��, T	 � ���	0T � ��	� [18]

is the relative entropy of the unconstrained bubble. These
equations are analogous to the expressions 15 and 16 for the
ground-state bubble. In fact, both L*(T) and H*(T) are repro-
duced through the substitution �3 �(T), e.g., L*(T) 
 L̃(�(T),
T). This turns out to be true also for other thermodynamic
variables. Thus the localized phase at different Ts can be viewed
as the phase-transition points of systems with different effective
temperatures ��1(T); this will be clearly manifested in the bubble
dynamics discussed below.

Next, we observe that since H* � � (see Eq. 16), the bubble
length diverges (or approaches N) as � 3 0. This defines the
point of bulk denaturation�� Td, i.e.,

	0Td � lim
�3 0

f��	 � �G, [19]

where the second equality is obtained from manipulating Eqs. 5
and 6. Using �G � 1.40 kBT (derived from the �Gs in ref. 19),
we find Td � 10 pN�nm. The dependence of � on T close to Td
can be obtained from the expansion

f��	 � �G �
�

2
var��G	 � O��2	. [20]

��Note, however, that the helical segments separating adjacent bubbles can be stable even
beyond Td, so that complete separation of the two strands takes place at T � Td.
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Inverting the above for � by using 14 and 19, we find

��T	 �
2	0

�var��G	
�Td � T	 � O�Td � T	2. [21]

It turns out that the term linear in Td � T in 21 already gives a
very good approximation (to within 1%) of � throughout the
localized phase where ��� � 1. The localization transition point
Tloc can be thus obtained by solving Eq. 21 with �(Tloc) 
 �.
Using �2var(�G) � 0.565 (derived from ref. 19), we find Td �
Tloc � 2 pN�nm. Unlike the value of Td that is derived from the
average stacking energy �G and hence is sensitive to tempera-
ture, ionic strength, etc., the difference Td � Tloc is set by the
variance of �Gb,b� and should be much less sensitive to experi-
mental conditions. The same is expected for the relative entropy,
which has the form

H*�T	 � 2	0
2�Td � T	2�var��G	 [22]

throughout the localized phase.

Multiple Bubbles. The localization transition discussed above
occurs only as N 3 �. However, for large N, the single-bubble
approximation will break down regardless of the large (but
finite) bubble cost �L. When multiple bubbles are localized, each
bubble is effectively in a finite-length system, thereby blurring
the localization transition.

We first analyze the delocalized phase for which the annealed
approximation is valid. Once multiple bubbles are allowed in the
system, we expect a broad range of bubble lengths, as described
by the distribution 7. Qualitatively, we expect only the largest
bubbles, of size L̃(T) to be localized as T3Tloc, while the smaller
ones remain delocalized. We shall thus focus on these large
bubbles. It is the average separation distance N� between these
large bubbles that sets the effective system size of the single-
bubble localization problem.

The Boltzmann weight of one such large bubble in a sequence
of length N �� L̃ is W̃(N) 
 e���1N�L̃� in the vicinity of the
localization transition. Setting W̃(N) 
 1 yields the typical
spacing between the large bubbles on the delocalized side,

Ñ � � e��1L̃��T	. [23]

Note that for bubbles of size 10 bp, the crossover length is already
of the order of 103 bp. A similar estimate can be made on the
localized phase by using the exact expression (28) for the lowest
energy for multiple bubbles. We find

N*� � �e��1�L*	����T	/�. [24]

as the average distance between large bubbles of size L*.
For N �� N�, the system consists of N�N� effective number

of single-bubble subsystems, each of length N�. At the localiza-
tion ‘‘transition’’ of an infinite system then we have ln Ñ� 
 H(�,
Tloc)L̃(Tloc) (see Eq. 17). Together with Eq. 23 (or 24 with � 

�), we find L̃(Tloc) � 25 bp at the onset of localization (using
�1 � 3 kBT and H � 0.33), with the crossover length Ñ� � 6,500
bp. Thus we expect there to be typically one bubble of � 25 bp
in a random DNA double-strand of length � 6,500 bp at the
localization transition.

Bubble Dynamics
The localization of bubbles is reflected ultimately in their slow
dynamics. We expect bubbles to diffuse freely along the DNA
double-helix in the delocalized phase, but become trapped in
low-energy positions in the localized phase. Details of the bubble
movement in the latter case, however, can be rather complicated
with nontrivial memory (or aging) effects typical of glassy states
(14, 15) as will be described below.

Model. For simplicity, we will restrict ourselves to the description
of the movement of a single bubble over its lifetime, which can
be rather long in the localized phase. For reasons discussed
above, interaction with other bubbles can be neglected when the
bubble displacement is within a distance of order N� � 103 bp.
We will also neglect the polymeric loop entropy �L, which
provides essentially a constant shift to the bubble energy as
shown in the single-bubble section.

In addition to the drift and breathing motion, a bubble may
shrink to zero size and disappear from the system. To our
knowledge, the time scale involved for the spontaneous collapse
of a bubble, particularly under an applied twist, has not been
documented so far. Zipping the bubble requires not only pairing
of the bases in the open segment, but also rewinding of the helix
against the applied undertwist, both of which contribute to the
energy barrier to the no-bubble state. This suggests a long
lifetime for a bubble, which can be enforced by setting a lower
bound (e.g., 10 bp) in the allowed bubble length. However, as we
will see, the longtime behavior of bubble dynamics is determined
crucially by the occurrence of the large bubble states, and
insensitive to the value of the lower bound on L, as long as the
L 
 0 state is excluded. Once accurate estimates of bubble
lifetime become available, one may supplement the discussion
below with such a cutoff.

Scaling Theory. Eq. 13 gives the lowest energy of an unconstrained
bubble in a sequence of length N, while a bubble with its position
(but not size) fixed typically has an energy of the order ��1. For
small �, the energy variation �E(N) � ��1 ln N is large, hence
the bubble dynamics is dominated by the thermal escape from
the deepest trap. The escape time is thus te(N) � e��E(N) � N�/�,
i.e., the dynamics is subdiffusive deep in the localized phase
(where � �� �).

To investigate the dynamical behavior in more detail, espe-
cially close to the localization transition where � � �, we need
to include also the random motion of the bubble along the
double-strand. Toward this end, it is useful to describe the bubble
dynamics as a single point moving in the 2D space spanned by
the bubble’s only two degrees of freedom, its instantaneous
length L and the position of one of its ends, say m. The statistics
of the 2D energy landscape �GL(m) is well characterized by the
large-deviation theory (18). It consists of a number of valleys,
whose depths (denoted by �Ĝs) are given by the Poisson
distribution

����Ĝ�	 � e����Ĝ�, [25]

where � is the constant defined through 14. The typical valley
length is L̂ � 1�H*, where H* is given by 16. The valleys are
spread out along the corridor at L � L̂, separated by a typical
distance M, which is also calculable from the large-deviation
theory. For much larger Ls, the bubble energy becomes prohib-
itively high.

Clearly, the dynamics consists of two parts: At short times, it
is dominated by the escape of the bubble out of an individual
valley and is analogous to the (biased) Sinai problem (29). At
longer time scales, the bubble ‘‘hops’’ from one valley to another
along the corridor of valleys. This dynamics, which is essentially
that of a particle traversing a series of exponentially distributed
energy valleys (see Eq. 25), has been extensively investigated
previously in the context of the one-dimensional trap model (30,
31). Here we review some key results and refer the reader to ref.
32 for details.

The basic dynamic quantity is the time �(�Ĝ) � e���Ĝ� to
escape each valley of depth �Ĝ. The average time to traverse K
valleys over a length scale N 
 K�M by random walk is then given
by

4414 � www.pnas.org�cgi�doi�10.1073�pnas.0736291100 Hwa et al.



te � K2���� � N2�
��1

�E*�

dx ��x	��x	, [26]

where ��� is the average of the trap time �(�Ĝ), and the limits
of integration in 26 are from the magnitude of the typical valley
depth ��1 to that of the deepest valley 13 expected for a segment
of length N. The total time according to Eq. 26 can be written
as te(N) � Nz, with the dynamic exponent z given by

z � 	 2 for � � � �or T � Tloc	
1 � ��� for � � � �or Tloc � T � Td	.

[27]

The anomalous exponent z � 2 in the glass phase shows explicitly
that the dynamics is slow, i.e., subdiffusive.

Glassy Dynamics. We next report the result of a Monte Carlo
simulation of the bubble dynamics on predefined random nu-
cleotide sequences. We impose local dynamics in which the
bubble can only change its length L or shift its end position m
by a single base, as long as L � 1. To remove edge effects and
probe the asymptotic dynamics, we use a very large sequence
length (�104 bp) so that the bubble never reaches the boundary
of the sequence given the duration of our numerical study. All
disorder-averaged quantities reported are performed over 104

random sequences.
Anomalous diffusion. To characterize the slow dynamics quantita-
tively, we show in Fig. 1a the time evolution of the average
displacement R(t) 
 �m(t) � m(0)� of the bubble position for a
few selected values of Ts in the glass phase. Clearly, the
displacement can be described by a power law of the form R(t)
� t�, where we expect � 
 1�z. In Fig. 1b, we plot the extracted
exponents for different values of Ts in the range Tloc � T � Td.
The expected values 1�z according to Eq. 27 (using the linear
expression in ref. 21 for �) is shown as the solid line for
comparison. We note that the observed exponents follow the
general trend predicted, changing continuously from 1�z 
 0.5,
close to the expected location of the glass transition (Tloc � 0.8
Td), toward zero as T 3 Td. For T close to Td, the dynamics
becomes exceedingly slow, making it difficult to access the
asymptotic region. For T � Tloc, we also observed some finite-
size effect. The overall agreement between the scaling theory
and numerical results is within 5 � 10% over the range tested.

In Fig. 2a, we show the dependence of the average bubble
length on time for different Ts. The data depict the slow,
logarithmic growth of the bubble length. Logarithmic growth is
one of the signatures of glassy dynamics. Its occurrence in this
particular system can be understood quantitatively as follows:
The optimal bubble size L*(N) in a segment of length N depends
logarithmically on N; see Eq. 15. On the other hand, for a bubble
placed at an arbitrary position in a long sequence, the effective
sequence length is the distance the bubble can explore within a

time t, i.e., N � t1/z for the subdiffusive dynamics expected in the
glassy regime. Hence,

L*�t	 �
1

z�H*
ln t � const. [28]

is the expected length of the optimal bubble within a time t.
Generally, we expect L*(t) to be the upper bound of the
observed bubble length L(t), with L(t) � L*(t) for large t deep
in the glass phase. However, outside the glass phase, L(t) must
be finite even for t 3 �.

In Fig. 2b, we show the coefficients of the observed logarith-
mic time dependence of L(t) for Ts throughout the range Tloc �
T � Td. Also shown is the upper bound 1�(z�H*) (solid line)
according to 28, using the expression 22 for H*. We note that the
difference between the data and the upper bound is nearly
constant (�1) for the range studied.
Aging. Perhaps the most characteristic feature of glassy dynamics
is that the system ages, e.g., the temporal f luctuation of the
system depends on how long the system has evolved from some
(arbitrary) initial condition (14, 15): the longer it has evolved,
the slower it f luctuates. This is easy to understand in the context
of a rough energy landscape with deep valleys and high barriers,
since the longer the system evolves, the deeper the energy valley
it finds, and hence the higher the barrier it will have to overcome
to travel farther. This feature is in marked contrast to sub-
diffusive hydrodynamic systems that are time-translationally
invariant.

Quantitatively, we can define the aging phenomenon via the
time-dependent correlation function C(tw, �t), which measures
how much the system changes in time �t, after first evolving for
a waiting period tw from the initial condition. Let us define a
binary variable �i(t) � {0, 1}, for each base i of the nucleotide
sequence. �i(t) takes on the value 1 if base i is open and belongs
to the bubble at time t, and the value 0 if base i is paired. The
correlation function, defined as C(tw, �t) � i �i(tw)�i(tw � �t)
after averaging �10,000 random sequences, is a measure of the

Fig. 3. Aging plot. (a) Average overlap fraction C(tw, �t)�L(tw) for different
tws (from 1� to 512� 25,600 Monte Carlo steps) deep in the glass phase, with
T 
 0.9 Td � Tloc. (b) Scaling plot of a with �t normalized by tw.

Fig. 1. (a) Average bubble position vs. time for various values of Ts in the
glass phase: the solid lines are power law fits. (b) The extracted exponents vs.
T: the solid line is the prediction of the scaling theory, Eq. 27.

Fig. 2. (a) Average bubble length vs. time for several Ts; the solid lines are fits
to the form L(t) � a � b ln t. (b) Slope b of the logarithmic time dependence
of L(t) for various Ts. The solid line is the corresponding quantity for the upper
bound of the bubble length L*(t); see text.
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average self-overlap of the bubble at time tw and tw � �t. A more
convenient quantity to characterize is the fraction of overlap,
C(tw, �t)�L(tw), where L(t) 
 i �i(t) is the instantaneous
bubble length.

In Fig. 3a, we show the overlap fraction, parameterized by the
different waiting time tws for the system biased deep in the glass
phase with T 
 0.9 Td. The overlap fraction clearly depends on
the waiting time, illustrating the glassy nature of the dynamics.
In contrast, the same quantity computed for T � Td (data not
shown) gives no statistically significant dependence on tw. To
characterize more quantitatively the behavior, we replot in Fig.
3b the curves in Fig. 3a with �t normalized by tw. We find these
curves to collapse reasonably onto a single master curve that
exhibits a weak kink at �t�tw � 1. A naive explanation of this
behavior is that for �t �� tw, the bubble stays approximately
within the energy valley found at time tw, whereas for �t �� tw,
the bubble makes an excursion faraway from the valley. For the
one-dimensional trap model, it was shown rigorously (33) that
C(tw, �t) indeed scales as a function of �t�tw, even though the
largest trap time actually scales sublinearly with tw. This behavior
can be understood in terms of the particle making multiple
returns to the original valley after escaping it (32), as manifested
by the slow decay shown in Fig. 3b for �t �� tw.

Discussion
In this study we investigated the thermodynamic and dynamic
behaviors of twist-induced denaturation bubbles in a long,
random sequence of DNA. The small bubbles associated with
weak twist are delocalized, e.g., they flicker in and out of
existence according to the Boltzmann distribution and are
independent of the DNA sequence. The bubbles increase in
lengths upon increase in the applied torque. When the largest
bubbles reach a critical size Lloc which is of the order of a few tens
of bases, the bubbles become localized to AT-rich segments
which occur statistically in a long random sequence. According
to the parameters (19) taken at 37°C with [Na�] 
 1 M, the
localization ‘‘transition’’ occurs at Tloc � 8 pN�nm, which is

�80% of the torque needed for bulk denaturation Td. In the
localized regime, the bubbles exhibit aging and move along the
double-helix subdiffusively, with continuously varying dynamic
exponents.

All of the results are obtained under the single-bubble ap-
proximation. Thermodynamically, we expect this approximation
to be valid for DNA sequences of several thousand bases or less.
This is due to the strongly cooperative nature of bubble forma-
tion, as manifested in the large initiation energy �1. The single-
bubble description of dynamics is further restricted by the finite
life time of the bubble: Even at length scales where the single-
bubble approximation is appropriate thermodynamically, the
bubble may annihilate and reappear elsewhere in the sequence,
effectively performing long-distance hops. Experimental knowl-
edge of the bubble lifetime in the presence of an applied twist
is needed to estimate the crossover time to the long-distance
hopping regime. Qualitatively, we expect these bubbles to have
much longer lifetimes than the thermally denatured bubbles,
since the applied twist plays the role of an energy barrier
preventing bubble annihilation.

Finally, we note that bubble localization characterized in this
study is a reflection of the statistical background present in long
random nucleotide sequences. This background traps the bubble
kinetically if the bubble size becomes sufficiently large. Thus, to
localize denaturation bubbles at appropriate locations specified
by designed sequences (e.g., promoters or replication origins) for
biological functions, it is necessary to operate away from the
localized regime, i.e., below the onset of localization.
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