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Abstract

Computational implementation of physical and physiologically realistic constitutive models is
critical for numerical simulation of soft biological tissues in a variety of biomedical applications.
It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues
are an emergent behavior of the underlying tissue microstructure. In the present study, we have
implemented a structural constitutive model into a finite element framework specialized for
membrane tissues. We noted that starting with a single element subjected to uniaxial tension, the
non-fibrous tissue matrix must be present to prevent unrealistic tissue deformations. Flexural
simulations were used to set the non-fibrous matrix modulus because fibers have little effects on
tissue deformation under three-point bending. Multiple deformation modes were simulated,
including strip biaxial, planar biaxial with two attachment methods, and membrane inflation.
Detailed comparisons with experimental data were undertaken to insure faithful simulations of
both the macro-level stress-strain insights into adaptations of the fiber architecture under stress,
such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and
demonstrated interesting microstructural adaptions to stress and the important role of the
underlying tissue matrix. Moreover, we apparently resolve a discrepancy in our 1997 study (J
Biomech. 1997 Jul;30(7):753-6) where we observed that under strip biaxial stretch the simulated
fiber splay responses were not in good agreement with the experimental results, suggesting non-
affine deformations may have occurred. However, by correctly accounting for the isotropic phase
of the measured fiber splay, good agreement was obtained. While not the final word, these
simulations suggest that affine kinematics for planar collagenous tissues is a reasonable
assumption at the macro level. Simulation tools such as these are imperative in the design and
simulation of native and engineered tissues.
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1. INTRODUCTION

Historically, the term “tissue engineering” is attributed in 1988 to Y.C. Fung (Woo and
Seguchi, 1989). The term underscored the importance of “the application of principles and
methods of engineering and life sciences toward a fundamental understanding of structure-
function relationships in normal and pathologic mammalian tissues and the development of
biological substitutes to restore, maintain, or improve tissue function.” Thus, it is imperative
that fundamental structure-function understanding guides the reproduction of native tissue if
it is to emulate its native counterpart successfully (Butler, Goldstein et al. 2000). A critical
step in this process is the development of the constitutive model, which are of fundamental
importance for computational simulation and analysis of the mechanical behavior of native
and engineered soft biological tissues. For example, surgical simulations and medical device
design require reliable constitutive model to accurately predict tissue behavior. Therefore,
constitutive modeling of soft biological tissues remains an active, important, and challenging
research area.

Traditionally, soft tissues are modeled as pseudo-hyperelastic materials using either
phenomenological or structural approaches (Criscione et al., 2003; Holzapfel and Ogden,
2009; Sacks, 2000). A common phenomenological model is the Fung-type (Fung, 1993;
Tong and Fung, 1976), in which the strain energy function is a quadratic exponential
function of the Green-Lagrange strain tensor. The original form was based on the observed
linear relation between tissue stiffness and stress under uniaxial conditions (Fung, 1993).
However, phenomenological models lack physical interpretation and cannot, in general, be
used for simulations beyond the strain range utilized in parameter estimation. This effect has
been shown to be the case even when the strain magnitudes did not exceed the maximum
values measured but where substantially far from the available experimental data (Sun et al.,
2003). While the underlying reasons for this still need to be elucidated, models which
possess greater links to the underlying physical mechanisms appear to be the next step.

Like any biological or synthetic biomaterial, the complex mechanical behavior of soft
tissues results from the deformations and interactions of the constituent phases. For most
soft tissues, these include collagen, elastin, muscular, and related matrix components such as
glycosaminoglycans and proteoglycans. The idea of accounting for tissue structure into
mechanical models of soft tissues goes back to at least the work on leather mechanics in
1945 by Mitton (Mitton). More contemporary work on structural approaches followed, with
growing popularity in the 1970’s (Beskos and Jenkiins, 1975), with the concept of stochastic
constituent fiber recruitment developed about the same time (Soong and Huang, 1973) based
on related structural studies (Kenedi et al., 1965). In part a result of the availability of the
first planar biaxial data for soft tissues, Lanir developed the first comprehensive,
multidimensional structural constitutive model formulation (Lanir, 1979). With various
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modifications, Lanir et al. applied this approach to many soft tissues such as lung (Lanir,
1983), myocardium (Horowitz et al., 1988).

By linking tissue deformation at macroscopic scale and microscopic (fiber) scale through
affine deformation assumption, the structural constitutive model can be considered a
statistical multi-scale approach. Above all, structural constitutive modeling approaches can,
in principle, provide valuable insight into tissue function. For example, Billiar and Sacks
(Billiar and Sacks, 2000a, 2000b) demonstrated for aortic valve leaflets that, using a
simplified leaflet structure, angular rotation of the fibers account for such important features
such as pronounced mechanical anisotropy, axial coupling, and very large strains (>80%)
even though the tissue is composed of collagen fibers that fail at less than ~12 % strain.
Later, Sacks demonstrated that with the use of only an equi-biaxial test and the
experimentally measured fiber orientation distribution, the complete in-plane biaxial
response could be simulated (Sacks, 2003). More recently, structural approaches have been
used for a wide range of native and engineered tissue applications, such as elastomeric tissue
engineering scaffolds (Courtney et al., 2006), urinary bladder wall (Wognum et al., 2009),
and many others (Fata et al., 2014; Hansen et al., 2009; Hollander et al., 2011; Kao et al.,
2011).

Due to the need to solve soft tissue problems that involve complex anatomical geometries
and boundary conditions, many constitutive models for soft tissues in various forms have
been implemented into a computational framework (Driessen et al., 2007; Holzapfel et al.,
1996; Prot et al., 2007; Sun and Sacks, 2005) (Hariton et al., 2007). Yet, robust evaluation
and rigorous validation of structural constitutive models remain quite limited. Moreover,
studies on structural model have mainly focused on either material parameter estimation (Jor
etal., 2011) or comparison with different constitutive models (Bischoff, 2006; Cortes et al.,
2010; Tonge et al., 2013). Structural models that incorporate fiber recruitment have rarely
been used, largely due to computational demands of the additional integration. Recent
ability to get detailed fiber recruitment data (e.g. (Chen et al., 2011; Fata et al., 2013;
Gleason et al., 2008)) makes this approach all the more relevant. The deep insights that
structural models can provide, such as the role of fiber structure and kinematics, still have
yet to be fully explored by simulation.

Since many soft tissues are relatively thin, they can be modeled using shell or membrane
elements in FE analysis, greatly speeding up the simulations. In the present study, we
implemented a planar structural constitutive model into the commercial finite element (FE)
package ABAQUS. By numerical simulation of one single element subjected to uniaxial
tension, we first revealed that matrix must be present to prevent unrealistic tissue
deformations. Flexural simulations were utilized to estimate the matrix modulus, since the
underlying collagen fibers remain undulated due to the small extensional strains, and thus
have little effect on tissue stress development. Strip biaxial strain and equi-biaxial tension
simulations were also performed and compared with experimental collagen fiber
measurements to demonstrate the effects of initial fiber orientation distribution on fiber
reorientation. Simulation of membrane inflation tests were also applied to further test the
structural model. In addition to prediction of macroscopic mechanical response of soft

J Biomech. Author manuscript; available in PMC 2015 June 27.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Fan and Sacks

Page 4

tissues, we demonstrate how the structural model can provide insights into tissue micro-
structural events.

2. Methods

2.1 Theoretical formulation

Soft biological tissues primarily have two major load-bearing components: the fibrous
network and the non-fibrous (i.e. amorphous) ground matrix. Based on Fung (Fung, 1993),
we idealize the elastic behavior of soft tissues as pseudo-hyperelastic composite materials.
Thus, the total strain energy function ¥ of soft tissue at a represent volume element (RVE) is
defined using

U(C)=> i Wi+ Tm+p(J —1) (1,
i=1

where ¥ and ¥y, are the strain energy functions for the fiber and matrix phases,
respectively, 4t and op, are the volume fraction of fiber and matrix respectively, with

§¢f+¢m_1, J=det (F)~and p the Lagrange multiplier to enforce incompressibility due to
soft tissue’s high water content. The contributions of the non-fibrous components and fluid
phases are assumed to be responsible for the incompressibility of the tissue. Based on
previous results (Buchanan and Sacks, 2013), we model the matrix phase (which
compromises all non-fibrous components) as a single isotropic hyperelastic Neo-Hookean
material with the strain energy function ¥y, = C1(Ic — 3). Here, I¢ is the first invariant of the
right Cauchy-Green tensor C;FfF:and to be consistent with linear elasticity C; =/ 2,
where 1 is the shear modulus. Using S = dW / 9, the resulting 2"d-Piola Kirchhoff stress is
given by

-1

C -
Sm:¢n171(11 - 3) - pC ).

Next, without loss of generality, we focus on a single, undulated Type | collagen fiber type
with planar structures and a plane stress state. As in related work on collagenous tissues
(Lanir, 1983; Sacks, 2003), we assume a linear S¢ = nE¢ relationship for the individual
collagen fibers

\I/f(Ef):gE? ®),

where 1 is the elastic modulus of individual straight collagen fibers (Fig. 1-a). Due to their

Ef — Fq
crimped structure, we express individual fiber’s true fiber strain using Etzﬁ where Eg
is the fiber slack strain (Fig. 1-a). The resulting individual collagen fiber strain energy is

thus
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Ef — B\ 2
\I’f(Et):gE‘?:g<1f+2E ) ).

To develop the first level homogenization, we define a fiber ensemble as the collection of all
fibers within the RVE with a common direction N = [cos(0) sin(0) 0] (Fig. 1-b). The
collective mechanical contribution from the ensemble is represented by its strain energy
Wens- Assuming affine deformation (Lanir, 1983; Sacks, 2003), the fiber ensemble strain
Eens in the direction Nis related to the macroscopic tissue-level Green-Lagrange strain

1 .
tensor E=§(C —I)by
Eens(g):NTEN 5).

We make the distinction between fiber and ensemble strains here since individual collagen
fibers will have a different strain levels due to their undulations. Note that the non-linearity
of the tissue evolves from the gradual recruitment of the linearly elastic collagen fibers
(Lanir, 1983), and is thus a structural as opposed to a material property.

To stochastically account for the gradual recruitment of the collagen fiber in each fiber
ensemble with strain, we define the function D(Eg) over the ensemble strain range Eqng €
[Eib.Eupl- Here, Ejp and Ep, represent the lower and upper bounds of collagen fiber

ensemble recruitment strain levels, with Ey, > Eyp >0 and J; D(x)dx=1, The ensuing fiber
ensemble strain energy and stress-strain relation are then described as the sum of individual
fiber strain energies of the ensemble weighted by the distribution of slack strains D, so that

Eens -

2
X Eens — x
1+2x ) dXSens:nfgensD(X) ==

N (E
Uepe== [FersD —es
2[0 (X>< (1+2X)2 X

(6).
D was represented as a Beta distribution B defined over Eg € [Ejp,Eypl,

xo‘*l(lfx)ﬂ*l
D(X): B(e,f)(Eub—Eb)” forx € [07 1] ?X:(Eens - Elb)/(Eub - Elb) (7),
0, otherwise

where o and f are the shape factors. Note that for simplicity we chose E, = 0, although
generally it is not (Fata et al., 2013).

In situations where computational demands are very high, we also present an alternative
formulation for the ensemble stress-strain relation using simplified exponential form that
emulates the recruitment behavior at both low and high strains. The novel aspect here is that
the terminal stiffness of the fiber ensemble is reproduced for ensemble strains above E .
This simple but important modification helps avoid unrealistically high fiber stresses at high
strains when using an exponential model alone. For an exponential model, this becomes
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A(eBECHS B 1)7 fOrEens < Eub
SenS(EGHS)_ { A(eBEUb - 1)+ABeBE“b (Eens - Eub)a fOI‘Eens>Eub (8)’
where A and B are material constants. Note that the tangent modulus is continuous at E =
Eup-

In the final step, we homogenize the ensemble response to the tissue level by defining the
tissue strain energy as the sum of the strain energy of fiber ensembles, weighted by the
orientation distribution function (ODF) I'(0). Thus, we have

\Ilc:fi/:/QF(‘g)‘IICHS(EOHS)da .

with the normalization constraint ff/:/zl“(é’)da, In summary, the total strain energy function
of soft tissue in the RVE is expressed as

EEHS

| . 2
=177 (o) {f o (S o

de+%(ll —3)+p(J—1) (0)

For the plane stress case, the out of plane stress component Sz3 =2 0¥ / 0C33 = 0, so that the
Lagrange multiplier p can be determined directly from

p=— ¢m/u'mc33 (11).
The total second Piola-Kirchhoff stress can be thus written as

Ecns —X

mdx] (N ® N) d9+¢m#m(i—c3sc_1) (12).

S=¢f77ff7i/73/211(9) [fge"sD(X)

for the recruitment model, and

< ~—1

S:fi/:/gr(e)sens [Eens(a)] ( \ ® N) da_"‘bm#m(l - CSSC ) (13).

for the simplified model (Eqgn. 8).

2.2 Finite element implementation

The structural model was implemented into commercial finite element software ABAQUS/
Standard (Dassault Systemes Simulia Corp., Providence, RI) via user defined material
subroutine UMAT. The stress tensor components utilized in UMAT is defined in a co-
rotational coordinate system in which the local material axes defined in the initial
configuration rotates with the material (ABAQUS, 2011). Using polar decomposition
theorem (Marsden and Hughes, 1983) we have F= Rl:], where R is the rigid body rotation
tensor and U is the right symmetric stretch tensor. Also, the rotated Cauchy stress can be
determined using t = 31T and the fourth-rank material elasticity tensor CSE are updated
in the UMAT code (see appendix for details).
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In the actual implementation, S and CSE require integration over 0 € [-x/ 2, 7/ 2] as well as
Eens € [EinsEup]. Since a closed form solutions are not available in general, a numerical
integration scheme was used as follows. During implementation, the angle domain and the
fiber strain domain were separated into twenty segments with equal size. In each segment,
Gaussian quadrature integration rule (Hughes, 2000) was performed with five integration
points.

2.2 Further model modifications and material parameter estimation

For the present work we merged (without loss of generality) the material parameters ¢, and
Um for matrix component into Uy, as well as ¢f and ) for the fiber component were also
combined into m. Due to its high collagen Type | content, generally planar tissue
architecture, well characterized structure and mechanical properties, and previous use in
structural models (Sacks, 2003) made native bovine pericardium natural choice for the
representative tissue for simulations. To obtain the value for yy,, we utilized flexural data
from native bovine pericardium (Mirnajafi et al., 2005). In that study, a nearly linear
moment-curvature relation has been observed. This suggested that the collagen fibers have
little effect in flexure, which is consistent with the very low strains that occur in this
deformation mode (so that the collagen fibers remain fully undulated and only the matrix
contributes). We thus obtained i, by fitting the moment-curvature curve (Mirnajafi et al.,
2005), using methods described in the next section.

The total fiber angular distribution function is expressed as a linear combination of Gaussian
distribution and uniform distribution

(14).

o) 1. a-q
I'(6)=d [erf(ﬁ%)\/%arr -

Eqgn. (14) was chosen to allow graduations in aligned and isotropic fiber distributions to be
simulated easily. Here o denotes the standard deviation of the Gaussian distribution
function, and the error function erf() is introduced so that the integration of the Gaussian
distribution function over angle domain 6 €[-n / 2,7/ 2] is equal to unity. The fiber angular
distribution function was obtained previous measurements and fitting the experimental data
with d=1 (Billiar and Sacks, 1997).

One way to evaluate the robustness and accuracy of the FE implementation is to examine
applications where very large strains are known to occur, which induce large fiber rotations
and stretches. Previous experimental results have revealed that the mechanical behavior of
soft collagenous tissue are strongly dependent on gripping methods (Waldman and Lee,
2002). In particular, we noted in that study that clamps induced large rotations in the corner
regions between the clamps. Thus, the material parameters from both model forms were
obtained by fitting stress-strain curve from the equi-biaxial loading stress-strain data with
suturing arrangement from (Waldman and Lee, 2002). This allowed us to directly compare
the FE results to the experimental findings from that study.
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2.4 Finite element simulations

We start with a basic simulation of a single element under uniaxial tension to investigate the
effects of matrix. For this example, a square element was subjected to uniaxial strain in Xy
direction (Fig. 2-a). Nodes 1 and 2 were constrained in X direction, and nodes 1 and 4 were
constrained in the X, direction, with uniform displacements applied to nodes 2 and 3 in X
direction. The preferred fiber orientation coincided with the X direction. Next, to verify
minimal fiber recruitment occurred during flexure, simulation of a bending test was
performed. The length and width of the specimen used for bending simulation is 20.0 mm
and 3.0 mm respectively, with the thickness of the tissue is 0.4 mm and the span 16.0 mm
(Fig. 2-b). The loading was applied at the center of the tissue through the middle post, with
the three posts were considered as rigid bodies. The friction coefficient was assumed to be
zero for the tissue in contact with the left and right posts. All the material parameters for
native bovine pericardium are summarized in Table 1.

To investigate the effects of both boundary conditions (as both localized point and
distributed loads) on fiber reorientation, we simulated native bovine pericardium using
sutures under strip biaxial tension using data from (Billiar and Sacks, 1997) and equi-biaxial
tension using clamped boundary conditions using data from (Waldman et al., 2002). To
simulate both high and low orientations, we utilized two levels of d (d=1.0 and d=0.25). For
the first test, the dimensions of the specimen were 19.2 mm X 19.2 mm and the thickness is
0.4 mm. As in the original experiment, uniform displacements were applied on the seven
suture attachment points along each side the specimen, with the initial preferred fiber
orientation set to 27° from the X axis (Fig. 2-c). Two loading cases were considered; 30%
along X, direction/0% for the X5, and 30% along the X5 direction/0% along the X4. For the
clamped equi-biaxial tension test, the dimensions of the specimen were 22.0 mm X 22.0 mm
(Fig. 2-d) and the thickness 0.4 mm. The tissue was stretched 10% in X; and X5 directions.
The initial fiber orientation was assumed to be the X, direction (Fig. 2-d).

As a final test, we simulated a fetal membrane (FM) inflation test using data from Joyce et
al. (Joyce et al., 2009). Uniform pressure was applied on the top surface of a circular
membrane and only half of the tissue was modeled due to symmetry (Fig. 2-e). The radius of
the circular membrane was 21.0 mm and the thickness 0.228 mm. The tube was modeled as
rigid body with an inner radius of 15.0 mm and the edge of the tissue fixed. SALS
measurements of the intact FM (Joyce et al., 2009) revealed that the tissue contains no
preferred collagen direction, therefore a uniform fiber angular distribution function T'(6) =
1/ m was utilized. The friction coefficient was assumed to be zero for the contact interaction
of tissue with the rigid tube. Note that for flexural simulations, four-node quadrilateral shell
elements were used, and for all the other simulations four-node quadrilateral membrane
elements were used.

2.5 Simulation post processing

To provide insights into the deformations of soft tissue microstructure under strain, we
implemented the following post-processing procedures. We start by describing generalized
methods for transforming the ODF (eqgn. 14) under a generalized affine deformation,
following methods developed for plasticity (Dafalias, 2001). Within an infinitesimal region
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of tissue we consider a fiber direction in the undeformed configuration by the vector dx”
(Fig. 1-c). Under deformation this vector is transformed into the current configuration to dx”~

by dx= F dX, with associated stretch A=d%/dX=1/N . C- N. A stereo-angle element dg
can be defined with respect to dX in the reference configuration, which is transformed in the
deformed state to df2. The projection of the area vector dA onto dX divided by the
magnitude of dX can be used to define the angle element d)g, defined by the inner product
dAdX |dX|~. This leads to expressions for the angle elements in the reference and current
configurations

_dA.dX  da-dx

=" do="2
O axp EE

(15).

A fundamental property of affine fiber kinematics states that the total number of fibers, Ng,
contained within an angular increment must be preserved under deformation. Relating this
condition to ODFs gives

NfP(Q())dQ():Nth(Q)dQ (16)’
where T'(Q) is the fiber orientation deformation function in the deformed stated. This leads

immediately to

() dQo

Q) dQ

According to Nanson’s relation da = JF-TdA (Fung, 1965), hence da - dx= JF-TdA - FdX =
JJA . dX, and with Egn. 17, yields

A3
T{(@)=T(%)5 @)

Eqn. 18 provides a means to determine the ODF in the deformed state in terms of the
reference ODF and F. Further, the three-dimensional relationship can be reduced to the
following two-dimensional form

A2 N.-C-N

L\(8)=T(0)7—=T(0)

o i m]

where Jop is the determinate of the in-plane deformation gradient. Note that I'¢() should be

_1 (Fa1c0s(0)+F22sin(0)
1 21 22
plotted against the deformed fiber angle 5=tan (F11008(0)+F1281n(0) > since it refers to

the deformed (convected) fiber direction.

In addition to its ability to provide high fidelity simulations of the stress-strain behaviors, the
structural model also provides a great deal of information structural adaptation to within the
RVE. These are usually overlooked in the literature. Thus, in the present study we defined
the fractional ensemble fiber recruitment (FEFR) structural metric for a given direction as
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FEFR(0)=[J“D(x)dx (20).

In addition, the total fiber recruitment (TFR) structural metric for a given RVE was defined
as

TFR=/"2,T(0) [/ " D(x)dx] a6 ().

Note that both metrics are expressed using a percentile scale.

3. RESULTS

3.1 Uniaxial tension simulation

Overall, we determined that the matrix had a signification effect on the simulated
deformation of soft tissue under uniaxial tension (Fig. 3). When the tissue is modeled with
fibers only, the lateral deformation of the tissue may be unrealistic. Specifically, since under
uniaxial tension the stress component in the X5 direction is

S22:f7:/7rQ/2F(0)Sens(Eens)Sinz(e)de, with Sgns = D(X) = 0 in this direction since the fibers
cannot carry any load when compressed. Since T (6) = 0 and sin? (6) = 0, Sy» must be
greater than zero, yet under uniaxial tension S»,=0, so that an equilibrium state cannot be
achieved. For example, when the element is stretched 6% (Fig. 3-a) the Green-Lagrange
strain E11=0.618 and E»,=—0.0434 with a ratio of —E»/Eq; of 0.702. When the element is
stretched 12% (Fig. 3-b), the strain ratio —E»»/E1 increased to 2.049. The deformation in X,
direction is larger than that in Xy direction, and the element collapses to a single line when
the stretch ratio is greater than 15%. However, when the matrix is included, the strain ratio
—E5o/E11 is 0.459 and 0.424 as the element is stretched 6% (Fig. 3-¢) and 12% (Fig. 3-d)
respectively, so that the deformation of the element is acceptable. Thus for the present
model a matrix should be present and in sufficient quantity in the structural model to prevent
unphysical characterization of the mechanical behavior of soft tissues under uniaxial
tension.

3.2 Flexural simulations

The moment-curvature curves from FE simulation using only the isotropic neo-Hookean
model were in good agreement with the published experimental results (Mirnajafi et al.,
2005) (Fig. 4-a). The simulation results also confirmed that collagen fiber contributions
were negligible; the moment-curvature curves from FE simulations are the same using Neo-
Hookean model and the structural model with both fiber and matrix (Fig. 4). The maximum
tensile strain (Green-Lagrange strain) under bending was 0.0346 located at the bottom
surface. Virtually all (>99%) of the fibers were still undulated in this loading configuration
(Fig.4-c); supporting our use of these studies to determine ground matrix mechanical
behavior.
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3.3 Biaxial test simulations — sutured boundary conditions

For the strip biaxial test stretched in the X4 direction, fiber orientation from SALS
measurements (Billiar and Sacks, 1997) revealed that the overall preferred fiber direction
was reoriented towards the direction of stretch and the degree of fiber alignment was
increased. When d=1.0 in the fiber angular density function, the preferred fiber direction
rotated only about 4° toward the stretch direction (Fig. 5-a). However, for d=0.25, the
preferred fiber direction rotated about 15° toward the stretch direction (Fig. 5-b), in
agreement with SALS measurements (Billiar and Sacks, 1997). Around the suture points,
the simulation results with d=0.25 (Fig. 5-b) demonstrated that the preferred fiber direction
rotated towards the suture points, also in agreement with the SALS data (Billiar and Sacks,
1997). When the tissue was stretched in the X, direction with d=1.0, the overall preferred
fiber direction reoriented only about 4° towards the stretch direction (Fig. 5-c). While for
d=0.25, the overall preferred fiber direction reoriented about 35.0° towards the stretch
direction (Fig. 5-d).

When the tissue was stretched in the X4 (preferred) direction, more fibers are recruited in the
X direction than those in the X5 direction. For d=0.25, the polar FEFR plot (Fig. 6-a) under
different stretch ratios revealed the increasing FEFR in all directions. At A = 1.18 the FEFR
in all directions was less than 20%. As the stretch increased to 1.21, more than 40% of fibers
were recruited in the X direction. All the fibers in the X; direction were straighten when the
strain in Xy direction just reaches the upper bound strain at A = 1.24, with all fibers within
24° from the X, direction straightened by a stretch of 1.4. The total fiber recruitment (TFR)
is 40% uniformly distributed in the center region of the soft tissue (Fig. 6-b and Fig. 6-c).
The maximum TFR occurs at the suture points (Fig. 6-b and Fig. 6-c) due to stress
concentration.

To obtain further insight as to why variations in d lead to different fiber reorganization
patterns, we examined the angular distribution of fiber density at the center of the tissue
before and after deformation with SALS data taken for bovine pericardium from the 1997
study (Billiar and Sacks, 1997) (Fig. 7). The angular distribution after deformation was
computed using the deformation at the tissue center from simulation. Moreover, the fiber
angular distribution was renormalized with the baseline removed for values of d of 1.0 and
0.25. As noted in the 1997 study, when the tissue was stretched in the X; direction with
F=diag[1.3, 1.0], the experimentally determined mean preferred fiber direction shifted from
~30° (Fig. 7-a) to ~15° (Fig. 7-b). While both values of d simulated this shift well, a value of
d=0.25 produced a better fit (Figs. 7-b,c). In contrast, when the tissue was stretched in the
X, direction with F=diag[1.0, 1.3], the experimentally determined mean preferred fiber
direction shifted from ~30° (Fig. 7-b) to ~75° (Fig. 7-€). For both deformation states, better
agreement was obtained when d=0.25, especially when the tissue was stretched in the X,
direction (Figs. 7-c,e).

3.4 Biaxial test simulations — clamped boundary conditions

For the tissue with clamped boundary conditions, SALS measurements (Waldman et al.,
2002) indicated that fibers between grip faces were highly aligned due to shearing (Fig. 8-a).
The preferred fiber orientation rotated about 37.0° at the corner regions from simulation
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with d=0.25. The distribution of the standard deviation of fiber density from simulation is
similar to the distribution of orientation index (Ol) from SALS measurements. The structural
model provided deep insights into the deformation of fibers. All the fibers initially undulated
were straightened gradually with increasing load. Less than 1% of fibers were recruited in
the center region of the tissue specimen and more than 70% of fibers in the corner regions
were recruited. Along the diagonal line, the TFR is uniformly distributed around the center
region of the tissue specimen. The TFR increased dramatically at the corner regions due to
large shear strain.

3.5 Membrane Inflation simulations

Simulation results revealed that all fibers around the center dome region were straightened
(Fig. 9-a). The preferred fiber direction in the deformed shape was rotated to the radial
direction of the tissue (Fig. 9-a). The total fiber recruitment decreased gradually from 100%
in the center region to 32% at the edge (Fig. 9-a). For element A (Fig. 9-a) at the center of
tissue, the strain is the same in each direction. Therefore the fractional ensemble fiber
recruitment is equal in each direction (Fig. 9-b). However for location B (Fig. 9-a) at the
tissue edge, the strain in the radial direction is larger than that in the circumferential
direction. More fibers were recruited in the radial direction (Fig. 9-c).

4 DISCUSSION
4.1 Overall findings

A framework for the implementation of a structural constitutive model for soft tissues into a
finite element framework was developed and validated. Simulation of a single element under
uniaxial tension revealed that when using fiber systems with angular dispersion, a matrix
phase must be present to prevent non-physiological deformations (Fig. 3). This finding may
shed insight into how the non-collagenous components of soft tissues play an important role
guiding the overall mechanical responses. For example, Lake and Barocas (Lake and
Barocas, 2011) studied the effects of simulated non-fibrillar matrix using an agarose analog
on the behavior of a collagen-agarose co-gel in uniaxial tension. They reported that the
Poisson’s ratio of co-gel decreased from a range of 1.5-3.0 (with a large volume decrease)
with no agarose to ~0.5 (i.e. nearly incompressible) with high concentration of agarose.
Thus, both the experimental results and the present simulation results suggest that matrix
phase may have significant effects on the mechanical behavior of soft tissues.

Biaxial tension simulations demonstrated that the presence of an isotropically oriented fiber
phase can significantly affect the overall fiber orientation in the deformed configuration
(Fig. 5). For d=1.0, the preferred fiber orientations were far from the SALS measurement for
both strip biaxial tests and equi-biaxial tests (Fig. 7). However, simulation results with
d=0.25 are in good agreement with the SALS measurement. Not surprisingly, this
observation revealed that accurate measurement of the fiber ODF is critical to the structural
model.

Invariant based (Spencer, 1972) constitutive models have also been developed for the
arterial wall (Gasser et al., 2006) and the aortic valve (Freed et al., 2005). The advantage of
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these invariant based models is being computationally more efficient. Other have utilized
generalized structure tensors in attempt to eliminate the need for numerical integration
(Cortes et al., 2010; Federico and Gasser, 2010). However, in this approach the fiber strains
are averaged over all orientations, and has lead to less effective fits to the data (Cortes et al.,
2010). A closed-form solution using a von Mises distribution function and an exponential
fiber stress-strain law has been also been utilized (Raghupathy and Barocas, 2009).
However, the closed form is only available for some special statistical functions and not for
the recruitment model.

4.2 Convexity of the strain energy function

Strain energy functions for hyperplastic materials must satisfy certain conditions to prevent
unphysical material behavior characterization (Truesdell and Noll, 1965). The strong
ellipticity condition (Marsden and Hughes, 1983; Truesdell and Noll, 1965) requires that
elasticity tensor be positive definite. Moreover the material Jacobian matrix required for
finite element simulation must be positive definite to avoid numerical instability. Holzapfel
et al. (Holzapfel and Gasser, 2000) discussed the convexity of strain energy functions for
several phenomenal models. Sun et al. (Sun and Sacks, 2005) proposed a necessary
condition for fitting Fung-type strain energy functions about zero strain. The constraints
condition enforced on material parameters guarantees that the second elasticity tensor is
positive definite in the reference configuration. Federico et al. (Federico et al., 2008) proved
that the necessary condition is also a sufficient condition for the convexity of Fung-type
stain energy functions. The convexity of strain energy functions for invariant based
structural model was proved by Holzapfel et al. (Gasser et al., 2006; Holzapfel et al., 2004).
Lanir (Lanir, 1994, 1996) proved that the Coleman and Noll condition (Truesdell and Noll,
1965) and the strong ellipticity condition are satisfied for the structural model since the
fiber’s stretch force increases monotonically with stretch.

4.3 New structural insights

Unlike phenomenological models, the structural model provides more than just stress-strain
relationship at the tissue scale. By incorporating fiber orientation distribution and fiber
recruitment distribution at tissue microscopic scale, the model can provide information on
how soft tissues internally reorganize to external loads by adjusting their internal
microstructure. The information include change of fiber angular density, change of preferred
fiber orientation, change of fiber recruitment in any orientation, and change of the overall
fiber recruitment. The new indices introduced herein provide both single ensemble and total
tissue insights into how undulated fiber adapt to the local strain environment. These metrics
are particularly useful in understanding structural adaptations and could be directly used in
structural optimization studies in engineered tissue design.

Another interesting aspect of the current study was the apparent resolution of an observed
discrepancy in the SALS data in our original 1997 publication (Billiar and Sacks, 1997). In
that work, we observed that under strip biaxial stretch the T'(B) responses were not in good
agreement with the experimental results (see Fig. 4 in (Billiar and Sacks, 1997)). At first,
this result suggests non-affine deformations; yet the current simulations indicated that when
d=0.25 good agreement was obtained (Fig. 7). To investigate this further, we performed
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affine transformation simulations using equation to determine how the addition of an
isotropic oriented fiber phase affects the apparent mean fiber orientation. As the most
demanding simulation in the current study we utilized the deformation gradient tensor from
the clamped biaxial simulations in the corner region (Fig. 7-b). Using the dispersion of the
splay of 30 degrees (typical of bovine pericardium), we observed that increasingly accurate
distributions were obtained with smaller d values (Figs. 10-a,b). Next, we remeasured
bovine pericardial structure using an upgraded SALS instrument and, unlike in the 1997
study, did not remove the baseline component (Fig. 10-c). When this data was subjected to
the same affine deformation, we found a centroid value of ~42°, very close to the ~45° as
measured. Note that the estimated value for d in the new bovine pericardial data was 0.2,
similar to the 0.25 value used in our simulations (Fig. 5-b).

Removal of the baseline component of the SALS signal, as in the original study, was
performed at that time since it was unclear whether the baseline contained actual structural
information. As a precautionary measure, it was removed as done routinely in small angle x-
ray studies (Guinier and Fournet, 1955). Since the time of the 1997 study, we have perfected
the SALS technique to validate this procedure for each tissue study and no longer remove
this component. While not the final word, these simulations suggest that affine kinematics
for pericardial collagenous tissues is a reasonable assumption of the macro level. Moreover,
the present results underscore the importance of collecting accurate orientation data in tissue
modeling development and application.

4.4 Limitations

In this study, all the simulations were performed based on the assumption that the soft tissue
was initially homogenous. However, the pericardium is not homogenous, this can include
tissue thickness, fiber orientation, fiber angular distribution, fiber recruitment distribution
and fiber volume fraction. We have already have begun to include such information into
finite element models (Lee et al., 2013). The structural model presented in this study may be
extended to characterize soft tissues with much more complex microstructures, such as
multilayers (Stella and Sacks, 2007) and angular variations in structure (Gasser et al., 2012).
For example, the strain energy function for fibers may be separated into two forms to model
elastin fibers and collagen fibers separately using different fiber angular distribution
functions and fiber recruitment functions. Further, variations in fiber properties and structure
with orientation are a natural extension. Such model extensions have been contemplated by
our group, but for the purposes of the current work we assume constant properties with
orientation since applications with constant properties with angular orientation have served
as a reasonable approximation.

The key assumption in the structural model is the affine kinematics down to the fiber level.
It assumes that the deformation gradient of each fiber and matrix in the RVE are equal to the
RVE deformation gradient. There are many reasons that this may not hold at the microlevel,
due to such mechanisms as fiber-fiber interaction and fiber-matrix interactions locally.
Moreover, most soft tissues have intermediate structures, such as sheets and layers, so that
each fiber may not act with complete independence with respect to all other fibers.
Additional extensions to this form of modeling that incorporate much more realistic tissue

J Biomech. Author manuscript; available in PMC 2015 June 27.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Fan and Sacks

Page 15

structures may help to further improve simulation accuracy. Moreover, complete 3D
implementation of the structural model is currently underway in our laboratory.

4.5 Summary

A structural constitutive model for planar soft tissues was successfully implemented and
demonstrated that an isotropic matrix played an essential role in obtaining realistic
deformations under uniaxial deformation modes. Numerical simulation also revealed that the
preferred fiber orientation in the deformed configuration was strongly related to the initial
fiber orientation distribution. By incorporating fiber orientation distribution and fiber
recruitment distribution into the strain energy function, the structural model can predict not
only the mechanical behavior of soft tissues at the macroscopic scale, but also fiber
deformations patterns (in a statistical sense) at the microscopic scale. The new indices
introduced herein may be particularly useful in understanding structural adaptations and
could easily be used in structural optimization studies in engineered tissue design.
Moreover, the present results underscore the importance of architecture in tissue modeling
development and application.
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The total second material elasticity tensor can be written as the sum of the material elasticity
tensor of fiber and matrix as
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~—1
~ 0
Because C is a symmetric tensor, the components of the fourth tensor 5@ can be written
as

~—1

(%) w 3 (CRlC+Cl) e
ijkl

The Jaumann stress rate is used for continuum elements and Green-Naghdi stress rate is

used for structural elements in ABAQUS/Standard. Therefore, the second material elasticity

tensor CSE = 3S 7 9F was related to the corresponding spatial elasticity tensor (Simo and

Hughes, 1998) to ensure rapid convergence. During implementation, the following

symmetric tangent moduli were used.
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Figure 1.
(a) Assumed stress-strain response of a single undulated fiber. Graphical depiction of a (b)

fiber ensemble and (c) material line, area, and stereo-angle elements before and after
deformation.
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Figure 2.
Schematic overview of the simulation setup. (a) One four node element, (b) three-point

bending configuration, (c) strip biaxial tension with seven sutures along each side and initial
fiber orientation, (d) equi-biaxial tension with clamped boundary condition and initial fiber
orientation, (e) inflation of fetal membrane, with only half of the membrane was modeled
due to symmetry.
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Figure 3.
Undeformed and deformed configuration of one single element under uniaxial tension,

under the following conditions: With fibers only stretched 6% (a) and 12% (b), and with
fibers and matrix 6% (c) and 12% (d).
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Figure 4.
Effective deformations of fibers on soft tissues under three-point bending showing (a) the

moment-curvature curve relation obtained using a Neo-Hookean model with matrix only and
structural model with fiber and matrix, (b) Green Strain Eq; contour, (c) Fractional ensemble
fiber recruitment contour in X1 direction.
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Figure 5.
Preferred fiber reorientation and standard deviation contour of fiber angular distribution

function from simulation under strip biaxial stretch (a) in X direction with d=1.0, (b) in X;
direction with d=0.25, (c) in X, direction with d=1.0, (d) in X; direction with d=0.25. Inset
— measured SALS data from the Billiar and Sacks 1997 study, showing very good
agreement.
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Figure 6.

(a) Azimuthal plot of the fractional ensemble fiber recruitment under different stretch ratios,
(b) Total percentage of fiber recruitment contour after stretch in X4 direction, (c) Total
percentage of fiber recruitment along the line X1 and X5 in (b).
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Figure 7.

Fiber angular distribution before and after stretch from SALS data from the Billiar and
Sacks 1997 paper and simulation results with d=1.0 and d=0.25. To emulate the original
data processing, both the original and simulated distributions were renormalized with the
baseline component of the distribution removed.

J Biomech. Author manuscript; available in PMC 2015 June 27.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuey Joyiny vd-HIN

Fan and Sacks Page 27

highly akgned
region between SD°
gnp faces

PRI PRI DRI 1 0 ) 0 ) L 0D
ORWADIDO R AO~
MowNHpDMDDLNR

TFR(%) 80 -
759
69.6
$8
50.6 60
8
316 9
253
e Y
6.3 L
0.0
20 A
0 i 1 T 1

Distan%g (mm) 4 a2

(c) (d)

Figure 8.
(a) SALS data (Waldman et al., 2002); (b) Preferred fiber orientation and standard deviation

contour of fiber angular distribution function from simulation with d=0.25, (c) Total
percentage of fiber recruitment contour, (d) Total percentage of fiber recruitment along the
diagonal line in (c).
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Figure 9.
Results from the membrane inflation simulations showing (a) preferred fiber orientation and

total percentage of fiber recruitment contour from simulation, and the azimuthal plot of the
fractional ensemble fiber recruitment of the elements located at (b) element A and (c)
element B. Note here that while increased pressure loading predictably increased the total
amount of fiber recruitment at both locations, substantial angular variations with pressure
was observed at element B.
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Figure 10.
Simulations of the effect of an isotropic baseline of a fiber angular distribution functions

using the deformation gradient taken from the corner region of the clamped biaxial test in
Fig. 7, with d=0, d=0.5 and d=1.0 in the (a) unloaded and (b) loaded configurations. Note in
particular note here that as the baseline contribution term d is increased, the centroid of the
distribution shifts towards the direction of greatest strain (=45 degrees in this example). (c)
Under the same deformation state using pericardial data with the baseline component kept
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intact, we note that the centroid is now at —42 degrees, very close to the experimentally
measured value in Fig. 7 of —45 degrees.
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