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Antibodies are of importance for the field of proteomics,
both as reagents for imaging cells, tissues, and organs
and as capturing agents for affinity enrichment in mass-
spectrometry-based techniques. It is important to gain
basic insights regarding the binding sites (epitopes) of
antibodies and potential cross-reactivity to nontarget pro-
teins. Knowledge about an antibody’s linear epitopes is
also useful in, for instance, developing assays involving
the capture of peptides obtained from trypsin cleavage of
samples prior to mass spectrometry analysis. Here, we
describe, for the first time, the design and use of peptide
arrays covering all human proteins for the analysis of
antibody specificity, based on parallel in situ photolithic
synthesis of a total of 2.1 million overlapping peptides.
This has allowed analysis of on- and off-target binding of
both monoclonal and polyclonal antibodies, comple-
mented with precise mapping of epitopes based on full
amino acid substitution scans. The analysis suggests that
linear epitopes are relatively short, confined to five to
seven residues, resulting in apparent off-target binding to
peptides corresponding to a large number of unrelated
human proteins. However, subsequent analysis using re-
combinant proteins suggests that these linear epitopes
have a strict conformational component, thus giving us
new insights regarding how antibodies bind to their
antigens. Molecular & Cellular Proteomics 13: 10.1074/
mcp.M113.033308, 1585–1597, 2014.

Antibodies are used in proteomics both as imaging re-
agents for the analysis of tissue specificity (1) and subcellular

localization (2) and as capturing agents for targeted proteo-
mics (3), in particular for the enrichment of peptides for im-
munoaffinity methods such as Stable Isotope Standards and
Capture by Anti-peptide Antibodies (4). In fact, the Human
Proteome Project (5) has announced that one of the three
pillars of the project will be antibody-based, with one of the
aims being to generate antibodies to at least one represen-
tative protein from all protein-coding genes. Knowledge about
the binding site (epitope) of an antibody toward a target
protein is thus important for gaining basic insights into anti-
body specificity and sensitivity and facilitating the identifica-
tion and design of antigens to be used for reagents in pro-
teomics, as well as for the generation of therapeutic
antibodies and vaccines (1, 6). With over 20 monoclonal-
antibody-based drugs now on the market and over 100 in
clinical trials, the field of antibody therapeutics has become a
central component of the pharmaceutical industry (7). One of
the key parameters for antibodies includes the nature of the
binding recognition toward the target, involving either linear
epitopes formed by consecutive amino acid residues or con-
formational epitopes consisting of amino acids brought to-
gether by the fold of the target protein (8).

A large number of methods have therefore been developed
to determine the epitopes of antibodies, including mass spec-
trometry (9), solid phase libraries (10, 11), and different display
systems (12–14) such as bacterial display (15) and phage
display (16). The most common method for epitope mapping
involves the use of soluble and immobilized (tethered) peptide
libraries, often in an array format, exemplified by the “Geysen
Pepscan” method (11) in which overlapping “tiled” peptides
are synthesized and used for binding analysis. The tiled pep-
tide approach can also be combined with alanine scans (17) in
which alanine substitutions are introduced into the synthetic
peptides and the direct contribution of each amino acid can
be investigated. Maier et al. (18) described a high-throughput
epitope-mapping screen of a recombinant peptide library
consisting of a total of 2304 overlapping peptides of the
vitamin D receptor, and recently Buus et al. (19) used in situ
synthesis on microarrays to design and generate 70,000 pep-
tides for epitope mapping of antibodies using a range of
peptides with sizes from 4-mer to 20-mer.
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So far it has not been possible to investigate on- and
off-target binding in a proteome-wide manner, but the emer-
gence of new methods for in situ synthesis of peptides on
ultra-dense arrays has made this achievable. Here, we de-
scribe the design and use of peptide arrays generated with
parallel in situ photolithic synthesis (20) of a total of 2.1 million
overlapping peptides covering all human proteins with over-
lapping peptides. Miniaturization of the peptide arrays (21)
has led to improved density of the synthesized peptides and
consequently has improved the resolution and coverage of
the epitope mapping. This has allowed us to study the spec-
ificity and cross-reactivity of both monoclonal and polyclonal
antibodies across the whole “epitome” with the use of both
proteome-wide arrays and focused-content peptide arrays
covering selected antigen sequences to precisely map the
contribution of each amino acid of the target protein for bind-
ing recognition of the corresponding antibodies. The results
show the usefulness of proteome-wide epitope mapping,
showing a path forward for high-throughput analysis of anti-
body interactions.

EXPERIMENTAL PROCEDURES

Array Design—Whole human proteome arrays were designed
based on the human Consensus CDS (version 37.1) protein set pro-
vided by the National Center for Biotechnology Information (NCBI)
(22). To essentially cover the proteome, 2.1 million 12-mer peptides
overlapping by six amino acids were randomly distributed on the
array. Focused-content arrays for more detailed epitope mapping and
alanine scanning were designed with a mix of 12-mer and 15-mer
peptides overlapping by 11 and 14 amino acids, respectively. Pep-
tides of both lengths were designed to cover the entire sequences of
the protein fragments used for immunization. Additional peptides
corresponding to the 15-mer peptides, but with the middle amino acid
substituted by an alanine, were also included in the design, and all
peptides were randomly distributed.

Peptide Synthesis—Combinatorial synthesis of the peptide librar-
ies was accomplished by means of light-directed array synthesis in a
Roche-Nimblegen Maskless Array Synthesizer (20, 23–25) using an
amino-functionalized 1-inch � 3-inch microscope slide as a substrate
coupled with six-amino hexanoic acid as a spacer and amino acid
derivatives carrying a photosensitive 2-(2-nitrophenyl)propyl-oxycar-
bonyl group at the �-amino function as in the study by Laursen and
colleagues (26). Coupling of amino acids was done with pre-activa-
tion in 30 mM amino acid, 30 mM activator (HOBt/HBTU), and 60 mM

ethyldiisopropylamine in N,N-dimethylformamide for 5 to 7 min before
flushing of the substrate for 5 min. Washings were done with 1-meth-
yl-2-pyrrolidinone, and site-specific cleavage of the 2-(2-nitrophenyl)-
propyl-oxycarbonyl group was accomplished by irradiation of an
image created by a Digital Micromirror Device (Texas Instruments
Inc., Dallas, TX; Super Extended Graphics Array Plus graphics for-
mat), projecting light with a 365-nm wavelength to a selection of �1.4
million features of (13 � 13) �m2 at a total dose of �10 J/cm2 in
1-methyl-2-pyrrolidinone. Final treatment of the slide with TFA/water/
triisopropylsilane for 30 min cleaved off the side-chain protection of
the amino acids.

Antibody Incubation and Scanning—De-protected slides were
washed twice with TBSTT (20 mM Tris, 0.9% NaCl, pH 7.4, 0.1%
Tween 20, 0.4% Triton X-100) in a LockMailer slide jar (Aldrich) by
inverting the jar for 2 min. The slides were then washed twice in TBS
(20 mM Tris, 0.9% NaCl, pH 7.4) for 2 min, rinsed quickly three times

with de-ionized water, and dried. Mixer masks (Roche NimbleGen
Inc., Madison, WI) were attached to the slides, and antibody samples
diluted in binding buffer (10 mM Tris, 0.45% NaCl, pH 7.4, alkali
soluble casein 0.5% (Novagen, EMD Chemicals, San Diego, CA))
were injected into the mixer compartments. The slides were incu-
bated overnight in a NimbleGen Hybridization Station (Roche Nimble-
Gen Inc.) according to the manufacturer’s instructions. After the pri-
mary incubation, the slides were submerged in TBSTT and the mixers
were removed. The slides were washed twice with TBSTT and twice
with TBS as described above. Secondary DyLight649-conjugated
anti-rabbit or Cy3-conjugated anti-mouse antibodies (Jackson Immu-
noResearch, West Grove, PA) were diluted to 0.15 �g/ml in binding
buffer in LockMailer jars, and the slides were incubated for 3 h on a
shaking table. The slides were washed twice with TBSTT and twice
with TBS as described above, quickly rinsed three times in de-ionized
water, and dried. The slides were subsequently scanned at 2-�m
resolution using a NimbleGen MS200 scanner (Roche NimbleGen
Inc.).

Image Aligning and Data Filtering—The scan images were aligned
and peptide feature mean fluorescence values were exported using
the NimbleScan2 software (Roche NimbleGen Inc.). Before further
analysis, confirmed false-positive signals caused by dirt on the arrays
were removed.

Generation of Antibodies—Antigens were designed using the soft-
ware PRESTIGE (27). Gene fragments were amplified from a pool of
RNA isolated from human tissues, cloned into a vector, and ex-
pressed in Escherichia coli. To generate polyclonal antibodies, puri-
fied and validated recombinant protein fragments were used for im-
munization of New Zealand White rabbits, and the polyclonal rabbit
sera were purified using their corresponding antigens as affinity li-
gands (28). The monoclonal antibody was generated as described
elsewhere (29).

Antigen Array Analysis—The 274 protein fragments corresponding
to the peptides bound by the anti-PODXL1 and anti-RBM3 antibodies
were spotted on an epoxy-coated glass surface (CapitalBio, Bejing,
China) using a non-contact printer (ArrayJet Marathon, Arrayjet Ltd.,
Roslin, UK). The microarray slides were incubated overnight at 37 °C
and then blocked for 1 h in PBST (1� PBS, 0.1% Tween20) supple-
mented with 3% bovine serum albumin. The slides underwent two
5-min washes with PBST and one 5-min wash with 1� PBS before a
final rinse with de-ionized water. The slides were dried and stored in
the dark at 4 °C until use. The polyclonal PODXL antibody and the
monoclonal antibody toward RBM3 were diluted 1:500 and 1:100 in
PBST, respectively. The slides underwent two 5-min washes with
PBST before incubation for 1 h with secondary antibodies (anti-
rabbit-Alexa647 for the polyclonal antibody and anti-mouse-Alexa647
for the monoclonal antibody (Invitrogen)). After two 5-min washes with
PBST, one 5-min wash with PBS, and a quick rinse in de-ionized
water, the slides were dried before scanning with a G2565BA array
scanner (Agilent Technologies, Santa Clara, CA). Image analysis and
data extraction were performed using GenePix 5.1 software (Molec-
ular Devices, Sunnyvale, CA).

Western Blot—Approximately 15 �g of total protein from cell lines
lysates (RT-4, U251 MG, Caco-2, HEK293) or HEK293 overexpres-
sion lysates (PODXL LY401657, SCG2 LY418654, MKNK2 LY413712,
RNF214 LY403969, GPR56 LY428998, PRY2 LY424151, CDK2AP2
LY417039, MS4A8B LY403116, STARD13 LY406044, all from Ori-
gene, Rockville, MD) were run on precast 4–20% CriterionTM TGXTM

SDS-PAGE gradient gels (Bio-Rad Laboratories, Hercules, CA) under
reducing conditions. Electroblotting of the separated proteins onto

1 The abbreviations used are: PODXL, podocalyxin-like protein;
RBM3, RNA-binding motif protein 3; PrEST, protein epitope signature
tag; HEK293, human embryonic kidney cell line.
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0.2-�m PVDF membranes was performed using the Trans-Blot�
TurboTM Transfer System (Bio-Rad Laboratories), according to the
manufacturer’s instructions. Membranes were blocked (5% dry milk,
0.5% Tween20, 1� TBS, 0.1 M Tris-HCl, 0.5 M NaCl, pH 7.5) for 1 h
before being incubated with primary antibodies diluted 1:250 in
blocking buffer for 1 h. The membranes were washed four times (5
min each time) in 1� TBS with 0.05% Tween20 before being incu-
bated for 45 min with secondary HRP-conjugated swine anti-rabbit or
goat anti-mouse antibody (DakoCytomation, Glostrup, Denmark) di-
luted 1:3000 and 1:6000 in blocking buffer, respectively. The mem-
branes were again washed four times (5 min each time) before
SuperSignal� West Dura Extended Duration Substrate (Pierce) was
added and chemiluminescence detection was carried out using a
Chemidoc charge-coupled device (CCD)-camera system (Bio-Rad
Laboratories), according to the manufacturer’s instructions.

RESULTS

Generation of Whole-proteome Peptide Microarrays Using
Photolithography—The principle of the synthesis of peptide
arrays and their use for antibody binding analysis is outlined in
Fig. 1. A UV-light source combined with digital micromirrors is

used to selectively activate small squares of the array, and
amino acids with photo-labile protective groups are then
added to the whole array. The amino acids will only be incor-
porated into the previously activated peptides, and through
repeated cycles of activation and coupling, all unique peptides
on the array can be synthesized in parallel. Because of the
digital nature of the synthesis technology, array peptide se-
quences can be readily changed, enabling the synthesis of both
custom and fixed-content array designs. After synthesis the
arrays are incubated with the antibodies of interest, and this
primary binding is detected with a fluorophore-conjugated sec-
ondary antibody. The arrays are scanned with a high-resolution
microarray slide scanner, and the fluorescence intensities of the
peptide features are evaluated. To cover the entire human pro-
teome, based on the consensus coding sequences (CCDS)
definition of the human proteome provided by NCBI, arrays

Primary antibody

Amino acids 
Cy3-labeled 
secondary 
antibody

A B

C

= photolabile protecting group = amino acids

Add

Add

Repeat

DMD

Digital
 micromirrors

Digital Micromirror Device (DMD)

Light Source

FIG. 1. The principle of in situ peptide array synthesis and subsequent antibody binding analysis. A, digital micromirrors individually
activate square features on the array by reflecting light on the photo-labile protecting groups of the previously incorporated amino acids.
Repeated cycles of selective activation, addition of amino acids, and removal of excess amino acids enables parallel synthesis of peptides with
unique sequences. B, schematic picture of incubation of the peptide array with the primary antibody and fluorophore-labeled secondary
antibody. C, a scan image of a part of a planar ultra-dense peptide array in which the bright spots correspond to peptide features bound by
antibodies.
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were designed with 2.1 million overlapping 12-mer peptides
with a six-amino-acid lateral shift.

Epitope Mapping of Antibodies Using Focused-content
Peptide Microarrays—The study was initiated by the analysis
of three polyclonal antibodies toward recombinant fragments
of the human proteins HMGCR, HER2, and HYAL1. All targets
had a previously determined three-dimensional structure. In
this case, focused-content planar peptide arrays were de-
signed with overlapping 12-mer peptides, covering the se-
quences of the protein fragments used for antibody genera-
tion, with a lateral shift of a single amino acid residue. The
analysis was performed as technical replicates on two sepa-
rate microarrays. The two technical replicates for the target
HMGCR showed almost identical results with three distinct
epitopes, two major epitopes (color-coded orange and blue in
Fig. 2) and a minor epitope (green) close to the most N-ter-
minal of the major epitopes. The three-dimensional structure
of the native target showed that the three epitopes were parts
of different structural elements, one �-helix, one �-pleated
sheet, and one loop structure. The epitope mapping of the
antibody toward the human epidermal growth factor receptor
showed three distinct epitopes. The three-dimensional model
of the native target showed that the epitopes were part of
�-pleated sheets or loops. For the HYAL1 target, two major
epitopes (green and cyan) were found using the microarray.
The three-dimensional model of the native target showed

that all five epitopes consisted of �-helical elements, al-
though two of them also contained residues from an adja-
cent loop region.

Comparative Epitope Mapping of Antibodies Using a Fo-
cused-content Microarray with 12- and 15-mer Peptides and
Alanine Substitutions—Eight polyclonal antibodies toward ad-
ditional human protein targets with known three-dimensional
structures were studied using both 12-mer and 15-mer pep-
tides to analyze the differences using different peptide
lengths. In addition, an alanine substitution was introduced
into the middle position of the 15-mer peptides to allow a
precise contribution for binding of the middle residue in the
sequence, similar to the alanine scan as described earlier (17).
Planar peptide arrays covering the complete antigen se-
quence of the eight target sequences were designed and
produced, and the results for one of the epitopes for each
target are shown in Fig. 3A and supplemental Table S1. No
differences between the 12-mer and the 15-mer peptide
scans were observed for any of the eight targets, supporting
similar results from Buus et al. (19) based on peptide scans
using peptides of various lengths. By substituting the middle
amino acid of each 15-mer with an alanine, we achieved even
more detailed mapping. In the case of TNFSF15, the 15-mer
mapping was interpreted as a minimal epitope five amino
acids long, and the alanine substitutions not only confirmed
the length, but also showed that all five amino acids were
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FIG. 2. Epitope mapping of polyclonal antibodies toward three protein targets. Antibodies toward three targets (HMGCR, HER2, and
HYAL1) were analyzed using planar peptide arrays (arrays 1 and 2) with synthetic 12-mer peptides covering the corresponding antigen
sequences. Each bar on the x-axis corresponds to one of the overlapping peptides required to cover the antigen, and the height shows the
relative antibody binding. Below, three-dimensional structures of the three protein targets with mapped epitopes on their molecular surface
together with a zoomed view of the secondary structural features of the epitopes. The protein fragments used for antibody generation are
shown in white, and the epitopes identified on the planar peptide arrays are shown in colors (yellow, green, blue, purple, and cyan)
corresponding to the highlighted epitopes in the plots above.
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FIG. 3. Epitope mapping and alanine scanning of antibodies toward eight human protein targets. A, major epitope regions of antibodies
epitope mapped on two planar arrays with overlapping peptides, 12 and 15 amino acids long, respectively, with a 1-amino-acid lateral shift
covering the antigen sequences. Each bar on the x-axis corresponds to one of the overlapping peptides, and the height shows the relative
antibody binding. Below, binding profiles of the antibodies to peptides corresponding to the 15-mer peptides, but with the middle amino acid
substituted by an alanine (“alanine scan”). B, three-dimensional structures of the eight protein targets showing the molecular surface and the
secondary structure of the epitope regions. The part of the protein used for antibody generation is shown in white, ligands are in green, the
epitopes are highlighted in pink, and the residues essential for antibody binding, identified by alanine substitutions, are shown in red.
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crucial for binding. For some epitopes (e.g. IMPDH2), almost
all of the amino acids of the epitope are needed for binding,
whereas for other epitopes (e.g. CD4) only a few of the amino
acids are absolutely crucial.

In Fig. 3B, the three-dimensional models of the native tar-
gets are shown with the consensus epitopes indicated, with
the residues identified as most important by the alanine scans
highlighted. For two of the targets (SOD1 and CD4), the
epitopes were found in �-pleated sheets, whereas for two
other targets (GNDPA1 and HMOX1), the epitopes consisted
of �-helical elements. For the last four targets (IMPHD2,
MAD2DL1, SRP19, and TNFSF15), the epitopes were con-
fined to loop structures. Note that TNFSF15 consists of three
identical subunits, and the epitope therefore occurs three
times in the native protein. In all cases, the epitopes were
situated on the surface of the native structure.

Proteome-wide Epitope Mapping of Three Polyclonal Anti-
bodies—Ultra-dense peptide arrays with 2.1 million 12-mer
peptides covering all human proteins were used for on- and
off-target binding analysis of three polyclonal antibodies
generated within the Human Protein Atlas project. In Fig. 4
the peptides with the highest binding intensities for each
antibody are presented as amino acid sequences, and their
binding intensity is relative to the peptide with the highest
intensity on the corresponding array. For the antibody
HPA003239 toward PCMT1 (Fig. 4A), peptides corresponding
to three linear epitopes showed substantial binding, but
high intensities were also seen for non-PCMT1 peptides. For
the peptide showing the most binding, other peptides con-
taining sequences similar to GAAAP (red) showed less binding
intensity, but for the other two epitopes, GRLI (yellow) and
VGSGS (purple), some off-target peptides actually had higher

binding intensities. The proteome-wide epitope mapping of
HPA005157 toward the protein TYK2 (Fig. 4B) revealed two
dominating epitopes, VTGT (red) and APRF (yellow). Again,
off-target peptides containing the epitope sequences were
also bound by the antibody, and in the case of the APRF
epitope, some even showed higher intensity than the corre-
sponding TYK2 peptide. Interestingly, all but one bound non-
target peptide with the VTGT pattern had the epitope se-
quence C-terminally located on the peptide. A possible
explanation is that the six-amino hexanoic acid used as a
spacer between the C terminus and the microarray surface is
very similar to the two consecutive glycines found after VTGT
in the TYK2 sequence. Although most bound peptides
showed sequence similarity to the TYK2 epitopes, two pep-
tides with no apparent sequence similarity (black) also
showed substantial binding. The antibody HPA020324 toward
RRP1B showed very extensive binding to many nontarget
peptides, with only a few key amino acids being similar to the
RRP1B sequence (Fig. 4C). Many peptides share the PF-K
pattern (red) in which many different combinations of amino
acids are allowed in between. The second peptide (yellow)
shared a TGPS-F pattern with the RRP1B sequence, but the
RRP1B peptides ILVSPTGPSRVA and GPSRVAFDPEQ did
not show any binding, indicating the importance of the phe-
nylalanine and the initial threonine for proper binding. In the
third epitope, TFGL were the most important amino acids,
with serine and isoleucine being able to substitute threonine
and leucine, respectively. The antibody’s fourth epitope spec-
ificity (cyan) seemed to be very promiscuous in its binding,
with only two key residues, leucine and lysine, with a three-
amino-acid space in between being required for a strong
peptide interaction. The combination of several epitopes de-
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FIG. 4. Proteome-wide off-target binding analysis of three polyclonal antibodies. Results from three polyclonal antibodies analyzed on
ultra-dense peptide arrays with 12-mer peptides with a six-amino-acid lateral shift in total covering the entire human proteome. Gene origin,
amino acid sequence, and relative binding intensity are shown for the peptides with the highest antibody binding for each array. A, peptides
bound with high intensity by an anti-PCMT1 antibody revealed three epitopes, GAAAP (red), GRLI (yellow), and VGSGS (purple). B, an
anti-TYK2 antibody shows binding to peptides containing the VTGT (red) or APRF (yellow) epitope sequences, but also to two peptides not
sharing sequence similarity with the target protein (black). C, for an anti-RRP1B antibody, four epitope patterns were identified: PF-K (red),
TGPS-F (yellow), TFGL (purple), and L-K (cyan). Many off-target peptides showed high antibody binding, and only one peptide originating form
the RRP1B sequence was present among the top 17 peptides.
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fined by only two or three amino acids makes this antibody
exhibit a lot of off-target peptide binding.

Proteome-wide Epitope Mapping of a PODXL Polyclonal
Antibody—The extensive off-target binding displayed for the
three antibodies prompted us to perform a more in-depth
analysis of a polyclonal antibody in order to investigate on-
and off-target binding using both peptides and protein frag-
ments. We choose an antibody toward human PODXL, which
is a sialomucin protein identified as an important component
of glomerular podocytes in the human kidney. PODXL is a
glycosylated membrane-bound protein with several isoforms
with molecular weights predicted from the genome of 54 to 58
kDa. According to the literature (30), the major isoforms of this
gene product exist as glycosylated products with higher mo-
lecular weights. We have shown that PODXL is differentially
expressed in many human cancers (31–33), and a polyclonal

antibody (HPA002110) has been generated by the Protein
Atlas effort that functions well in immunohistochemistry (31).
In order to investigate both on-target binding and off-target
binding to other human proteins, the binding pattern of this
antibody was analyzed using the proteome-wide peptide
microarrays.

Epitope mapping was in this case performed using two
separate technical replicates of the whole-proteome arrays,
and the analysis of all 2.1 million peptides is shown in Fig. 5A,
with the relative binding to each peptide in the two experi-
ments plotted. Good reproducibility between the two whole-
proteome arrays was obtained, and the results show that out
of the 20 peptides with highest binding to the antibody, 4 were
part of the target antigen sequence of PODXL, and 16 pep-
tides were part of unrelated human proteins (Fig. 5B). The
sequence of the PODXL peptides suggested that the antibody
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FIG. 5. Proteome-wide off-target binding analysis of a polyclonal antibody toward PODXL. A, binding analysis using two identical
ultra-dense peptide arrays with 12-mer peptides with a six-amino-acid lateral shift in total covering the entire human proteome. Peptides
containing the YPKTPSPS and VPGSQTV epitopes are represented by red and orange dots, respectively, and peptides containing a pattern
of the most important amino acids of the first epitope, YP-TP, are in blue. B, table of the 17 peptides with the highest mean relative binding
on the whole-proteome peptide arrays. Amino acid patterns similar to the PODXL epitopes are shown in bold, and the digits after the gene
names refer to lanes in the Western blot. Underlined genes have corresponding protein fragments present on the antigen array in C. C,
comparison of antibody binding to 12-mer peptides (x-axis) and protein fragments containing the corresponding peptide sequences (y-axis)
where binding is shown relative to the PODXL peptide and protein fragment showing the most binding (red). Peptides/antigens containing the
YP-TP epitope pattern are shown in blue. D, off-target binding analysis of the polyclonal PODXL antibody using Western blot with a panel of
HEK293 protein overexpression cell lysates corresponding to peptides bound on the whole-proteome array, marker (M), negative control (1),
PODXL (2), MS4A8B (3), SCG2 (4), and CDK2AP2 (5).
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recognizes two distinct epitopes, indicated in orange and red,
and that each epitope was present in two separate peptides
on the whole-proteome array. Interestingly, all of the 16 off-
target peptides shared residues present in one of the two
PODXL epitopes (YPKTPSP), suggesting off-target binding to
sequences similar to the target epitope. None of the highest
cross-reactive peptides observed on the microarray seemed
to involve the second VPGSQTV epitope.

To investigate the binding characteristics further, the Hu-
man Protein Atlas resource of more than 40,000 human re-
combinant cDNA clones (1) was explored for protein frag-
ments (PrESTs) containing the off-target peptide sequences
and shown to be binding to the antibody in the proteome-
wide microarray. In all, 249 PrESTs were found in the collec-
tion. These cDNA clones were expressed recombinantly in
E. coli, and the corresponding protein fragments were purified
and spotted on a microarray for binding analysis. In Fig. 5C,
the comparison between the relative binding of the peptide
and the respective recombinant protein fragments is shown,
and details of sequences and relative binding intensities are
presented in supplemental Table S2. The results demonstrate
low binding of the antibody to protein fragments other than its
antigen, in contrast to the binding to corresponding peptides
seen earlier. This lack of binding to the protein fragment was
further supported by a Western blot analysis (Fig. 5D) using
overexpression lysates of three of the protein targets
(MS4A8B, SCG2, and CDK2AP2) containing the epitope se-
quence where the antibody bound the corresponding peptide
on the microarray. Note that PODXL has been shown to have
multiple isoforms and contains glycosylated residues, and
therefore should give rise to several bands in the range from
54 to 95 kDa. Bands of expected sizes were detected in the
cell lysate containing overexpressed PODXL, whereas for
the other lysates only bands of sizes not corresponding to the
recombinant off-target proteins were detected.

Proteome-wide Epitope Mapping of a Monoclonal Antibody
toward Human RBM3—The proteome-wide analysis of bind-
ing was subsequently extended to a monoclonal antibody.
RBM3 is a glycine-rich RNA- and DNA-binding protein and is
one of the first proteins to be synthesized in a cold shock
response (34). RBM3 is up-regulated in several different can-
cer forms, and the expression of RBM3 in the nucleus is a
positive prognostic marker in, for example, breast cancer (35),
ovarian cancer (36), malignant melanoma (37), and colorectal
cancer (38). A monoclonal antibody (clone 6F11) was recently
generated and shown to function well in Western blotting (38),
and we therefore decided to analyze this monoclonal antibody
for target and off-target binding using whole-proteome array
analysis.

The epitope analysis of the monoclonal antibody was per-
formed on two separate whole-proteome arrays, and the results
of the technical replicates are summarized in Fig. 6A. The pep-
tide with the highest relative binding was shown to correspond
to a sequence of the target antigen, including a sequence

GAHGR (Fig. 6B). Of the other 19 of the 20 highest binding
peptides, none corresponded to the target protein. However, all
19 had parts of the GAHGR sequence included in their respec-
tive peptides, explaining the distinct cross-reactivity.

The Human Protein Atlas resource was again explored for
protein fragments (PrESTs) containing the off-target peptide
sequences, and a total of 25 PrESTs were found in the col-
lection of encoded protein fragments encompassing the pep-
tides found in the epitope mapping analysis. The protein
fragments were expressed, purified, and spotted on a mi-
croarray for binding analysis. In Fig. 6C, a comparison be-
tween the relative binding to the peptide and the respective
recombinant protein fragments is plotted with the relative
binding intensities listed in supplemental Table S3. Similar to
the polyclonal antibody described above, the results demon-
strate low binding of the antibody to the protein fragment, in
contrast to the binding to the peptide. This lack of binding to
the protein fragment was supported by a Western blot anal-
ysis (Fig. 6D) using overexpression lysates of five of the pro-
tein targets (RNF214, STARD13, GPR56, MKNK2, and PRY2)
known to contain the epitope and where the antibody binds to
the peptide on the microarray. The Western blot revealed a
band of the expected size (17 kDa) for two lysates from cell
lines expressing RBM3 (U-251 MG and R-T4), but no bands of
the expected size could be found for the other lysates, except
for the lysate with overexpressed STARD13. A band of the
expected size for STARD13 (125 kDa) was observed, sug-
gesting that the GAHGR epitope of this protein is also recog-
nized by the RBM3 monoclonal antibody.

Amino Acid Substitution Scans for Detailed Epitope Map-
ping—We decided to precisely map the residues involved in
binding for the two antibodies analyzed above. For the poly-
clonal antibody toward PODXL, epitope-specific fractions of
the polyclonal antibody were generated as described else-
where (39). The two peptides corresponding to the main
epitopes were synthesized and used as ligands in affinity
chromatography, and epitope-specific antibodies were recov-
ered from the polyclonal mix. These fractions were subse-
quently analyzed on a focused-content array containing 12-
mer peptides corresponding to the previously identified
epitopes and variants of these in which every amino acid was
substituted for all of the other 19 amino acids. The results of
the precise mappings of these two epitopes are shown in Fig.
7. The full amino acid substitution scan for the first PODXL
epitope demonstrated binding to the sequence YPKTPSP,
with the serine residue at position 6 contributing least to
binding. Note that the histidine and arginine in positions 2 and
3 in THRYPKTPSPTV actually contributed negatively to the
binding, as replacement of these amino acids with other
amino acids in most cases yielded better binding. For the
second epitope, the consensus sequence was found to be
VPGSQTV, with the two flanking valine residues at positions
11 and 12 of the peptide LASVPGSQTVVV showing slightly
negative contributions to binding. Thus, the precise mappings
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suggest that the numbers of interacting amino acid residues
for the two epitopes of the PODXL polyclonal antibody are six
and seven, respectively.

A Western blot analysis of the two epitope-specific antibod-
ies (Fig. 7) showed a single band with a molecular weight of
about 55 kDa for the antibodies toward the VPGSQTV
epitope, whereas several bands of higher molecular weight
were shown for the antibodies toward the other epitope. The
latter is expected, as it has been suggested that PODXL has
several glycosylated isoforms. The results therefore suggest
that one of the epitopes (VPGSQTV) is only exposed on the
non-glycosylated isoform of PODXL (lower arrow in Western
blot), whereas the other epitope (YPKTPSP) is accessible also
by the glycosylated isoforms of PODXL. This demonstrates
the usefulness of epitope mapping coupled with functional
analysis to explore the functionality of various antibodies
binding to different regions of the target protein.

A similar detailed mapping was performed for the mono-
clonal antibody toward RBM3. The result seen in Fig. 7 shows
that the sequence GAHGR contained the most important
residues for binding of this monoclonal antibody, supporting
the data from the whole-proteome analysis, which showed
that all cross-reacting peptides from unrelated proteins con-
tained parts of this sequence.

DISCUSSION

In this paper, we show the benefits of accessing the com-
plete human “epitome” through high-density microarrays with
in situ synthesized peptides. Target and off-target binding can
be studied on a proteome-wide scale to investigate the cross-
reactivity of both polyclonal and monoclonal antibodies. The
fact that several millions of peptides can be synthesized in
parallel makes it possible to cover all human protein-coding
regions with overlapping peptides on a single microarray. We
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RGKGAHGRHKGS
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RBM3 (1,2)
SCARF2
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STARD13 (4)
DCHS1
CALD1
RNF214 (3)
KCNH6

FIG. 6. Proteome-wide off-target binding analysis of a monoclonal antibody toward RBM3. A, binding analysis using two identical
high-density peptide arrays with 12-mer peptides with a six-amino-acid lateral shift in total covering the entire human proteome. The peptide
containing the GFGAGHR epitope is show in red, and peptides containing a pattern of the most important amino acids of the epitope, G-H-R,
are shown in blue. B, table of the 17 peptides with the highest mean relative binding on the whole-proteome peptide arrays. Amino acid
patterns similar to the epitopes are shown in bold, and the digits after the gene names correspond to lanes in the Western blot. C, comparison
of antibody binding to 12-mer peptides (x-axis) and protein fragments containing the corresponding peptide sequences (y-axis) where binding
is shown relative to the RBM3 peptide and protein fragment showing the most binding (red). Peptides/antigens containing the G-H-R epitope
pattern are shown in blue. D, off-target binding analysis of the monoclonal RBM3 antibody using Western blot with a panel of cell lines and
HEK293 overexpression lysates of proteins corresponding to peptides bound on the whole-proteome array, marker (M), U-251 MG (1), R-T4
(2), RNF214 (3), STARD13 (4), GPR56 (5), MKNK2 (6), PRY2 (7), and negative control (8).
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have used peptide arrays based on 2.1 million 12-mer pep-
tides, each overlapping with six amino acids, to cover the
human proteome, but it is not unlikely that higher density
slides could be designed, allowing a shorter window between
the overlapping peptides and giving an even more detailed
binding analysis.

In this study we have also designed focused-content mi-
croarrays with peptides containing lateral shifts of only one
amino acid, giving us a higher mapping resolution for the
target antigen. The results are easily interpreted thanks to the
single-residue lateral shift where the overlap of the bound
peptides gives the minimal epitope required for binding. In
addition, other focused-content arrays were designed with
amino acid substitutions across all residues involved in bind-
ing, allowing the measurement of the contribution of the indi-
vidual amino acids to antibody binding.

The polyclonal antibodies analyzed in this study were gen-
erated in a standardized manner within the framework of the
Human Protein Atlas program (1), involving immunization of
animals with recombinant proteins selected for their low se-

quence identity to other human proteins. The results for all the
analyzed antibodies, covering a total of 13 human protein
targets, support earlier suggestions (15) that the polyclonal
antibodies are more “oligoclonal” than polyclonal. Thus, a
large portion of the antigen is “epitope silent,” and the B-cell
immunodominant regions consist of few epitopes. This sup-
ports earlier results from suspension bead arrays and bacte-
rial surface displays (15, 40) suggesting that an immunization
scheme based on recombinant protein fragments generates
only two to three distinct linear epitopes per 100 amino acids
in average.

The epitopes found here were all relatively short, confined
to five to seven residues, supporting the findings of Sival-
ingam and Shepherd (8), who hypothesized, based on exten-
sive literature studies, that antibodies toward B-cell epitopes
need to detect only a single patch of key binding residues.
The limited number of binding residues on the average
epitope explains the extensive number of cross-reactive pep-
tides across the proteome with the off-target peptides com-
prising subelements of the cognate epitope sequence of the
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FIG. 7. Full amino acid substitution scan and Western blot analysis of antibodies toward the human proteins PODXL and RBM3.
Amino acid scans of two epitopes for the polyclonal PODXL antibody and a single epitope for the monoclonal RBM3 antibody, where each tile
of the matrices corresponds to the substitution of one amino acid of the 12-mer peptides (rows) to one of the other 19 amino acids (columns).
The change in antibody binding of each amino acid substitution relative to the binding of the original peptide is indicated by the color of the
tiles, with gradients from white to red and white to green showing decreasing and increasing binding ability, respectively. Western blots using
two epitope-specific antibody fractions isolated from the polyclonal PODXL antibody. Lane M: marker; Lane 1: HEK293; Lane 2: PODXL
overexpression lysate; Lane 3: Caco-2. Western blot using the monoclonal antibody toward RBM3. Lane M: marker; Lane 1: HEK293; Lane
2: RT4; Lane 3: U251.
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target antigen. However, the subsequent analysis using re-
combinant protein fragments or full-length protein lysates
demonstrated that the cross-reactive epitopes were not rec-
ognized when displayed in the context of a recombinant pro-
tein. Thus, the binding specificities for these linear epitopes
depend on both the specific amino acid residues and their
display in three-dimensional space. A likely explanation for
this is that the peptides displayed on a microarray can adapt
to almost any conformation (“induced fit”) upon binding to the
antibody. This allows the off-target peptides with sequences
similar to the epitope to interact with the antibody, even
though the same peptide when presented as part of a protein
fragment or full-length protein is not displayed in the correct
conformation for binding.

These results supports the hypothesis presented by Lerner
et al. (41) that synthesized peptides exist only a fraction of
their time in their native conformation, limiting the likelihood of
eliciting successful antibody reactions with the native protein
when performing immunizations with peptides. This has im-
plications for the generation of antibodies when the generated
antibody not only needs to recognize a peptide from trypsin
cleavage, but also needs to recognize the native protein in
plasma, cells, or tissues. If one uses synthetic peptides as
antigens, it is not unlikely that the generated antibodies might
be functional only in applications with denatured proteins.
Therefore, if the aim is not only to recognize trypsin-cleaved
peptides, it might be desirable to design the synthetic pep-
tides to an intrinsically unstructured part of the target protein
(42). In this respect, it is interesting to note that antibodies
toward synthetic peptides often are generated toward N- or
C-terminal regions of the target protein with a relatively high
likelihood of being nonstructured (43).

For immuno-proteomics, the results presented here also
have implications for the use of antibodies for the capture of
peptides. The fact that immunization using a recombinant
protein fragment (PrEST) yielded several distinct linear
epitopes involving relatively few amino acids suggests that
the antibodies generated in this manner, primarily to be used
for bioimaging of the target protein, could be promising re-
agents for affinity capture of peptides generated by trypsin
digestion.

An interesting application for the whole-proteome peptide
arrays would be the detection of autoantibodies in serum or
plasma samples from patients suffering from autoimmune
diseases, as a way of identifying new possible biomarkers for
diagnostics. An important lesson from the work presented
here is that peptides identified using the proteome-wide ap-
proach should subsequently be validated by binding analysis
toward the corresponding recombinant proteins. The exis-
tence of large repositories of human genes and gene frag-
ments in expression vectors (44, 45) will facilitate such vali-
dation schemes, and a convenient path for systematic
autoimmune studies can thus be envisioned based on pro-

teome-wide peptide arrays for screening followed by recom-
binant protein arrays for validation.

In summary, we have described a new method for epitope
mapping and cross-reactivity analysis of antibodies using
proteome-wide peptide arrays. The analysis using both
monoclonal and polyclonal antibodies revealed that in addi-
tion to the expected distinct binding to sequences corre-
sponding to the cognate target, significant signals were
frequently observed to peptides comprising sub-elements of
the cognate epitope sequence. However, subsequent analy-
sis using recombinant proteins suggested that these linear
epitopes have a strict conformational component, giving us
new insights regarding the nature of antibody–antigen
binding.
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