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Abstract

Purpose of review—To summarize recent progress in our understanding of Immune

Dysregulation, Polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders.

Recent findings—A number of Mendelian disorders of immune dysregulation and

autoimmunity have been noted to result from defects in T regulatory (TR) cell development and

function. The best characterized of these is Immune Dysregulation, Polyendocrinopathy,

enteropathy, X-linked (IPEX), resulting from mutations affecting FOXP3. A number of other gene

defects that affect TR cell function also give rise to IPEX-related phenotypes, including loss of

function mutations in CD25 and STAT5b and ITCH. Recent progress includes the identification of

gain of function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3

genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the

immune dysregulation associated with regulatory T cell deficiency.

Summary—An expanding spectrum of genetic defects that compromise TR cell function

underlies human disorders of immune dysregulation and autoimmunity. Collectively, these

disorders offer novel insights into pathways of peripheral tolerance and their disruption in

autoimmunity.

Keywords

FOXP3; CD25; STAT5; STAT1; ITCH; T regulatory cells; autoimmunity; Tolerance

Introduction

A number of Mendelian disorders of immune dysregulation and autoimmunity have been

noted to result from defects in T regulatory cells development and function. The best-

characterized of these is Immune Dysregulation, Polyendocrinopathy, enteropathy, X-linked
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(IPEX), resulting from mutations affecting FOXP3. A number of other gene defects that

affect TR cell function also give rise to an IPEX-like phenotype, including loss of function

mutations in CD25, STAT5b and ITCH and gain of function mutations in STAT1 (Table 1).

This review highlights recent progress in the study of these disorders and the identification

of underlying genetic and functional causative abnormalities.

IPEX

IPEX is a heritable autoimmune lymphoproliferative disease caused by loss of function

mutation in FOXP3 [1–3] [reviewed in [4–6]]. In most patients, IPEX presents early in life

with a triad of autoimmune enteropathy, autoimmune endocrinopathy, and eczematous

dermatitis [1–5]. Other autoimmune phenomena include autoimmune cytopenias, liver, and

kidney disease. Allergic dysregulation with eczema and food allergy is common, with

extremely elevated IgE levels accompanied by intense peripheral eosinophilia and evidence

of overt Th2 skewing [1,7].

The immunopathogenesis of IPEX relates to the loss of functional CD4+CD25+ T regulatory

(TR) cells, a subset that is critical to the prevention of autoimmunity [8,9]. The majority of

TR cells are generated in the thymus, express the transcription factor Foxp3, are selected on

high affinity TCR interactions with self antigens, and are referred to as natural TR (nTR)

cells[10] [11,12]. Some Foxp3+ TR cells can be also be induced de novo in vivo from

peripheral Foxp3− CD4+ cells resulting in a population of cells (iTR cells) that have

regulatory properties but with a TCR repertoire distinct from nTR cells [13,14]. This process

can also be recapitulated in vitro by TCR activation of naïve CD4+ T cells in the presence of

TGF-β and IL-2. iTR cells are particularly enriched at the mucosal surfaces, especially in the

gastrointestinal tract, where they are endowed with a TCR repertoire specific for bacterial

antigens [15,16]. nTR and iTR cells act in synergy to induce peripheral tolerance [13]. Some

iTR cell populations can lose expression of Foxp3 and become effector cells, including Th1

and Th17 cells [17].

Several suppressive mechanisms for TR cells have been demonstrated. These include

CTLA4 engagement of B7 molecules on target cells [18,19], expression of

immunosuppressive cytokines such as IL-10, TGF-β, and IL-35 [20–22], cytotoxicity of

target cells through the perforin/granzyme pathway [23], induction of indoleamine 2,3-

dioxygenase (IDO) and the catabolism of tryptophan in target cells, as well as consumption

of adenosine by expression of CD73, and competition with effector T cells for IL-2 since TR

cells constitutively express the high affinity IL-2 receptor CD25 [24–27]. Several of these

pathways are targeted by mutations in human subjects, including the IL-2 receptor alpha

chain (CD25; discussed below), IL-10/IL-10 receptor, and the perforin/granzyme pathway

[28–30]. Abnormal TR cell function is a key feature of these diseases [31].

Foxp3 is a transcription factor with a winged helix (Forkhead) DNA binding domain, a

proline rich N-terminal domain, a C2H2 zinc finger motif, and a leucine zipper domain. The

leucine zipper domain has been implicated in the formation homo and heterodimers and

higher order assembly of Foxp3 complexes [1,32]. A number of proteins interact with Foxp3

at its N-terminus, including the transcription factors Hif1a, IRF4, and Eos, the histone
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acetyltransferases Tip60 and p300, and the histone deacetylase HDAC7, which help regulate

the levels of Foxp3 protein [32,33]. A linker region between the leucine zipper and c-

terminal Forkhead domain interacts with the transcription factor AML1/RUNX1, which

cooperates with Foxp3 in the suppression of IL-2 expression [34]. The Forkhead domain

itself interacts with the transcription factor NFAT, relevant to the expression in components

of the TR cell transcriptome, including IL-2 receptor alpha chain (CD25), GITR and

CTLA-4 [35]. FOXP3 may act to induce (e.g. CD25) or suppress (e.g. IL2) gene expression

depending on the nature of the interactions with different transcriptional partners at the

respective promoter region [8].

Regarding FOXP3 genotype/phenotype relationships in IPEX some conclusions can be

drawn from the clinical phenotypes reported for different human FOXP3 mutations [6,36].

Missense mutations, small in-frame deletions, and deletions and mutations in the promoter

and 5′ untranslated regions of Foxp3 can be associated with near-normal expression of

Foxp3 protein, normal TR cell numbers but with compromised regulatory function, and a

milder clinical phenotype. For example, a 1388-bp deletion (g.del–6247–4859) affecting the

first untranslated exon and the adjacent intron of FOXP3, a region relevant to the formation

of induced TR cells, gave rise to enteropathy, eczema and food allergies and elevated IgE

but no endocrinopathy or cytopenias [37]. Similarly, some N-terminal Foxp3 mutations (e.g.

Q70H and T108M) gave rise to a milder phenotype without endocrinopathy [38,39].

Leucine zipper domain and Forkhead domain mutations are usually associated with more

severe phenotypes [6,36]. It is also likely that the genetic background may affect organ

involvement as demonstrated in Foxp3-deficient mice where organ involvement and disease

manifestations vary depending on the strain background [40].

The immunopathology of Foxp3 deficiency results from unchecked T cell activation

secondary to loss of TR cells that act in a dominant manner to suppress T cell activation

[41,42]. This is evidenced by the capacity of perinatal adoptive transfer of CD4+CD25+ TR

cells to cure Foxp3-deficient mice from disease [13]. Left untreated, disease in Foxp3

deficient mice evolves aggressively and death ensues within a few weeks after birth [43–46].

Disease progression is associated with lymphoid and myeloid hyperplasia and a concomitant

intense mixed inflammatory infiltrates involving several organs including the liver, lung

pancreas, stomach, skin and the gut [43–46]. The overwhelming majority of CD4+ and

CD8+ T cells are activated, and Th1, Th2, and Th17 cytokines are abundantly expressed

[40]. Inflammation at the mucosal surfaces, including the gut, skin and lungs, may be driven

by unrestrained T cell reactivity to antigens of the commensal flora [47,48]. It is attenuated

in germ-free Foxp3 deficient mice and by deficiency of the toll-like receptor adaptor MyD88

[48]. In contrast the systemic autoimmunity of Foxp3 deficiency is unaffected by these

interventions.

CD25 Deficiency

CD25 deficiency in humans manifests similarities to IPEX but is distinguished by a

profound susceptibility to infections. The first description of CD25 deficiency was in a male

subject of consanguineous parents who presented with CMV pneumonitis, oral and

esophageal candidiasis, adenoviral gastroenteritis, diarrhea and failure to thrive [49,50]. A
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second case of CD25 deficiency was described in a boy born to unrelated parents who

developed severe diarrhea, insulin-dependent diabetes mellitus, and eventual respiratory

failure within the first months of life [30]. CMV pneumonitis, enteritis, and EBV

lymphoproliferative disease developed. More recently, a third case of CD25 deficiency was

described in a female child of consanguineous parents who developed early onset eczema

and autoimmune enteropathy that was complicated by CMV, bullous pemphigoid,

autoimmune thyroiditis, and alopecia universalis.[51].

The presentation of CD25 deficiency has many features of IPEX, but exhibits unique

features including chronic viral, fungal, and bacterial infections [30,49,51]. The autoimmune

findings are consistent with the pivotal role of CD25 in TR cell biology [52,53]. IL-2

appears critical for the growth of TR cells, and it has been proposed that one of the key

features of IL-2 is to expand TR cells [54,55]. However, two of the reported patients with

CD25 deficiency were found to have relatively normal percentages of Foxp3+ cells in the

peripheral blood, suggesting that CD25 signaling is not required for the development of TR

cells, which is supported in mouse models [55]. Although CD25 is dispensable for the

generation of TR cells, deficiency of CD25 leads to widespread immune dysregulation,

arguing that functional responses of TR cells critically depend on IL-2. In support of this, in

vivo and in vitro treatment of T regulatory cells with IL-2 appears to enhance their

suppressive abilities [55–57]. In addition, the constitutive expression of CD25 on TR cells

allows them to effectively compete for IL-2 and act as a cytokine sink that promotes

apoptosis in a Bim-dependent manner in effector cells[58,59]. Finally, IL-2 is essential to

the generation of induced TR cell populations [60,61].

The infectious complications in CD25 deficiency also confirm a role for IL-2 in generating

effective immunity of T cells [reviewed in [62]]. IL-2 promotes the proliferation and

development of TH1 and TH2 cells [63–65] [66]. In contrast, IL-2 appears to inhibit Th17

development, but once generated Th17 cells may utilize IL-2 to expand [67,68]. IL-2 also

inhibits T follicular helper T cells development [69,70]. IL-2 is important in generating

cytotoxic CD8 effector cells as well as memory CD8 cells through the induction of IFN-γ,

perforin and granzyme expression[71]. [72]. IL-2 can activate NK cells to become

lymphokine-activated killer cells, and IL-2 has been reported to promote B cell response

[73,74]. The pleiotropic effects of IL-2 on the effector function of the adaptive immune

response helps to explain why individuals lacking CD25 exhibit increased susceptibility to

infections, including fungus, bacteria, and viruses.

STAT5b Deficiency

STAT5 consists of two close related proteins, STAT5a and STAT5b, that are the product of

two distinct genes and are 90% homologous [75,76]. Complete deficiency in STAT5

proteins in mice results in perinatal lethality since these proteins are involved in the signal

transduction of a variety of growth factors, including growth hormone, prolactin,

erythropoietin, IL-3, IL-5, and GM-CSF [77,78]. Defects in Stat5a have not been described.

Defects in Stat5b have been described to result from deletion, missense and splice junction

mutations, and are inherited in an autosomal recessive manner.
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The original description of STAT5b deficiency was of an Argentinean girl with growth

failure, delayed puberty, prominent forehead, saddle nose, and high pitched voice, all

features of growth hormone deficiency [79]. Since then, several other patients have been

described [80–85]. Common clinical presentations include failure to thrive and growth

failure, recurrent infectious pneumonias due to bacterial and viral infections, lymphoid

interstitial pneumonitis, severe varicella and recurrent bouts of herpes zoster, and chronic

diarrhea and eczema. Laboratory studies usually demonstrate hypergammaglobulinemia,

with normal T, B, NK cells number, although the T cells may show severe memory skewing.

Foxp3+ TR cells may be normal or slightly decreased. Mitogenic responses may be low,

Low IGF-1, low IGFBP-3, and high prolactin are usually present, reflecting defective

growth hormone receptor signaling.

Many of the features of STAT5b deficiency are similar to findings in CD25 deficiency,

including eczema, chronic diarrhea, thyroiditis, and increased susceptibility to infections,

likely due to the fact that IL-2 receptor signaling requires STAT5. Pulmonary disease

appears more prominent in STAT5b deficiency, although it is unclear whether this is driven

by infectious processes, or is the result of defective immune regulation. Similar to CD25

deficiency, signs of immune activation may be apparent, including

hypergammaglobulinemia and increased percentages of CD45RO positive T cells. The

severity of disease in STAT5b deficiency appears more variable and less severe compared to

CD25 deficiency, likely due to the fact that STAT5a may substitute for some of the

functions of Stat5b deficiency. The increased susceptibility to infections and autoimmune

manifestations of STAT5b deficiency is likely due to defects in responsiveness to IL-2 as

outlined in CD25 deficiency above.

IPEX-like disease due STAT1 Mutations

Autosomal dominant heterozygous gain of function mutations in STAT1 have been found in

subjects with mucocutaneous candidiasis. Some of the affected subjects suffered from

autoimmunity, mainly autoimmune thyroiditis, but otherwise lacked other characteristics of

the AEPECD phenotype, including characteristic end-organ targets of autoimmunity and

ectodermal dysplasia [86–88]. By screening patients with IPEX like phenotype with or

without mucocutaneous candidiasis, Uzel et al identified 5 patients heterozygous gain of

function STAT1 mutations [89]. The mutations involved the coiled-coil (R210I, V266I) and

DNA binding domains (L358W, T385M (two patients) of STAT1. These mutations resulted

in increased STAT1 phosphorylation at the regulatory tyrosine 701, consistent with the gain

of function phenotype of the mutations.

Gain of function STAT1 mutations inhibit Th17 cell differentiation, a phenotype associated

with heightened susceptibility to mucocutaneous candidiasis. However, the mechanism of

IPEX-like disease in some of the patients remains unclear. The number of TR cells and their

in vitro suppressor function appeared normal [89]. It is possible that the gain of function

STAT1 mutant destabilizes the TR cells by reprograming them into Th1-like cells, but that

remains to be determined. IL-10 production by peripheral blood lymphocytes was

profoundly decreased, suggesting a role for functional IL-10 deficiency in certain aspects of

disease manifestation (such as enteritis).
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All five patients presented with eczema and enteropathy, [89]. Three of the patients

developed type 1 diabetes, three developed hypothyroidism and or thyroid autoantibodies,

and one patient developed growth hormone insufficiency. All patients suffered recurrent

infections, with various combinations of sinopulmonary infections and pneumonias (with or

without bronchiectasis), herpes virus infections, and blood-borne infections. The patients

also suffered form a variety of cardiovascular problems including hypertension, vascular

aneurysms and calcifications. Four of the five patients exhibited mucocutaneous candidiasis,

suggesting that the disease may occasionally present in the absence of (or cryptic presence)

of candidiasis [89]. Disseminated aspergillosis and candidemia have been noted in two

patients under conditions of immunosuppression and catheter related, respectively.

ITCH

Human ITCH deficiency was discovered in an extended Amish family with findings of

multisystem autoimmunity, dysmorphic features, and developmental abnormalities due to a

single adenine nucleotide insertion in codon 132 of ITCH was found, resulting in a frame-

shift and premature stop [90]. Ten affected individuals were found to carry this mutation.

Autosomal recessive inheritance was apparent in this extended family, and prominent

consanguinity was noted. A naturally occurring mutation in Itch, the mouse homologue of

human ITCH, recapitulates many features of the human disease, including a severe

autoimmune disorder characterized by dermatitis, chronic pulmonary inflammation, alveolar

proteinosis, and lymphoid hyperplasia [91]. Studies with Itch-deficient mice have elucidated

some of the potential mechanisms of immune dysregulation in these mice. ITCH is a

ubiquitin ligase with diverse function in T cells [91]. T cells from Itch−/− mice show an

activated phenotype with enhanced proliferation and expression of the TH2 cell cytokines

interleukin 4 and IL-5 [92]. IgG1 and IgE levels were elevated, consistent with a prominent

TH2 response in these mice. These studies identified JunB, a transcription factor that is

involved in TH2 differentiation, as a target of ITCH [93,94]. Other studies have shown that

ITCH is upregulated in anergic T cells, and ITCH associates with PLC-γ1 and PKC-θ, two

key signaling molecules induced by Ca2+/ calcineurin signaling [95]. Following ITCH-

mediated ubiquitination, PLC-γ1 and PKC-θ are targeted to the lysosome for degradation,

leading to reduced levels of PLC-γ1 and PKC-θ and defective T cells activation.

ITCH has also been implicated in TR cell function and generation, mainly through its affects

on TGF-β signaling and Foxp3 expression in CD4 T cells [96]. The loss of ITCH

compromises TGF-β–induced Foxp3 expression and TGF-β–mediated inhibition of T-cell

proliferation through the ubiquitination of the transcription factor TIEG1. Upon

ubiquitination by ITCH, TIEG1 translocates to the nucleus, and binds GC rich sequences in

the Foxp3 promoter [96].

Summary and Future Directions

Despite the progress in identifying several IPEX like diseases and establishing their genetic

causations, the underlying defects in a large proportion of subjects who present with IPEX

like disorders remain obscure. The advent of global sequencing approaches such as whole
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genome and exome sequencing promises to identify novel gene defects and exciting new

pathways operative in tolerance and autoimmunity.
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Key Points

• A number of heritable Mendelian disorders of autoimmunity and immune

dysregulation involve genes that control various T regulatory (TR) cell

functions, including FOXP3, IL2RA, STAT5B, and ITCH.

• A life-long risk of autoimmune complications attends mutations affecting

FOXP3 and related pathways.

• Gain of function mutations in STAT1, normally associated with mucocutaneous

candidiasis, may manifest as an IPEX-like phenotype.
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