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Short Report: A Common Caatinga Cactus, Pilosocereus gounellei, is an Important Ecotope

of Wild Triatoma brasiliensis Populations in the Jaguaribe Valley of Northeastern Brazil
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Abstract. Triatoma brasiliensis is the most important vector of Chagas disease in the Caatinga eco-region of north-
eastern Brazil. Wild T. brasiliensis populations have been reported only from rocky outcrops. However, this species
frequently infests/re-infests houses in rock-free sedimentary lowlands. We therefore hypothesized that it should also
occupy other natural ecotopes. We show that a common Caatinga cactus, Pilosocereus gounellei, locally known as
xiquexique, often harbors T. brasiliensis breeding colonies apparently associated with rodents (n = 44 cacti, infestation
rate = 47.7%, 157 bugs captured). Our findings suggest that infested cacti might be involved in house re-infestation by
T. brasiliensis in the Caatinga region.

Triatoma brasiliensisNeiva, 1911, and particularlyT. brasiliensis
s.s., is the main vector of human Chagas disease in the semi-
arid Caatinga eco-region of northeastern Brazil.1–5 One crucial
feature of T. brasiliensis s.s. is its ability to recurrently infest/
re-infest insecticide-treated houses and peridomestic struc-
tures, hindering long-term control of Chagas disease transmis-
sion across its wide geographic range.4,6–8 To date, the only
known ecotopes of wild T. brasiliensis populations are rocky
outcrops, a typical landscape trait in some areas within the
Caatinga.2,9–12 However, re-infestation of artificial structures is
also commonplace in sedimentary lowlands where no such
rocky outcrops exist; in addition, T. brasiliensis often occurs in
wood piles near houses,13–15 particularly when these are also
occupied by rodents (Valença-Barbosa C, unpublished data).
These observations led us to hypothesize that T. brasiliensis s.s.
should be able to exploit alternative (i.e., non-rocky) ecotopes
in the wild, possibly in association with rodents.
To test this hypothesis, we conducted a survey of candidate

natural ecotopes, concentrating on shrubby cacti (Pilosocereus
gounellei, locally known as xiquexique or cardeiro; Figure 1),
with traces of occupation by rodents (probably Galea sp.,
locally known as preá) and on large, hollow hardwood trees
typical of the Caatinga (Table 1). Copernicia prunifera palms
are also abundant in the Caatinga and often harbor Rhodnius
nasutus colonies, but have never been found infested by T.
brasiliensis in the study region (data from our group, n = 1,766
palms) and were therefore not sampled.
The survey encompassed eight different lowland sites of the

Jaguaribe Valley (state of Ceará, northeastern Brazil) in
which dwelling infestation/re-infestation by T. brasiliensis is
commonplace but where no rocky outcrops exist. The study
area (approximately 15 + 4 km) lies approximately between
4°52¢S, 37°51¢W and 4°55¢S, 37°56¢W, and is about 20–
50 meters above sea level. Twenty-eight hardwood trees and
44 xiquexique cacti were sampled by means of live-baited
(with chicks as bait) sticky traps.16,17 Traps (1–12, depending
on ecotope size) were set inside tree trunk holes or among the
ground-level branches of the cacti, and were operated for
approximately 12–14 hours, from late afternoon to the follow-

ing morning. The total trapping effort was 273 trap-nights; in
three cacti, manual collections were also attempted after trap
removal. Of these collection efforts, 47 trap-nights (17.2%)
and all three manual captures were successful, i.e., at least
one bug was caught. In one cactus, six traps were negative
but three bugs were caught manually.
Triatoma brasiliensis s.s. specimens were captured in 21 of

the 44 cacti investigated (infestation rate = 47.7%); detailed
results are shown in Table 1. Regarding hardwood trees,
triatomines were found in just one Licania rigida (3.6% of all
trees sampled): two T. pseudomaculata, but no T. brasiliensis,
were collected (Table 1). The large difference in infestation
rates between P. gounellei and trees (P < 0.0001, by Fisher’s
two-tailed exact test) suggests that T. brasiliensis strongly pre-
fers terrestrial, shrubby cacti to arboreal ecotopes in our study
sites. Using a simple logistic regression model, we found that
the approximate amount of rodent feces present in each
ecotope, measured as a score with values from 0 to 5, signifi-
cantly increased the likelihood of infestation: the odds ratio
for each unit increase in this rodent feces score was 5.05 (95%
confidence interval = 2.50–12.90; data on rodent feces were
missing for 12 hardwood trees; thus, for this analysis, n =
60 ecotopes).
When analyzing P. gounellei data separately from tree data,

we found that infestation by T. brasiliensis was extremely
frequent in cacti located in relatively well-preserved sites
(20 infested/22 sampled, 90.9%), albeit, it was also detected
in cacti growing in heavily disturbed landscapes (1 infested of
22 sampled, 4.6%; P < 0.0001, by Fisher’s two-tailed exact
test). Infested cacti were found at distances ranging from 50–
100 meters to 1–2 km from the nearest dwelling. Immature
T. brasiliensis specimens were collected in 20 of the 21 infested
P. gounellei (colonization rate = 95.2%).
We also explored the possibility that cactus architecture

may affect infestation odds.18 For this analysis, we classified
cacti into three coarse categories: open (cactus base and lower
branches leaving bare ground visible), closed (cactus base and
lower branches covering most of the ground immediately
below), and intermediate. Although we believed that closed
cacti might offer better micro-environmental conditions for
the bugs19,20 and their vertebrate hosts, our limited data pro-
vided little evidence of any such effect: infestation rates were
33.3% (5 of 15) for open, 53.3% (8 of 15) for intermediate,
and 57.1% (8 of 14) for closed cacti (likelihood-ratio test: c2 =
1.96, degrees of freedom = 2, P = 0.38).
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The maximum number of T. brasiliensis specimens captured
in an individual P. gounellei cactus was 74 (total = 157); on
average, 3.6 bugs were caught per sampled cactus and 7.5 bugs
per infested cactus (Table 1). We used a simple Poisson abun-
dance model to estimate bug density/abundance based on the
number of bugs caught in each trap (or manual capture) in
each cactus (i.e., based on repeated counts).21,22 This
model estimated mean bug density at approximately 4.3
(SE = 0.78) for an overall total abundance of about 187.9
T. brasiliensis in the 44 cacti we sampled, with an upper limit

of the 95% confidence interval of 255.2. Previous surveys 12–15

have detected Trypanosoma cruzi infection in 17.4% (95%
exact confidence interval 16.1–18.8%) of 2,982 T. brasiliensis
specimens collected in the study region. Based on model esti-
mates of bug-detection sensitivity (which, for the methods we
used was low: mean = 0.15, SE = 0.02), on catch effort, and on
the observed patterns of bug presence, our analyses suggest
that most of the P. gounellei we sampled might have been
infested: model-estimated infestation probability was 98.6%
(95% confidence interval = 96.5–100%).

Figure 1. A, Pilosocereus gounellei (xiquexique) cacti, a common natural ecotope of both rodents and Triatoma brasiliensis in the Caatinga,
northeastern Brazil. B, Rodent feces under a xiquexique cactus. C, Live-bait traps with rodent feces and T. brasiliensis.D, A researcher observes a
timber pile occupied by T. brasiliensis andGalea sp. located near xiquexique cacti in a preserved lowland site of the Jaguaribe valley, Ceará, Brazil.

Table 1

Triatomine infestation in 72 natural ecotopes sampled in eight Caatinga lowland sites of the Jaguaribe Valley, Ceará, Brazil, 2012.

Ecotope Local name No, sampled No. infested (%)

No. bugs collected*

TotalNI NII NIII NIV NV Male Female

Cacti
Pilosocereus gounellei Xiquexique 44 21 (47.73) 34 41 45 17 9 7 4 157

Hardwood trees
Licania rigida Oiticica 18 1 (5.56) 1 0 0 0 0 1 0 2†
Auxemma oncocalyx Pau branco 6 0 (0) 0 0 0 0 0 0 0 0
Aspidosperma pyrifolium Pereiro 2 0 (0) 0 0 0 0 0 0 0 0
Erythrina velutina Mulungu 1 0 (0) 0 0 0 0 0 0 0 0
Ziziphus joazeiro Juazeiro 1 0 (0) 0 0 0 0 0 0 0 0

Total trees 28 1 (3.57) 1 0 0 0 0 1 0 2
Total 72 22 (30.56) 35 41 45 17 9 8 4 159

*NI–NV are the five immature stages (nymph I–V) of the Triatominae.
†All specimens were identified as Triatoma brasiliensis s.s. except for these two T. pseudomaculata bugs collected in one Licania rigida tree.
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Albeit still preliminary, our novel findings suggest that
P. gounellei is an important ecotope of wild T. brasiliensis s.s.
populations in the Caatinga, and that bugs from cacti might be
involved in house infestation/re-infestation in lowland areas
where no rocky outcrops occur. Based on the data we have
presented and on our field observations, we hypothesize that
the mechanism linking T. brasiliensis populations found in
cacti and in dwellings could be as follows. In the rural
Caatinga, many persons make use of timber gathered from
preserved habitat patches, where P. gounellei are common
and, as we have shown, are often infested by T. brasiliensis.
However, timber is not immediately transported to houses.
Instead, it is usually piled up in an open area at the site of
collection (Figure 1) and remains there for weeks or months
until the gatherer has resources to take the timber home.
While they remain in the wild, these wood piles often become
colonized by rodents such as Galea sp. and by T. brasiliensis
(Figure 1); we hypothesize that the bugs are passively
transported to dwellings with timber from those piles. The
common observation that rodents and T. brasiliensis also
co-occur in timber/wood piles in peridomestic environments
suggests that bugs and rodents are well adapted to this key
ecotope.15 Our hypothesis might also help explain why the risk
of infestation with T. brasiliensis was shown to be higher in
dwellings whose owners have more frequent contact with pre-
served Caatinga environments (odds ratio = 2.43, 95% confi-
dence interval = 1.18–5.04; n = 131 dwellings).23 Active
dispersal of adult T. brasiliensis from either cacti or rocky out-
crops can also directly contribute to dwelling infestation and
re-infestation in some areas.12,13,24

In conclusion, the observations we report open the way to
solving one long-standing question about T. brasiliensis s.s.
ecology, namely, the origin of re-infesting vectors in areas
without rocky outcrops. Future work will aim at confirming
our present data with further sampling, at studying vector-
host-parasite interactions, and at assessing the genetic relation-
ships of wild (from cacti, rocks, and timber piles), peridomestic
and domestic populations of T. brasiliensis by using high-
resolution molecular markers.25,26 We expect that this com-
bination of sound ecological modeling21,27 and molecular
genetics28 will provide crucial insight on the process of dwell-
ing re-infestation by T. brasiliensis s.s. in northeastern Brazil.
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