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Systems biology approaches to develop innovative
strategies for lung cancer therapy

K Viktorsson1, R Lewensohn1 and B Zhivotovsky*,2,3

Lung cancer (LC) is a number one killer of cancer-related death among men and women worldwide. Major advances have been
made in the diagnosis, staging and use of surgery for LC, but systemic chemotherapy and radiotherapy alone or in combination
with some targeted agents remains the core treatment of advanced LC. Unfortunately, in spite of improved diagnosis, surgical
methods and new treatments, mortality is still extremely high among LC patients. To understand the precise functioning of
signaling pathways associated with resistance to current treatments in LC, as well as to identify novel treatment regimens, a
holistic approach to analyze signaling networks should be applied. Here, we describe systems biology-based approaches to
generate biomarkers and novel therapeutic targets in LC, as well as how this may contribute to personalized treatment for this
malignancy.
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Facts

� Lung cancer is divided into small and non-small cell lung
carcinomas (SCLC and NSCLC, respectively).

� Combined radiotherapy and chemotherapy is the main
treatment regimen of lung cancer.

� Targeted therapies have revolutionized the treatment of
adenocarcinomas driven by mutated EGFR or EML4-ALK.

� Systems biology of lung cancer has potential to reveal
prognostic and treatment-predictive factors and novel
signaling pathways for innovative therapeutic approaches.

Open Questions

� To identify new targets of both NSCLC and SCLC to
increase their sensitivity to conventional treatment.

� To further understand targeted therapy resistance
mechanisms and how to circumvent this.

� To sub-classify different lung cancer histologies, reveal
their Achilles heels and in a systems biology manner
identify novel therapeutic pathways.

Lung cancer (LC) has, for decades, remained the most
common cause of cancer-related death. In total, 85% of all
diagnosed LC are non-small cell lung cancer (NSCLC); the
remaining 15% belong to small cell lung carcinomas (SCLC).
NSCLC is divided into three subtypes: squamous cell
carcinoma (about 40%), adenocarcinoma (about 30%), and
large cell lung carcinoma (about 15%). The histological
distinction between SCLC and NSCLC, as well as different
histology subtypes of NSCL, is related to their diverse
biological behavior, which has impact on prognosis and
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treatment responses.1–3 Major advances have been made in
diagnosis, staging and use of surgery for LC and targeted
therapies and have revolutionized the treatment for a subset
of NSCLC cases (adenocarcinomas driven by mutated EGFR
or echinoderm microtubule-associated protein like 4 (EML4)-
Alk fusion proteins, respectively). However, systemic
chemotherapy and radiotherapy (CT and RT, respectively)
remain important treatment regimens. It is still hard to predict
which patients will benefit from CT/RT; as the mechanism(s)
of resistance remain elusive and the development of
resistance towards the few existing targeted agents is
multifactorial. However, the identification of biomarkers would
enable a personalized cancer therapy approach to be taken in
which the individual signaling cascades of each tumor would
dictate the choice of therapeutic strategy.

One of the main mechanisms of RT/CT is the induction of
cell death, and therefore differences in treatment sensitivity
may depend on the susceptibility of LC cells to undergo cell
death.4 Although we and others have identified certain
molecular factors that may explain this difference, the
complete image remains unclear. Thus, further research is
required to define the abnormal regulation of gene and/or
protein expression that may influence tumor therapy-induced
cell death. To understand the precise functioning of signaling
pathways associated with resistance to treatments, a holistic
analyzing approach on signaling networks should be applied.

Systems biology analysis aims to understand the properties
of a given system, which, in relation to cancer, could be tumor
cell lines, xenografts, genetically engineered mice or primary
cells from patients pre- or post-treatment. It includes analysis
of the relationships among various components of the system
and integrating experiments in sequential repetitive cycles
with mathematical modeling, simulation and theory.5 Model-
ing is not the final goal but is a tool to increase understanding
of the system, develop proof-of-concept experiments and
enable predictions that can be experimentally validated.

The key steps in systems biology involves: (I) holistic
measurement and quantification of alterations at the DNA,
RNA, miRNA, protein or signaling level; (II) integration of the
information obtained from measurements to obtain a global
image of the system in question; (III) assessment of its
dynamic changes, which in relation to tumors means
its progression towards a more malignant phenotype, as well
as its responses to CT, RT and targeted agent therapies; and
(IV) modeling the system using the integrated data. Here, we
focus on what a systems biology approach has generated for
biomarkers and novel therapeutic targets in LC.

Methods to Support Systems Biology Analysis

Several systems biology methods are currently used to reveal
biomarkers and novel targets, as well as to pinpoint novel
agents with antitumor and/or CT/RT capacity of LC tumors.
These include: (I) DNA mutation and DNA copy number
rearrangements; (II) gene, mRNA and miRNA expression;
(III) proteomic profiling of total and post-translationally
modified proteins; (IV) siRNA and chemical library screening;
and (V) modeling and validation experiments using targeted
strategies both in vitro and in vivo (Figure 1).

The different techniques applicable for DNA sequencing,
their limit of detection and shortcomings have recently
been described.6 DNA microarrays are used to measure
changes in gene expression levels, detect single-nucleotide
polymorphisms (SNPs) and genotype or re-sequence mutant
genomes. SNP detection can be used to measure predis-
position to disease, identify drug candidates, evaluate germ-
line mutations in individuals or somatic mutations within a
tumor, assess loss of heterozygosity and perform genetic
linkage analysis. Microarrays are also becoming widely used
for profiling miRNAs, a class of regulatory RNAs that control
mRNA translation and thereby regulate various biological
processes.7
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Figure 1 Methods applied in systems biology of lung cancer. LC cell lines, animal models or patient-derived samples may be subjected to analysis of DNA, RNA or protein
using the described methods followed by data integration, pathway analysis and modeling. For details, see text

Systems biology of lung cancer therapy
K Viktorsson et al

2

Cell Death and Disease



Systems biological analysis of protein expression and/or post-
translational modifications (PTMs) in patient-derived tumor and
normal tissue or body fluids (blood, serum, plasma and pleural
effusions) offers great potential but is still associated with many
hurdles. Two different proteomic approaches can be under-
taken: global proteomic methods, in which protein expression,
PTM, or their corresponding peptides are investigated using
mass spectrometry (MS)-based analysis, or antibody-based
analysis methods. The latter involved the ‘pathway walking’, in
which a signaling cascade is mapped in body fluids using
enzyme-linked immunosorbent assay, multiplex bead array
assay or reverse-phase protein array of tumor samples or tissue
microarray for immunohistochemical staining and the assess-
ment of protein expression in tumors versus normal tissues.8,9

For global proteomics, two main analysis principles may be
used, that is, a top–down approach, in which total proteins are
investigated, or the bottom–up approach, in which proteins
are enzymatically digested into peptides and used in the
subsequent MS analysis.10

PTMs of proteins (phosphorylation, glycosylation, methyla-
tion, acetylation and sulfatation) alter protein function and
thereby signaling capacity. Proteomic methods have been
developed that allow a global image of PTMs in a particular
system or during a specific treatment with phosphoproteomic
profiling being one of them.11 RNA interference (RNAi) is a
cellular process that controls gene expression at the post-
translational level but can also be carried out using a global RNAi
approach (by either a library of siRNA or a collection of vector-
based shRNAs carried by plasmid or viruses). Global RNAi
allows for the analysis of a particular biological event in a holistic
manner but can also be used for validating ‘omics’ data. RNAi
has one disadvantage that primarily consists of off-target effects
caused by unspecific gene silencing of the RNAi applied.
Moreover, not all identified targets have clinical applicability,
which is a shortcoming shared with targets identified by genomic
or proteomic approaches. Thus, RNAi-identified targets need
further animal and/or clinical validation to ascertain their clinical
value as a therapeutic target or biomarkers of response.

Chemical library screening using small molecules is yet
another technique if combined with other appropriate ‘omics’
approaches can govern a systems biology approach in
understanding tumor biology and drug applicability.

To be able to convert genetic or proteomic networks into an
analytical tool, the data obtained should be translated into a
mathematical language to describe the possible dynamic
behaviors in specific conditions.12–14 The general strategy of
building models of cell fate includes constructing a generic
graph that describes the different processes under normal
conditions. The resulting network recapitulates the current
knowledge and should be verified by crossing it with genetic
results, which might be obtained by using various mutants
and/or drug treatments.12–14 Altogether, these results lead to
the formulation of predictions on network topology, mutant
phenotypes and alterations in pathways.

Systems Biology Approach to Identify Genetic
Abnormalities in Lung Cancer

Systems biology analyses of both NSCLC and SCLC have
recently been applied to reveal prognostic and treatment

predictive factors as well as to explore and decipher novel
signaling pathways that might be used to develop innovative
therapeutic approaches (Figure 1). The methods described
above have all been applied in different cell systems in vitro, in
animal models and in LC patient samples (tumor tissue and
plasma/serum/pleural effusions). Prognosis assessment has
become a major concern in the area of personalized medicine,
and gene expression studies in various LC cohorts have
overwhelmed the scientific community. Some of the gener-
ated profiles have indeed shown the ability to predict the
prognosis of LC patients in an accurate way.15,16

The two most commonly exploited genetic aberrations of
NSCLC adenocarcinoma are the epidermal growth factor
receptor (EGFR) mutations and anaplastic lymphoma kinase
(ALK) gene rearrangements17 (Figure 2). EGFR mutations
account for about 5–10% of all mutations found in adeno-
carcinomas, with a deletion in exon 19 and a point mutation in
exon 21 being the two most common; these render the
patients’ tumors hypersensitive to EGFR tyrosine kinase
inhibitors (TKIs) such as gefitinib (Iressa1, AstraZeneca,
Wilmington, DE, USA) and erlotinib (Tarceva1, F. Hoffmann-
La Roche, Basel, Switzerland), the two currently approved
drugs against locally advanced or metastatic NSCLC.17 ALK
rearrangements are found in about 5–7% of adenocarcinomas
in which a fusion between the EML4 gene and ALK render a
constitutively active kinase18 (Figure 2). An ALK-driven tumor
is currently treated with TKI crizotinib (Xalkori1; Pfizer,
Groton, CT, USA) causing G1-S phase arrest and/or apoptotic
signaling resulting in reduced tumor growth.19 It is clear that
we just are at the beginning of the targeted therapy era for LC,
where inhibitors towards other driving genetic alterations,
such as ROS1 and RET translocations, MET amplification or
HER2, BRAF, PIK3CA and CTNNB1 mutations, are in trials or
in development and in which KRAS-driven tumors can be
treated with synthetic lethality approaches using a mix of
MEK, PI3KCA and AKT1 inhibitors20 (Figure 2). To identify
further combinations of targeted approaches and understand
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Figure 2 Genetical alterations in adenocarcinoma and squamous cell
carcinoma of the lung. LC is primarily divided into SCLC and NSCLC, respectively.
NSCLC is further subdivided into adenocarcinoma, squamous cell carcinoma and
large cell lung carcinoma. Based on published data from references,2,21,27,91 some
of the genetical alterations (mutations, deletions or amplifications) described in
adenocarcinoma and squamous cell carcinoma are shown
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the mechanisms of resistance, a systems biology approach
has already proven to be of value.

A major focus in NSCLC research is on the role of EGFR as
a driver of LC signaling and how different EGFR mutations
and other signaling aberrations render LC tumors sensitive to
EGFR inhibitors.17 In other NSCLC cases which are not driven
by EGFR mutations, both EGFR- and IGF1R-mediated
pathways have been demonstrated to have altered signaling,
as illustrated by the DNA sequencing studies of NSCLC
clinical specimens, where multiple kinase pathways were
found to be changed.2,17,21

It is almost inevitable for any LC patient to develop
resistance to TKIs in part caused by second mutation in the
EGFR receptor, for example, T790M mutation.22,23 Whereas
the T790M mutation is found in 50% of EGFR-TKI-resistant
NSCLC cases, another 20% are likely to be driven by MET
gene amplification.22,23 A systems biology approach to search
for putative EGFR-TKI resistance mechanisms by comparing
biopsies from NSCLC patients before and after the develop-
ment of EGFR-TKI resistance revealed that EGFR gene
amplification and PIK3CA mutations resulting in hyperactiva-
tion of the PI3K signaling pathway also may drive EGFR-TKI
resistance in vivo.22 Moreover, in pre-clinical LC models of
EGFR-TKI resistance, epithelial-to-mesenchymal (EMT)
transition was observed in clones that did not show MET
amplification, a signaling aberration also associated with
EGFR-TKI resistance in vivo.22 EGFR TKI resistance was
also in about 14% of the cases shown to involve a conversion
from a lung adenocarcinoma into SCLC with a neuroendo-
crine marker expression and initial CT sensitivity.22 Thus, if
the selection pressure of EGFR-TKI was taken off, the T790M
and PIK3CA mutations as well as the SCLC phenotype
disappeared, and patients recovered their response to EGFR-
TKI treatment. Hence, these molecular dissection data
support the idea to not only personalize but also to ‘tumoralize’
patient treatment, that is, follow tumor evolution during the
course of treatment and adjust the therapy according to the
genomic and phenotypic make-up of the tumor. It was also
suggested that the inhibition of NF-kB signaling might help to
improve EGFR-TKI therapy outcome.24 Using RNAi, it was
demonstrated that inhibition of either Fas or several compo-
nents of the NF-kB pathway enhanced the apoptotic effect of
EGFR-TKI. Delineating whether such an approach might be
relevant to NSCLC in vivo during EGFR-TKI treatment, the
authors showed that increased expression of the NF-kB
inhibitor IkB was predictive for the improved EGFR-TKI
response and survival of NSCLC patients with a EGFR-
mutant tumor. These results again illustrate the usefulness of
a systems biology approach to reveal novel targeted therapy
combinations.

A link between apoptotic signaling and response to TKI in
EGFR-mutant-dependent lung adenocarcinomas has also
been shown in which low expression level of the Bcl-2 family
protein Bim in the primary tumor was linked to shorter
progression-free survival (PFS) in NSCLC patients treated
with EGFR-TKI.25 Moreover, a common intronic deletion
polymorphism in the Bim gene was discovered, resulting in a
different splicing pattern of Bim into an isoform that lacked the
pro-apoptotic Bcl-2-homology domain 3 (BH3).26 Expression
of this Bim isoform conferred TKI resistance in vitro and

patients with EGFR-driven NSCLC harboring the polymorph-
ism experienced significantly inferior responses to TKIs than
individuals without the polymorphism. Thus, for a subgroup of
EGFR-driven NSCLC, BH3 mimetics may be used to over-
come Bim-polymorphism-associated TKI resistance.

Global DNA Sequencing Approach to Identify Genetic
Alterations in LC Influencing Therapy Response

A systems biology approach by performing global DNA
sequencing efforts in large scientific consortia has been
carried out on different LC histologies to decipher the
underlying genetic aberrations, which may drive LC cell
survival and impact therapy response. In the first study, about
200 lung adenocarcinomas were analyzed for mutations in
almost 600 cancer-associated genes and 41000 different
somatic mutations were identified some of which were
associated with smoking status, clinical features and DNA
repair defects of the LC patients.2 In addition to EGFR,
multiple ephrin receptor genes (notably EPHA3), NTRK genes
and vascular endothelial growth factor receptor KDR were
identified to have high mutation frequencies as did several
tumor-suppressor genes, for example, APC, NF1, RB1 and
ataxia-telangiectasia mutated (ATM). With respect to squa-
mous cell lung cancer, the TCGA project examined treatment
of naive tumors from 178 patients with stage I–IV disease and
revealed a complex genotype with a mean of 360 exonic
mutations, 165 genomic rearrangements and 323 segments
of copy number alterations per tumor.21 Recently, SCLC was
also assessed on a global scale and a large number of cases
were screened for mutations.27 Strikingly, SCLC was found to
have a much higher mutation frequency than NSCLC as well
as other solid tumors examined, with approximately seven
mutations identified in every million base pairs of DNA. Among
them were mutations in p53, RB1 and in multiple genes
regulating histone modifications (CREBP, EP300 and MLL),
which may also offer a novel therapeutic approach for these
tumors. A systems biology approach with combined genomic
and pharmacological vulnerability screen of SCLC cell lines
in vitro was used with the aim of revealing novel targeted
therapeutic approaches.28 A chemical library screen of almost
300 compounds with different scaffolds and thereby different
targets were performed across the 44 SCLC cell lines. Results
showed that a clear vulnerability towards Aurora kinase
inhibitors existed in SCLC driven by Myc amplification and that
such inhibition resulted in inactivation of PI3K signaling, G2/M
arrest and induction of apoptosis. Although SCLC driven by
Myc only accounts for a fraction of cases, this study clearly
illustrates the capacity of a systems biology approach in the
identification of novel therapeutic avenues.

Combined Technologies in Molecular Profiling of LC

Advances in both global and targeted proteomic technologies
have opened up molecular profiling at the protein level, not
only to interrogate tumor genotypes and phenotypes but also
to tailor treatments that may improve clinical outcomes. By
applying a combined proteomic and genomic profiling
approach where gene and phosphoprotein ‘signatures’
associated with the invasive and metastatic propensities of
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LC were studied, a metastatic signature was revealed.29 By
using unsupervised hierarchical clustering of the RNA
expression data obtained from a transgenic model of Kras-
induced adenocarcinoma, which becomes invasive and
metastatic to lymph nodes and distal organs when combined
with a deletion of the pluripotent serine/threonine kinase Lkb1,
three distinct groups were identified: primary lung tumors with
activated KrasG12D, primary tumors with activated KrasG12D

and Lkb1 loss, and metastases from lung tumors with
activated-rasG12D and Lkb1 loss. A 750 gene signature was
found to be associated with Lkb1 loss or metastasis. The loss
of Lkb1 resulted in a significantly altered transcriptional profile
of the primary tumors, which were further altered when the
tumors became metastatic. The genetic changes included
alterations in multiple signaling pathways that previously have
been linked to metastasis, for example, focal adhesion kinase
(FAK), EMT, TGF-b and b-catenin, as well as in genes
associated with embryonic stem cell signaling (the transcrip-
tion factors TCF3 and OCT4). By integrating the gene profiles
data of metastasis or Lkb1 deletion tumors with publicly
available gene expression sets from two NSCLC patient
cohorts, a gene profile of associated metastasis within the
animal model was shown to match gene expression patterns
in NSCLC clinical specimens from patients with lower overall
survival. The metastasis-associated gene signature showed
significant overlap with profiles observed in clinical specimens
containing both Kras and Lkb1 alterations.30 Examination of
the tyrosine phosphoproteome of the Lkb1 deleted LC cells by
MS analysis showed a critical role for Src activation, as the
majority of differentially phosphorylated proteins upon Lkb1
deletion had this kinase as an upstream regulating kinase.31

A combined inhibition of PI3K–mTOR, MEK and Src family
kinases caused a synergistic in vivo response in LKb1-
defective LC tumors. By taking the metastatic-associated
gene expression signature generated by Ji et al.,30 in a
bioinformatics approach, we discovered a role for miRNA-214
in regulating metastasis of NSCLC and identified four genes
(pregnancy-associated plasma protein A, alpha-protein
kinase 2, cyclin-dependent kinase 6 and tumor necrosis-
factor alpha-induced protein 3) to be involved in this
process.32 Analyses of the corresponding proteins in a clinical
NSCLC samples revealed a high-to-moderate expression in
the tumor specimens. However, we failed to demonstrate an
association to metastasis, which may indicate that these
proteins are altered early during tumor development, before
metastasis. Still, this study illustrates the potential use of
systems biology data from the public domain to further
interrogate global ‘omics’ data.

In an attempt to make genetic profiles predictive for
response to TKIs, a global systems biology-based approach
was undertaken on NSCLC cell lines, which represented
different histologies and whose genomic landscape (amplifi-
cations/deletions, mutations and gene expression patterns)
matched clinical LC specimens.33 Apart from confirming a role
for mutated EGFR as the strongest predictor for erlotinib
treatment response and Kras mutation to corroborate erlotinib
responsiveness, a number of new treatment strategies were
generated and validated. Using hierarchical clustering of
genomic data from sensitive and resistant NSCLC cell lines, a
response signature was generated, as exemplified by the

MEK inhibitor U0126, which was linked to chromosomal gains
of ART and RAB13. By applying the same data analysis on a
broader kinase inhibitor, dasatinib, the authors showed that
copy number gain of ephrin receptor kinases (EPHA3, EPHA5
and EPHA8), Src kinases (Src, FRK, YES, LCK and BLK) and
ABL2 loci all predicted dasatinib treatment response, some of
which were also validated in vitro and in vivo. Interestingly, Src
and EPHA3 has both been shown to be deregulated in about
10% of NSCLC cases, suggesting that a therapeutic approach
involving dasatinib might have a clinical impact. Corroborating
a role of Eph kinase signaling in NSCLC, EphA2 deregulation
was found in a sub-fraction of NSCLC.34 Expression of EphA2
was positively correlated with activated but not mutated EGFR
and had increased level in clinical specimens from patients
harboring Kras mutations. In vitro analyses of NSCLC cells
revealed that EphA2 regulated both proliferation and invasion,
and in clinical specimens, high tumor expression of EphA2
was found to be an independent prognostic factor for time to
recurrence and also for time to metastasis.34 In searching for
putative resistance pathways for RT, we, by genomic profiling,
identified Ephrin B3 to impede RT-induced cell death and to
alter cell cycle regulation.35 A pronounced effect on NSCLC
cell proliferation was observed when Ephrin B3 siRNA was
applied, which encouraged our search for the signaling
pathways involved.36 Using phosphoproteomic analysis
(TiO2-based fractionation followed by nano-LC MS) 150
proteins showed Ephrin B3-dependent phosphorylation,
including EphA2, Akt, HSP90AA1 and CK2. This shows that
the Ephrin/Eph signaling axis is involved in NSCLC prolifera-
tion and therapy response and also illustrates the power of
global proteomic approaches for identifying critical pathways.

Although EGFR ablation therapy and targeted approaches
against other oncogenic pathways have or will generate novel
therapies with great potential, a large fraction of LC patients
with disseminated disease will still rely on conventional
CT/RT. With the aim of revealing candidate signaling net-
works that may predict outcome to certain CT/RT regimens,
gene and miRNA expression profiling, DNA sequencing of LC
genomes and different proteomic approaches have all been
applied, hence allowing a tailored approach with old CT drugs
to patients who will benefit the most.15,16 Along the same line,
the necessity of predicting the relapse status as well as
metastatic propensity of LC patients was stated, thereby
directing CT for those with a high risk of relapse in which a
personalized approach of CT application should be taken.15,16

In two studies, gene expression analyses was made on NCI
60 tumor cell lines and/or their corresponding xenografts in
mice in relation to responsiveness of about 100 000 different
compounds, including natural compounds from different
sources, targeted agents and all currently applied CTs.37,38

These studies generated large gene expression data sets that
can be used in data mining and has enabled target prediction
of compounds with an unknown mechanism of action.

Prognostic and Treatment Predictive Gene Signatures

Analysis of treatment response of primary human tumor-
derived xenografts (from either NSCLC or SCLC patient
samples) has become a way of understanding tumor
alterations during treatment, especially in tumors where
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biopsy is an obstacle.39–41 These patient-derived xenografts
are good complements to the genetically modified mouse
models of NSCLC and SCLC, which have been developed
and applied by Jacks’ group,42,43 Bern’s group44,45 and
Barbacid’s group,46,47 and together these tumor mice model
approaches have significantly contributed to our understand-
ing of LC tumorigenesis and will also continue to reveal novel
therapeutic strategies. Both prognostic and treatment-predic-
tive gene signatures have been generated when mRNA isolated
from early stage resected NSCLC were analyzed in relation to
outcome or cisplatin/vinorelbine adjuvant therapy response.48

Thus a prognostic algorithm was identified by analyzing
genomic profiles from about 330 stage I–III adenocarcinomas.
The signature was independently validated on a series of
genomic profiles from NSCLC patients enrolled in a rando-
mized controlled trial of cisplatin/vinorelbine versus observa-
tion alone. The functional sorting of the genes within the
prognostic signature was carried out using the Database for
Annotation, Visualization and Integrated Discovery (DAVID).
This analysis showed that genes involved in the control of
cellular organization, metabolic processes, cell cycle and
apoptosis were over-represented, as were genes linked to
MAPK signaling. Using various bioinformatic tools and
statistics, a 37-gene signature predictive of adjuvant CT
response to cisplatin/vinorelbine was generated, and it was
found that NSCLC patients with this gene expression profile
had a 25% improvement in the 5-year-survival, compared with
observation alone, whereas non-expressing NSCLC patients
had no benefit of treatment. The genes included among other

kinases/phosphatases, enzymes involved in metabolism and
different transcription factors (Figure 3). This work is promis-
ing, although it waits to be seen if it has predictive capacity in
other NSCLC materials and further refinements are required
in order to implement it into clinical practice.

It was recently proposed that several DNA-repair-asso-
ciated proteins, such as ERCC1, BRCA1, RAP80, RRM1,
PARP1, MSH2 or DNA-PK, could be used to customize
NSCLC therapy and substantially improve patient outcomes49

(Figure 3). One of them is RRM1, an enzyme which have a
role in both DNA synthesis/repair and in gemcitabine
metabolism. In order to assess whether RRM1 mRNA
expression could be a biomarker of gemcitabine-combined
treatment regimes, expression levels were analyzed in
relation to cisplatin/gemcitabine response in NSCLC patients.
It was demonstrated that those patients whose tumors had
low RRM1 mRNA expression levels had significantly longer
median survival than those with high level, implicating a
biomarker role.50 In the same study, a strong correlation
between RRM1 and ERCC1 mRNA expression levels were
found suggesting that combined RRM1 and ERCC1 levels
might be used as biomarkers for cisplatin/gemcitabine
treatment response.

Differences in ERCC1 expression were examined in a
meta-analysis study in relation to objective response and
median survival of NSCLC patients with advanced disease
and undergoing platinum-based CT.51 The obtained data
showed that the response to platinum-based CT was
significantly higher in patients with ERCC1 low/negative

Figure 3 Chemotherapy predictive markers of NSCLCs. Chemotherapy predictive markers are divided into single markers (left) and gene expression signatures (right).
Platinum or gemcitabine markers (black) are shown based on data from references.49–51,54 The gene expression signature shown is adopted from Van Laar48

Systems biology of lung cancer therapy
K Viktorsson et al

6

Cell Death and Disease



expression. However, the ERCC1 predictive value for
cisplatin treatment outcome in NSCLC is still not fully resolved
as IHC with different antibodies against ERCC1 as well as
mRNA analysis generated inconsistent results.49,52

Working further in understanding the impact of ERCC1 on
NSCLC signaling, Soria and his research team carried out
global molecular analysis of genomic instability, global gene
and miRNA expression as well as sequencing of certain key
genes involved in lung carcinogenesis in ERCC1-positive and
-negative tumors.53 ERCC1-negative tumors showed a higher
rate of genomic abnormalities compared with ERCC1-positive
tumors. Gene expression profiling of the same samples
revealed the overexpression of genes linked to DNA-damage
response, whereas miRNA expression analysis of the same
tumor cohorts identified the downregulation of miR-375 in
ERCC1-positive tumors, suggesting that ERCC1 status is not
linked to a specific mutation pattern.

In vitro studies have shown that BRCA1-deficient tumor
cells, in contrast to the BRCA1-proficient ones, are very
sensitive to cisplatin. A prospective non-randomized phase II
clinical trial was performed where therapy was customized
according to the EGFR mutation status of the tumors in which
mutant-carrying patients received erlotinib, whereas patients
whose tumors expressed wtEGFR were allocated to cisplatin
plus gemcitabine.54 Results showed that choosing CT based
on BRCA1 expression levels improved survival for at least a
subset of NSCLC patients. Moreover, low BRCA1 mRNA
expression alleviated the inhibitory effect of the T790M
mutation on EGFR-TKI erlotinib response,54 suggesting
further analysis of T790M mutation baseline assessment
and BRCA1 expression to predict outcome and alternative
treatment approaches including customized CT. Cisplatin
resistance of NSCLC has in some but not in all cases been
found to be associated with hyperactivation of PARP.55

Importantly, for cisplatin-resistant cases governed by hyper-
activation of PARP ablation of its activity resulted in a restored
cisplatin-induced DNA damage response and apoptosis. The
effect of two different PARP inhibitors on DNA repair
functionality was also analyzed in a panel of cisplatin-treated
NSCLC cell lines.56 Pharmacological inhibition of PARP
induced a 1.7- to 2.3-fold increase in platinum adduct
accumulation, indicating impaired platinum DNA-adduct
repair capacity. Examination of PARP1 expression in whole
tumor sections from the International Adjuvant Lung cancer
Trial (IALT)-bio study showed that whereas PARP1 expres-
sion level did not predict patient survival or the effect of
platinum-based postoperative CT, a combination of high
expression of PARP1/MSH2/ERCC1 did. Hence, all of these
studies call for PARP inhibitors in NSCLC to revert platinum
resistance and suggest broader systems biology approach to
understand DNA repair alterations in LC. Of note, trials of
NSCLC in which combination of PARP inhibitors
(NCT01082549 and NCT01086254) and standard CT are
currently ongoing.49

Systemic Profiling of miRNAs in LC

Analysis of miRNA may generate both prognostic- and
treatment-associated signatures and reveal putative signaling
networks with CT/RT-sensitizing potential. Thus, by

regulating gene expression at the post-transcriptional level,
miRNAs profoundly impact on oncogenic pathways in NSCLC
and SCLC.57 The first miRNA to be linked to LC prognosis was
let-7, which target oncogenic Ras, and it was reported that let-7
had a reduced expression in LC tumor material and was
associated with shorter survival after surgical resection.58

Following these findings, the global analysis of miRNA
expression in various LC cell lines and in clinical specimen
of NSCLC with different histology identified a number of
miRNA to be associated with certain subclasses and linked to
prognosis and early disease recurrence.59,60 Analysis of
miRNA in squamous lung carcinomas identified 15 miRNAs to
be differentially expressed between normal lung and tumor
tissue, including members of the miR-17-92 cluster, miR-155
and let-7, which previously have been linked to prognosis in
adenocarcinoma, and miR-146b, which had the strongest
prediction accuracy for stratifying prognostic groups.61 This
signature of miRNAs was found to be superior to a previously
described 50-gene prognostic signature of squamous lung
carcinoma. Although the authors did not find an overlap
between the mRNAs targeted by the prognostic miRNAs and
the 50-gene expression signature, they observed a substan-
tial overlap among the pathways involved, which included
fibroblast growth factor (FGF) and interleukin-6 signaling.
Analysis of 165 adenocarcinoma and 125 squamous cell
carcinoma tissue samples from the Environment and Genet-
ics in Lung Cancer Etiology study was performed in order to
determine whether miRNA expression profiles could differ-
entiate histological subtypes and predict survival for
NSCLCs.62 This study clearly distinguished adenocarcinoma
from squamous cell carcinoma, and the latter was character-
ized by downregulation of most miRNAs, including all
members of the let-7 family. A miRNA signature predicting
the post-operative recurrence of stage I NSCLC has also been
described.63 These results showed that miRNA profiles from
different patient cohorts were almost non-overlapping, simi-
larly to when gene expression profiling was compared straight
off between different studies. It could be explained by the
different experimental platforms used (qRT-PCR versus
different miRNA array systems), the batch effects that are
inherent in the microarray experiment itself or the potential
ethnic differences in the study populations.

Recently, miRNA expression profiles of lung tumors,
normal lung tissues and plasma samples from cases with
variable prognosis identified in a completed spiral-CT screen-
ing were examined.64 The authors identified an association
between different miRNA expression with (i) tumors from
normal lung tissues, (ii) tumor histology and growth rate, (iii)
clinical outcome, and (iv) year of LC CT. By repetitive plasma
sampling, miRNA signatures with strong predictive, diagnostic
and prognostic potential were identified. Further profiling of
circulating miRNAs demonstrated that approximately 400
miRNAs could be detected in human serum, and out of these,
a group of six miRNAs (miR-30c-1* miR-616*, miR-146b-3p,
miR-566, miR-550 and miR-939) had significantly higher
expression in serum from NSCLC adenocarcinoma patients
than in serum from healthy controls.65

MiRNA profiling showed that the miRNA-200 family was
involved in the regulation of EMT and metastasis in tumor cell
lines derived from mice that develop metastatic lung
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adenocarcinoma.66 In clinical material, this miRNA was also
found to be overexpressed, suggesting its function as an
oncogenic miRNA (oncomir) in LC. An increased expression
of miR-31 in lung adenocarcinoma tissues from patients with
lymph node metastases compared with those without such
metastases was recently demonstrated.67 MiR-31 was
validated as a marker for lymph node metastasis in an
external validation cohort of 233 lung adenocarcinoma cases
of the TCGA and was demonstrated to be a significant
predictor of survival in a multivariate cox regression model,
even when controlling for tumor stage. As mentioned above,
miRNA-214 is expressed in at least a subfraction of NSCLC
and negatively regulates invasion potential.32 Whether
miRNA-214 expression holds the potential to predict meta-
stasis in vivo in clinical NSCLC specimens waits to be
determined.

In searching for miRNAs whose aberrant expression may
influence LC therapy response, a number of important
findings has been revealed. Mir-7 was found to negatively
regulate the EGFR pathway, and miR-21 was found to be
upregulated when EGFR signaling was activated, especially,
in tumors with EGFR-activating mutations,68 and may hence
influence EGFR ablative therapy outcome. Similarly, in a
global profiling of miRNAs in a cohort of stage 1 NSCLC and
adjacent uninvolved lung tissues, miR-486 was found to be
the most downregulated miRNA in tumor specimens.69 In
functional studies, miR-486 was found to directly target
components of insulin growth factor (IGF) signaling, including
insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R),
and phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
(PIK3R1 or p85a), and in this way suppress LC growth both
in vitro and in vivo.

MiRNA expression has also been analyzed in relation to LC
CT/RT response with the aim of identifying biomarkers of
response or novel therapeutic approaches. Among a number
of miRNAs expressed in a panel of NSCLC and SCLC cell
lines with different RT sensitivity, miRNA-214 was character-
ized by an increased expression in RT-resistant NSCLC
cells.70 MiRNA-214 expression impaired RT-induced apopto-
tic signaling and involved p38MAPK, as downregulation of this
kinase reversed miRNA-214 overexpression-induced RT
resistance. Comparative analysis of miRNA-21 in 60 NSCLC
samples and adjacent histologically normal tissues using RT-
qPCR revealed a correlation between its expression and
lymph node metastasis, clinical stage and poor prognosis.71

Ablation of miRNA-21 inhibited proliferation and cell cycle
progression of A549 cells and sensitized for RT by increasing
RT-induced apoptotic signaling.

The Kroemer’s research team analyzed miRNAs that were
upregulated in A549 cells in response to cisplatin.72 Among
them were miR-181a and miR-630, which regulated cisplatin-
induced cell death via the involvement of multiple cisplatin-
induced DNA damage response proteins, including ATM
kinase and two of its substrates, H2AX and p53, as well as
modulation of mitochondrial/post-mitochondrial steps of the
intrinsic apoptosis pathway. In another study, it was shown
that silencing of miR-155, a miRNA which is overexpressed in
LC, resulted in the overexpression of Apaf-1 and greatly
increased the sensitivity of A549 cells to cisplatin-induced
DNA damage and apoptotic signaling.73 Moreover, it was

reported that miR-451 inhibits growth and induces apoptosis
in A549 cells, leading to increased cisplatin sensitivity with a
concomitant downregulation of Akt.74 Thus, miR-181a,
miR-630 and miR-155 were all identified as drivers of cisplatin
resistance of NSCLC, whereas miR-451 could reverse such
resistance, illustrating that multiple miRNAs likely govern the
cisplatin responsiveness of NSCLC. Moreover, expression
of miR-21was significantly increased in platinum-based
CT-resistant patients and was associated with shorter
disease-free survival. Importantly, 70% of the 32 patients
analyzed had similar expression patterns of miR-21 in their
plasma as in their tumors, illustrating that miR-21may indeed
be a suitable plasma-associated biomarker for cisplatin
responsiveness. In a clinical study, a two miRNA signature
(miR-149 and miR-375) in NSCLC tumors was found to be
predictive for first-line cisplatin and vinorelbine CT response
and was associated with PFS.75 A signature of four miRNAs
(miR-200c, miR-424, miR-29c and miR-124) could delineate
patients with good and poor CT responses with an approxi-
mately three-fold difference in median survival time, suggest-
ing that miRNA may also be used in the clinical setting to
predict CT response.

The levels of miR-21, miR-29b, miR-34a/b/c, miR-155 and
let-7a were determined by PCR in NSCLC specimens from
over 600 of the IALT patients and examined in relation to
survival as well as other clinicopathological prognostic
factors.76 Apart from miR-21, none of these miRNAs were
associated with survival, whereas low miR-21 had a deleter-
ious prognostic effect.

Expression levels of Dicer 1 and Drosha, two miRNA
biogenesis enzymes, were linked to NSCLC histology in
NSCLC patients.77 Analysis of mRNA expression levels of
Drosha in clinical specimens revealed that low expression
was associated with an increased median survival (154.2
versus 39.8 months). However, in certain subgroups (adeno-
carcinoma, grade III tumors and low stage) the opposite was
true: high Drosha expression was associated with decreased
median survival. We found that Drosha and Dicer had higher
expression in RT-resistant NSCLC cells; however, knock-
down of these proteins did not influence RT response,
suggesting that although miRNA biogenesis is clearly altered
in NSCLC, it might not be a way for therapy sensitization as
tumor cells have likely adapted to this altered signaling in
multiple ways.78 In conclusion, profiling of miRNA in relation to
CT and RT has highlighted certain miRNAs that might explain
resistance pathways in LC, which might be important for the
prediction of treatment outcome. However, therapies and
markers of clinical utility based on miRNA remain to be
established.

Proteomic Approach in Analysis of LC Response to
Treatment

Recent advances in global and phosphoproteomic methods
have been integrated in a systems biology manner to reveal
putative signaling cascades driving LC and its treatment
response. We have applied different MS-based methodo-
logies with the aim of linking the expression of single proteins,
protein groups or complete proteomes to CT/RT response of
both NSCLC and SCLC.79–81 Using the SELDI technique,
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S100A6 was identified as a protein linked to RT response of
lung adenocarcinoma.80 In NSCLC patient materials S100A6
protein was reported to be an independent prognostic factor in
p53-negative stage I NSCLC.81 Recently, we demonstrated
that S100A4 interacts with p53 within cell nuclei, likely causing
its degradation, and thereby influencing both CT-induced
apoptosis and cell cycle arrest; furthermore, this illustrates
that proteomic profiling can reveal novel signaling cascades to
already existing tumor-driving networks.82

A proteomic approach to study the plasma proteome of four
different LC mouse models (TetO-EGFRL858R/CSSP-rtTA
(Lung-EGFR), TetO-Kras4bG12d/CSSP-rtTA (Lung-Kras),
urethane treated (Lung-Urethane) and an SCLC neuro-
endocrine model (AdCre-infected Trp53lox/lox; Rblox/lox) was
taken and compared with those from breast, prostate,
pancreatic and colon cancers.83 Plasma proteomes of the
four LC models clustered together, as did the breast cancer
model, suggesting that the plasma proteome of each tumor
type is composed of a tumor-specific pattern of proteins. By
filtering out the specific plasma proteome proteins, a 13
proteins signature was found in several of the lung adeno-
carcinomas. A 16 protein signature was found in the other
epithelial-derived breast, prostate, pancreatic and colon
tumors, of which WFDC2, a secreted protease inhibitor
protein, was one. In the same study,83 using a panel of 21
lung adenocarcinoma cell lines, the total proteome, the
plasma membrane or their secreted proteome were studied
by MS; 25 out of the 39 proteins identified in the LC mouse
model’s plasma proteome were found in the lung adenocarci-
noma cells and an overlapping set of another 26 proteins was
found in the plasma membrane proteome. Two of the
identified proteins, Stfpb and its transcriptional regulator Tift/
Nkx2-1, a lineage-specific determinant of survival in LC, were
further analyzed in the tumor specimens of the LC models and
found to be expressed. Moreover, the authors also examined
the plasma proteome alterations in response to erlotinib in the
EGFR-driven LC mouse model, and two markers were
identified (NPC2 and Adam10), demonstrating that plasma
proteomes may be useful to monitor erlotinib treatment
response.83 Finally, these findings were validated in plasma
samples from LC patients, in which SFTB, WFCD2 and
ANGPTL3 were found to have increased expression, whereas
EGFR expression was decreased. Thus, this systems biology
approach towards the plasma proteome represents an
excellent example of diagnostic biomarker discovery of LC.

Another proteomic application was demonstrated where
MALDI imaging was used to describe the spatial localization
of erlotinib and gefitinib without chemical labeling in lung
adenocarcinoma and large cell carcinomas.84 High resolution
was achieved, allowing detection of drug concentrations down
to attomolar levels and enabling drug monitoring in whole-lung
tumor tissue. It will be interesting to see whether this
technique can also be applied to monitor CT drugs in situ
and reveal mechanisms of resistance.

Technological advances in the phosphoproteomic field
have enabled global phosphoproteomic profiling of LC cell
lines and tumor specimens in different contexts.31,36,85–90

Among the kinases identified were c-MET, EGFR, DDR2 and
various ephrin receptor kinases, including EphA2. With
respect to the clinical samples analyzed, five major groups

were distinguished on the basis of their phosphotyrosine
protein pattern, that is, tumors driven by (I) one oncogenic
kinase, for example, EGFR, (II) FAK in combination with Src
and Abl, (III) DDR1 together with Abl and Src kinases, (IV) Src
in combination with EGFR, and (V) Src or Abl kinases alone.
Notably, in line with data from DNA sequencing,2 several Eph
receptor kinases were among the kinases identified both in
NSCLC cell lines and in patient-derived LC specimens. The
phosphoproteome has also been analyzed in relation to
EGFR mutations using either a targeted approach or global
phosphotyrosine profiling followed by LC/MS/MS.85–87 Thus,
the tyrosine phosphoproteome of NSCLC cell lines with
different EGFR and Kras genomic status was analyzed on a
global scale.86,87 In mutant EGFR-expressing cells, other
receptor tyrosine kinases, such as c-MET and IGF-1R, also
showed a higher degree of phosphorylation than that
observed in cells with wtEGFR, suggesting that multiple
kinases are operative. By comparing the phosphoproteomic
data from EGFR- and c-Met-dependent NSCLC cells follow-
ing treatment with gefitinib or Su11274, respectively, a core
network of about 50 proteins, which was affected by either of
the oncogenic kinases in the different NSCLC cell lines, was
revealed. Again, the Eph kinases were identified to be
phosphorylated in response to EGFR and c-Met blockade,
further emphasizing the role of this receptor family in LC
treatment response. Recently, phosphoproteomic analysis of
two clinical NSCLC cases was made.88 It was reported that
these NSCLC tumors had different phosphoproteomes, likely
reflecting their diverse pathways. Apart from signaling
cascades directly linked to initial membrane signal (e.g.,
ErbB2, ITG5A, c-Met), other multi-functional hubs (e.g., AKT,
Raf, ATR, PI3K) and transcriptional regulators (e.g., Mef2D,
TP53, ELK3, ATF7) were identified, most of which were
regulated in a tumor case-specific manner.

Another approach, activity-based probe profiling (ABPP),
was taken to understand important pathways for dasatinib
signaling in NSCLC.89 In addition to Src family kinases,
cyclin G-associated kinases, DDR1 and several Eph
receptor kinases, including EphA2, EphB2 and EphB4, from
NSCLC cell extracts were found to bind to dasatinib.
Phosphotyrosine proteomic profiling revealed that the
majority of these kinases were active in NSCLC cells at the
basal level. Repeating the same phosphoprofiling after
dasatinib treatment showed a dramatic inhibition of the
phosphorylation of some of these kinases, including Ephs.
These data are in line with the observations concerning the
link between Eph receptor overexpression and dasatinib
responsiveness.3

Conclusions

It is becoming increasingly clear that the activation of multiple
oncogenes or inactivation of tumor-suppressor genes results
in a complex deregulation of cell signaling pathways in tumors
in general and in LC in particular. Accumulating evidence
suggests that a gene expression signature-based readout of
pathway activation is more appropriate than relying on a
single gene of each pathway, thus reflecting a complex
interplay between the different components that require a
more complex analytical approach in order to be visible.
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By using a systems biology approach, integrating data
obtained from clinically relevant LC samples or mice models
using gene expression, DNA sequencing, CGH analysis,
miRNA profiling, protein or protein phosphorylation signaling
network assessments and combining them with data gener-
ated from siRNA library screens, true progress in under-
standing LC biology has been achieved. This has indeed
resulted in improved prognosis and treatment predictive
strategies for NSCLC, whereas for SCLC the clinical utility
of the obtained results is yet to be shown. Although
collaborative efforts between different research institutions
and consortium, as well as between different professionals
within the biomedical research field, have enabled significant
progress in understanding the complexity of LC, further joint
strategies are warranted to improve attempts to individualize
LC treatment and turn this serious disease into at least a
chronic disorder and, eventually, if possible, find a cure.
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