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Abstract

The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined

in yeast genetic screens that identified the factors necessary to sort membrane proteins into

intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT

pathway also functions in a series of other key cellular processes, including formation of

extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The

core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III,

and VPS4. Site-specific adaptors recruit these soluble factors to assemble on different cellular

membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments

that draw membranes together from the cytoplasmic face, and mechanistic models have been

advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to

catalyze membrane fission.
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Overview

The mammalian endosomal sorting complexes required for transport (ESCRT) pathway

comprises more than 30 proteins that catalyze a series of important cellular membrane

fission events, including intraluminal vesicle formation at endosomes, virus and vesicle

budding from the plasma membrane, and abscission of the intercellular bridge during

cytokinesis (Figure 1). In each case, membrane fission is effected from within the

cytoplasmic face of thin membrane tubules and therefore differs from vesiculation processes

such as endocytosis, where fission is effected from the vesicle neck exterior. Thus, the

ESCRT pathway is a mobile machinery that can be recruited to different cellular membranes

to catalyze “reverse topology” fission events.
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The existence of a reverse topology fission machinery was first implied by the observation

that late endosomal compartments, termed multivesicular bodies (MVBs), contained

intraluminal vesicles and that integral membrane receptors destined for lysosomal

degradation trafficked through these vesicles (reviewed in Reference 1). Core ESCRT

components were subsequently identified in seminal yeast genetic studies as factors required

for MVB vesicle formation and vacuolar targeting of membrane proteins. The pathway was

named when it was shown that ESCRT components could be subdivided into discrete

complexes with distinct biochemical functions (1, 2). Yeast studies have continued to

illuminate structural and mechanistic aspects of the conserved ESCRT pathway, but

metazoan ESCRTs perform a series of additional functions that are best studied in their

native contexts.

The ESCRT Machinery

The five different classes of proteins and complexes that constitute the core ESCRT

machinery can be subdivided into (a) early acting factors that coordinate ESCRT assembly,

membrane deformation, and cargo sorting (Bro1 family proteins, ESCRT-I and ESCRT-II

complexes) as well as (b) late-acting factors that catalyze membrane fission and ESCRT

disassembly (ESCRT-III and VPS4 complexes) (Figure 2 and see the online Supplemental

Table 1 for a summary of ESCRT nomenclature). Follow the Supplemental Material link

from the Annual Reviews home page at http://www.annualreviews.org. Regulation occurs at

multiple steps to ensure that the ESCRT machinery assembles correctly and cooperatively.

Control mechanisms include the use of (a) adaptors with specificity for different

phosphoinositides and substrates (Figure 3), (b) sequential binding interactions (Figures 2

and 4), (c) specialized subunit isoforms, (d) conformational cycling between “inactive”

(soluble) and “active” (assembled, membrane-associated) states, (e) avidity effects that help

oligomeric ESCRT subunits to assemble in an “all-or-none” fashion, (f ) regulatory cofactors

that promote or inhibit pathway activities, and (g) posttranslational modifications

(particularly ubiquitylation) that identify protein cargoes and regulate ESCRT machinery

activities (Figure 5).

ESCRT Pathway Recruitment

At least five different classes of adaptors recruit the ESCRT pathway to different sites of

action (Figures 1 and 3):

1. HRS:STAM (ESCRT-0) and related adaptors bind the TSG101 subunit of ESCRT-

I to help create MVB vesicles (3, 4).

2. Syntenins collaborate with syndecans to bind ALIX and create vesicles destined for

extracellular release as exosomes (5, 6).

3. Arrestin domain-containing proteins, such as ARRDC1, link cargoes to ubiquitin

(Ub) ligases and ESCRT machinery during the formation of shedding

microvesicles (7–9).
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4. Viral structural proteins like the HIV Gag protein employ late assembly domains to

bind TSG101, ALIX, and/or NEDD4family Ub E3 ligases to promote virus

budding from the plasma membrane (10, 11).

5. CEP55 recruits TSG101 and ALIX to intercellular bridges to facilitate abscission

(12–14).

Early Acting ESCRT Factors

The early acting ESCRT complexes localize to bud necks where they help facilitate

membrane curvature; integrate inputs from site-specific adaptors, membranes, and

ubiquitylated protein cargoes; and ultimately recruit the downstream membrane fission

machinery (15, 16). They are rich in ubiquitin-binding domains (UBDs), reflecting the

prominent role of this posttranslational modification in ESCRT function (Figure 5). UBD-

Ub interactions are generally weak and transient but can be enhanced by the concentrating

effects of the two-dimensional membrane (17), by avidity and/or cooperativity, and by

preferential binding to polymeric Lys63-linked Ub chains (18).

Bro1 proteins

Bro1 protein family members bind membrane-specific adaptors and recruit the downstream

ESCRT-III subunits CHMP4 and CHMP5 (19, 20). Humans express at least five Bro1

domain-containing proteins of which ALIX (21) and HD-PTP (22) are the best characterized

(see Supplemental Table 1). These two proteins appear to be paralogs, with HDPTP

functioning primarily in MVB protein sorting (23) and ALIX functioning in MVB sorting

(24), exosome biogenesis (5), virus budding (25), and abscission (12).

ALIX comprises Bro1, V, and proline-rich elements (Figure 2). Short amphipathic helices or

β-hairpins from the ESCRT-III proteins bind the concave surface of the banana-shaped Bro1

domain (Figure 4a) (19, 20), whereas the basic convex surface may bind and induce (or

sense) negative membrane curvature (26). The V domain has two extended helical “arms,”

and the second arm binds both Lys63-linked polyubiquitin chains (27) and YPXnL motifs

found within viral and exosomal adaptors and MVB cargoes (Figure 3b,c) (5, 24, 25, 28,

29). The analogous region of HD-PTP binds the ESCRT-I subunit UBAP1, and this

interaction helps define an endosome-specific Bro1-ESCRT-I pair (30).

The C-terminal proline-rich region (PRR) of ALIX folds back and autoinhibits ligand

binding to the upstream domains (31, 32). The PRR contains binding epitopes for a number

of other proteins, including CEP55 (12–14) and TSG101 (25, 33, 34), that presumably

capture the “free” PRR conformation, thereby inducing (or sensing) ALIX activation. ALIX

can also be phosphorylated, within both the Bro1 domain and the PRR, and both

modifications likely play regulatory roles (35, 36). The fully assembled ALIX protein has

been modeled as an antiparallel dimer with open, associated V domains. This observation

implies that the Bro1 domains can bridge or nucleate two ESCRT-III filaments (37). ALIX

also binds other important cellular components, including actin and endocytic, apoptotic,

and calcium signaling machinery, although their ESCRT connections are not yet well

understood (21, 38).
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ESCRT-I

Like Bro1 proteins, ESCRT-I complexes link membrane-specific adaptors and MVB protein

cargoes to downstream ESCRT machinery, and ALIX and ESCRT-I can often function

interchangeably in supporting virus budding (11, 39). Humans express a complex array of

heterotetrameric ESCRT-I complexes, each of which contains a single copy of the unique

human TSG101 subunit and single copies of VPS28 (two variants, A and B), VPS37 (four

isoforms, A-D), and MVB12 (at least three isoforms, MVB12A, MVB12B, and UBAP1)

(30, 40, 41). Several ESCRT-I subunit isoforms have been shown to function in specific

applications (30, 42, 43), but the full range of combinatorial complexity and functional

diversity of mammalian ESCRT-I complexes remains to be explored.

The core of yeast ESCRT-I is composed of a “stalk” and a “headpiece” that together form a

highly extended structure ∼18 nm long, with ligand-binding domains flexibly tethered at

either end (Figure 2) (44–46). At one end, the N-terminal UEV domain and adjacent linker

of TSG101 bind Ub (Figure 5c) (47, 48); the CEP55 adaptor (Figure 3e) (12–14); and P (T/

S)AP peptide motifs within ALIX, the MVB HRS:STAM adaptor, the shedding vesicle

ARRDC1 adaptor, and many viral protein adaptors (Figure 3a,c,d) (9, 33, 34, 49, 50).

Terminal domains from some VPS37 and MVB12 subunits also have Ub-binding activities

(51), including the solenoid UBA domain (SOUBA) of UBAP1, which can bind up to three

Ub molecules simultaneously (Figure 2) (42). At the other end of the ESCRT-I core,

MVB12A and -B subunits display MVB12-associated β-prism (MABP) domains, which

bind membranes (Figure 2) (52). The C-terminal domain of VPS28 forms a four-helix

bundle that binds ESCRT-II, albeit via structurally divergent interactions in yeast and

mammals (Figure 4b) (44, 45, 53, 54).

ESCRT-II

ESCRT-II is a stable heterotetrameric complex that can bridge the ESCRT-I and ESCRT-III

complexes (55). The complex contains single copies of EAP45 and EAP30, as well as two

copies of EAP20. Both human and yeast ESCRT-II core complexes are shaped like the letter

Y, with EAP20 subunits constituting the arms and EAP45 and EAP30 together constituting

the base (Figure 2) (54, 56, 57). All three proteins contain tandem copies of the “winged-

helix” fold, suggesting a common molecular ancestry. N-terminal elements from EAP45 and

EAP30 are flexibly tethered to the base of the Y, and the EAP45 GLUE domain and

adjacent linker bind ESCRT-I, phosphoinositides, and Ub (Figure 5d) (44, 53, 54, 58, 59).

The two EAP20 subunits bind the ESCRT-III subunit, CHMP6 (Figure 4c) (53, 56, 60, 61);

thus, ESCRT-II can nucleate the assembly of two ESCRT-III filaments (62). The yeast

ESCRT-I:ESCRT-II supercomplex can adopt an ensemble of crescent shapes in solution and

can stabilize the necks of vesicular membrane invaginations (15, 63).

ESCRT-II activity is essential for endosomal protein sorting and MVB vesicle formation in

yeast (55), and appears to perform a similar role at the mammalian MVB (64). Indeed,

overexpression of yeast ESCRT-II can bypass the ESCRT-I requirement, suggesting that

ESCRT-II activation may be the most important ESCRT-I function during yeast MVB

vesicle formation (55).
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ESCRT-III Proteins

Humans express eight different subfamilies of ESCRT-III proteins. The conserved ESCRT-

III core structure contains a long helical hairpin and two shorter helices that pack against the

open end of the hairpin (Figure 2) (65– 67). In their soluble monomeric states, the C-

terminal tails of ESCRT-III subunits fold back against the core and autoinhibit protein

assembly (66, 68–70). The proteins then “open” when recruited to sites of membrane fission

by the early acting factors ALIX and ESCRT-II, thereby freeing the core domains to bind

membranes and polymerize. ESCRT-III polymerization also exposes arrays of C-terminal

microtubule interacting and transport interaction motif (MIM) elements within their C-

terminal tails that can bind microtubule interacting and transport (MIT)-domain containing

proteins, including VPS4 (71–73), its activator LIP5 (74– 76), the microtubule severing

enzyme spastin (77), and the deubiquitylating enzymes UBPY and AMSH (Figures 2 and

4e) (78, 79).

As discussed below, ESCRT-III proteins coassemble into membrane-bound filaments that

play critical roles in membrane fission (80, 81). Despite their structural similarities, different

ESCRT-III subunits clearly perform distinct roles, both in membrane fission and in cofactor

recruitment. Studies of yeast MVB vesicle formation have revealed that the “core” ESCRT-

III proteins are recruited sequentially in the order: CHMP6 (Vps20p), CHMP4 (Snf7p),

CHMP3 (Vps24p), and CHMP2 (Did4p), followed by VPS4 (82–85). CHMP4 and CHMP2

subunits appear to constitute particularly important building blocks of ESCRT-III filaments

because (a) they are required for all known ESCRT-dependent membrane fission processes

(82, 85–87); (b) when overexpressed, both CHMP2 and CHMP4 subunits can form

membrane-enclosed helical tubules that extrude from the plasma membrane (88, 89); and (c)

CHMP4 subunits are present at higher stoichiometry than the other ESCRT-III proteins (84).

VPS4 ATPase Complexes

VPS4 ATPases power ESCRT-mediated membrane remodeling at the end of the catalytic

cycle by using the energy of ATP hydrolysis to disassemble ESCRT-III filaments into their

constituent subunits (Figure 2) (90, 91). There are also indications that VPS4 remodeling

contributes directly to membrane fission during virus budding and cytokinesis (92–94),

although perhaps not during MVB vesicle formation (85). Humans express two closely

related VPS4 proteins (VPS4A and -4B) that can function redundantly in at least some

contexts (72).

VPS4 contains an N-terminal MIT domain that binds ESCRT-III substrates, a mobile linker,

a central ATPase cassette composed of large and small domains that resembles other AAA

ATPases, a three-stranded antiparallel β-sheet inserted within the small ATPase domain, and

a terminal helix that connects the two ATPase domains (Figure 2) (95, 96). The enzyme

cycles through two states: a catalytically inactive, disassembled state and a catalytically

active, higher-order assembly (97). Catalytically inactive Saccharomyces cerevisiae Vps4p

can form double-ring structures in vitro (reviewed in Reference 90), but more recent

analyses indicate that the active enzyme may be a hexamer (Figure 2) (N. Monroe, personal

communication).
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VPS4 assembly represents an important regulatory node within the ESCRT pathway.

Enzyme recruitment, assembly, and activation are promoted by the high concentrations of

MIM elements displayed by ESCRT-III filaments (71–73, 98, 99). In addition, two ESCRT-

III-containing complexes, LIP5:CHMP5 and IST1:CHMP1B, appear to play particularly

important roles in promoting VPS4 localization and activation (Figures 2 and 4d). IST1 and

CHMP1B can copolymerize into helical tubes in vitro (J. McCullough & A. Frost,

unpublished), and they play particularly important roles in helping to recruit VPS4 and other

cofactors during abscission (66, 100–103).

LIP5 and CHMP5 form a soluble cytosolic complex that promotes VPS4 oligomerization

and helps link the enzyme to the ESCRT-III lattice (74, 95, 98, 104). The first MIT module

within the tandem MIT domain of LIP5 binds the tails of different ESCRT-III proteins, with

a preference for CHMP1B, whereas the second MIT module binds tightly to CHMP5

(Figure 2) (74–76). The dimeric C-terminal VSL domain of LIP5 binds the C-terminal

domains of VPS4 (Figure 4d) and stimulates VPS4 hexamerization and ATPase activity in

vitro (95, 105, 106). This interaction may also link multiple VPS4 hexamers into an

extended hexagonal array (106).

VPS4 enzymes apparently disassemble ESCRT-III filaments by first making MIT:MIM

interactions with subunit tails (Figure 4e), then making a second contact near the center of

the hexameric ring, and ultimately translocating the subunits up into (or through) the ring,

thereby disrupting ESCRT-III lattice interactions (74, 90, 95, 99).

ESCRT:Membrane Interactions

In conjunction with the essential functions performed by ESCRT proteins, the lipid

membrane also actively participates in ESCRT-mediated, “reverse-topology” membrane

fission reactions by (a) targeting ESCRT factors to specific sites of action, (b) providing a

two-dimensional surface that concentrates and organizes the ESCRT machinery and restricts

MVB cargo diffusion, and (c) helping facilitate the fission reaction (17, 107). In the first

case, different phosphoinositides direct the pathway to different cellular membranes. For

example, the endosome-specific phospholipid PI(3)P targets the ESCRT pathway to

endosomes for MVB vesicle formation through interactions with the HRS FYVE domain

(108) and probably also with the GLUE domain of EAP45 (ESCRT-II) (59). By contrast,

HIV-1 targets the ESCRT pathway to the cell periphery because the viral Gag adaptor binds

specifically to PI(4,5)P2 in the plasma membrane (109). PI(4,5)P2 and PI(3)P also localize to

the cleavage furrow (110), but their roles in targeting ESCRT factors to intercellular bridges

remain to be determined. More generally, the membrane surface serves as an important

organizational platform because all core ESCRT complexes except VPS4 also contain

exposed basic/hydrophobic motifs that bind acidic lipids and help orient the complexes on

the membrane surface. The topology of the membrane platform also appears to be important,

as the dramatic membrane curvature generated prior to fission apparently helps recruit,

retain, and organize ESCRT core complexes at the bud neck (15, 63, 111).

In addition to these targeting and organizational functions, specialized lipids such as

cholesterol perform important functions in the membrane remodeling and fission reactions.
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Bilayers can segregate their lipids laterally to form cholesterol-rich microdomains called

lipid rafts (112), and both MVB vesicles and HIV virions are cholesterol rich (16, 17, 113).

Cholesterol is required for ESCRT-II self-assembly on supported lipid bilayers, and the

resulting assemblies induce phase separation into liquid-ordered domains (114). This is

potentially important because phase separation between liquid-ordered and -disordered

regions can create line tension that promotes membrane scission (17). Two other specialized

lipids have also been linked to ESCRT-related vesiculation processes. The phospholipid

2,2′-lysobisphosphatidic acid (LBPA) is enriched at late endosomes, where it can associate

with ALIX (115). LBPA can drive spontaneous membrane deformation and intraluminal

vesicle formation in vitro (115), apparently by adopting a cone shape under acidic

conditions (116). The sphingolipid ceramide also adopts a cone shape and has been

implicated in lipid microdomain assembly and exosome formation (117–119).

Biological Functions

Multivesicular Body Vesicle Formation

The ESCRT pathway plays a central role in targeting membrane proteins to the lysosome for

degradation. Such proteins are first sorted into regions of the endosomal membrane that bud

into the lumen (Figure 6a,b) and can then be degraded when the MVB fuses with the

lysosome (Figure 1) (16, 120). Sorting into MVB vesicles requires (a) cargo clustering, (b)

membrane invagination, (c) cargo transfer into nascent vesicles, and (d) vesicle neck fission,

and ESCRT factors facilitate all of these steps (15, 81). MVB cargos are initially clustered

on endosomal membranes by HRS:STAM (ESCRT-0) and related adaptors (e.g., GGA3 and

TOM1L1). ESCRT-I:ESCRT-II supercomplexes promote membrane curvature and organize

ESCRT assemblies at the vesicle neck, and late-acting ESCRT-III and VPS4 complexes

catalyze membrane fission and factor recycling.

The heterodimeric HRS:STAM adaptor is shown schematically in Figure 3a (121).

Important motifs include an HRSPSAP motif that helps recruit TSG101(ESCRT-I) (50), an

HRS clathrin-binding box that connects the adaptor to a flat clathrin coat (122, 123), a

STAM SH3 domain that recruits deubiquitinating enzymes (124), and four different UBDs

that help concentrate ubiquitylated cargoes (Figures 3a and 5a,b) (125). Ub is the major

signal for cargo sorting, and Lys63-linked polyubiquitin chains serve as the sorting signals

for at least some cargoes, such as the epidermal growth factor receptor (18, 126).

NEDD4 proteins (Rsp5p in yeast) are the most important class of ESCRT-associated Ub

ligases. NEDD4 ligases can either bind directly to PPXY motifs within cargoes (127) or can

be recruited by arrestin-related adaptor proteins (Figure 3c) (7). Ubiquitylation is a highly

dynamic process, and Ub is ultimately removed from cargoes prior to MVB vesicle

incorporation by the deubiquitylating ESCRT enzymes, UBPY or AMSH, which interact

with both the HRS:STAM adaptor and ESCRT-III subunits (124, 128). Cargoes can also

interact directly with early acting ESCRT factors, as when the G protein–coupled receptor

PAR1 uses a YPXnL motif to bind ALIX (24).

Intraluminal vesicles appear to form just beyond the edge of the HRS:STAM:clathrin coat

(Figure 6a), which begs the question of how cargo proteins are transferred from the adapters
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into the nascent vesicles (15). One possibility is that the crescent-shaped ESCRT-I:ESCRT-

II supercomplexes open and close to extract cargoes from the HRS:STAM:clathrin adaptor

and transfer them into the nascent vesicles (63). Coassembly of ESCRT factors at the

nascent bud neck would then provide a barrier against cargo diffusion from the vesicle prior

to fission (Figure 6c).

Intriguing future issues surrounding MVB biology include (a) the relative importance of

endosomal membranes and associated ESCRT protein networks as platforms for signaling

(129) and small interfering RNA (siRNA) generation (130), and (b) the mechanistic basis

for the remarkable observation that direct contacts between multivesicular endosomes and

the endoplasmic reticulum stimulate ESCRT-mediated sorting of epidermal growth factor

receptors into MVB vesicles (131).

Exosomes and Shedding Microvesicles

Cells can release different types of extracellular microvesicles, including two that have

ESCRT connections: exosomes and shedding microvesicles (ectosomes). Exosomes likely

constitute a major pathway for intercellular communication, with reported functions in

antigen presentation and T-cell activation; immune tolerance; immune evasion; maternal

immunosuppression and transplant tolerance; intercellular transport of proteins, DNA, and

RNA; tissue repair; and neural communication (including roles in the spread of prion/plaque

diseases) (reviewed in References 132 and 133). However, although exosome production

and physiological responses have been demonstrated in tissue culture systems, exosomes are

challenging to purify and assay, and clear examples of in vivo functions are rare.

ESCRT pathway involvement is expected because exosomes originate as MVB vesicles, and

proteomic analyses of purified exosomes have identified subunits from all core ESCRT

complexes (134, 135). Exosome production from cells requires the dimeric cytoplasmic

protein syntenin, which acts as an adaptor that recruits ALIX to sites of intraluminal vesicle

formation via interactions between the ALIX V domain and three syntenin LYPXnL motifs

(Figures 1 and 3b) (5). Syntenin binds the cytoplasmic tails of the transmembrane protein

syndecan (136). Syndecan clustering stimulates exosome production and the process also

requires ALIX, EAP30 (ESCRT-II), CHMP2A, CHMP4A/B/C, and VPS4 proteins,

implying ESCRT dependence. MVB trafficking away from the lysosome and to the plasma

membrane for fusion remains to be understood in detail but is reportedly regulated by

Rab27A/B GTPases (132).

Shedding microvesicle formation is less well characterized but also appears to involve the

ESCRT pathway. For example, ESCRT-I is required for early stages of shedding

microvesicle formation in Caenorhabditis elegans (137) and the human arrestin domain-

containing protein ARRDC1 uses a PSAP motif to recruit TSG101 (ESCRT-I) for shedding

microvesicle release from the plasma membrane (Figure 3c) (9).

In summary, exosomes and shedding microvesicles have an exciting research future,

particularly if they prove to be major pathways for intercellular communication. Future

goals include developing robust functional assays, learning how specific proteins and RNA
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cargoes are packaged, determining how MVBs traffic and fuse with the plasma membrane,

and understanding how target cells receive signals from microvesicles.

Enveloped Virus Budding

Viruses rely upon host cellular machinery for many functions, and many enveloped viruses

usurp the ESCRT pathway to bud from cells. ESCRT-mediated virus release is best

characterized for retroviruses, particularly HIV-1 (11, 39), but it is also well documented for

arena-, filo-, paramyxo-, orbi-, and rhabdoviruses. There is also a recent report that Epstein-

Barr virus, a herpesvirus, uses ESCRT machinery for nuclear egress (138; and see

References 139 and 140). Many other classes of enveloped viruses have additional

intriguing ESCRT links, although some encode their own membrane fission machinery, e.g.,

influenza A, (141), whereas others form external protein coats that apparently alleviate the

need for ESCRT-catalyzed membrane fission, e.g., alphaviruses (142).

ESCRT-dependent viruses employ late assembly domains, often in multiple copies, to

recruit early acting factors of the ESCRT pathway. The three best-characterized late

assembly domains are P(T/S)AP (e.g., as in HIV-1 Gag), which binds directly to the UEV

domain of TSG101(ESCRT-I) (Figure 3d); YPXnL [e.g., equine infectious anemia virus

(EIAV) Gag], which binds the V domain of ALIX; and PPXY [e.g., Rous sarcoma virus

(RSV) Gag], which binds the WW domains of NEDD4 family Ub ligases (11, 39). All three

of these viral late domains mimic interactions used during cellular MVB vesicle and

shedding microvesicle formation (see above). Viruses can also connect to the ESCRT

pathway in additional ways, and elucidating these connections will likely reveal new

mechanisms by which cellular factors can link into the pathway (143–147). Ub contributes

to the budding of many retroviruses, including HIV-1 where Lys63-linked chains have been

implicated. Gag ubiquitylation likely contributes to ALIX and ESCRT-I recruitment in some

cases, but ubiquitylation of host ESCRT machinery may also be important because budding

of the prototypic foamy virus remains Ub dependent, even when the Gag protein is mutated

so that it lacks any lysines (148–151).

Viruses apparently require only a subset of the downstream ESCRT machinery for efficient

budding (39). This is presumably because (a) viral structural proteins, unlike MVB cargoes,

are capable of targeting to specific membranes, self-assembling, and generating membrane

curvature (Figure 6d), and because (b) viruses do not require all of the biochemical activities

that are needed during abscission, such as microtubule severing.

The ESCRT protein network is least well understood in the PPXY-dependent viruses, but

the arrestin-related trafficking proteins appear to participate (8), which is consistent with

known connections between yeast arrestins and Rsp5p (the sole yeast NEDD4 homolog) (7).

There is also a report that ESCRT-II is required for RSV budding (152).

Viruses like EIAV that bud via YPXnL motifs use ALIX to recruit CHMP4 family

members, particularly CHMP4B (19, 37, 86, 153, 154). ALIX builds up steadily throughout

the entire EIAV assembly process (92), whereas ESCRT-III and VPS4 levels spike

immediately prior to the membrane fission event (Figure 6e) (92, 93). This implies that

physical mechanisms (such as threshold effects), generation of proper membrane curvature,
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or Ub transfer must induce ESCRT-III recruitment late in the process (92). ALIX functions

are augmented by V domain Ub binding (27) and by additional unidentified Bro1 domain

interactions (154–156).

HIV-1 budding requires CHMP4, CHMP2, and VPS4 (72, 86). These proteins can interact

directly in vitro and apparently represent the minimal set of required late-acting ESCRT

proteins, although CHMP3 and CHMP1 proteins can also contribute to budding efficiency

(86, 157, 158). The protein-protein interactions that lead to ESCRT-I-mediated recruitment

of ESCRT-III subunits are not yet fully defined, however, because several groups have

reported that siRNA depletion of ESCRT-II and CHMP6 subunits does not significantly

reduce virus budding efficiency (86, 159, 160). This result implies either that the ESCRT-

I:ESCRT-II:CHMP6:CHMP4 relay system, which is used in MVB cargo sorting (1, 15),

may be nonessential (or redundant) in virus budding or that siRNA-treated cells retain

sufficient quantities of ESCRT-II and CHMP6 subunits to support budding. Conceivably,

ESCRT-II functions may be most critical when bud neck deformation and ESCRT-III

recruitment are difficult, as in MVB vesicle formation, but less important during virus

budding and abscission when viral structural proteins or the contractile ring helps deform the

membrane and stabilize the narrow membrane tubules. Alternatively, viral adaptors may

recruit additional ESCRT-associated factors, such as ALIX and NEDD4 family Ub ligases,

that provide additional links to ESCRT-III and reduce the ESCRT-II requirement. This issue

requires further study, however, because ESCRT-II does play an essential role in recruiting

ESCRT-III subunits in a reconstituted HIV-1 assembly system (158) and the complex also

reportedly functions in HIV-1 RNA trafficking (161).

The position of the membrane fission site relative to the ESCRT assemblies is of

considerable interest. If fission occurs on the virion-proximal side of the ESCRT-III

assembly (i.e., as in traditional models for MVB vesicle formation), then there must be a

mechanism for disrupting Gag:ALIX or ALIX:ESCRT-III linkages during budding. If

fission occurs on the virion-distal side of the ESCRT-III assembly (i.e., as in abscission),

then ESCRT factors should end up within the virion. Thus far, only ALIX has been shown

to accumulate to appreciable levels within HIV-1 and EIAV virions (25, 33, 92), whereas

the ESCRT-III and VPS4 proteins appear to be recycled back into the cytoplasm following

membrane fission (92). However, the fate of ESCRT subunits during virus budding merits

further study. There is also much to be learned about how (a) ESCRT-dependent budding

functions can be negatively regulated or even bypassed in some contexts (162, 163); (b) the

roles of candidate accessory factors such as actin, ALG-2 (164), sprouty 2 (165), and

CC2D1 proteins (166, 167); and (c) the contribution of ESCRT pathway regulation to

antiviral innate immunity (168).

The Abscission Stage of Cytokinesis

The process of cytokinesis separates daughter cells and completes cell division. Early in

mammalian cell cytokinesis, the actomyosin contractile ring constricts the cleavage furrow

into an intercellular bridge that contains antiparallel microtubule bundles and a midbody

(Figure 6f–b). The intercellular bridge is subsequently resolved through the complex

membrane fission process of abscission, which can occur on either (or both) side (s) of the
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midbody (reviewed in Reference 169). ALIX, ESCRT-I, both VPS4 isoforms, and nearly all

of the different ESCRT-III proteins participate in abscission, likely catalyzing the membrane

fission step (12, 13, 87, 94, 100, 101, 169–171). Cytokinesis appears to have been the

original ancestral function of the ESCRT pathway because some crenarchaeal genera like

Sulfolobus that diverged from eukaryotes several billion years ago use a minimal set of

ESCRT factors for cell division but lack endosomes (172–174). Furthermore, although the

ESCRT pathway is not essential for cell division in S. cerevisiae, ESCRT depletions

synthetically enhance other cytokinesis defects (175).

The early acting ESCRT-I and ALIX proteins form large membrane-associated rings on

either side of the mammalian midbody (Figure 6f). Both are recruited through direct

interactions with the central hinge region of CEP55, which forms an unusual coiled coil that

binds proline-rich motifs in ALIX and TSG101(Figure 3e) (12, 13, 77). ESCRT-III proteins

then form more distal rings that appear to polymerize outward, apparently forming the large

(∼17-nm) spiraling filaments visualized within intercellular bridges (Figure 6f–h) (94, 170,

171). These 17-nm filaments require CHMP2A to form and likely contain multiple ESCRT-

III subunits, but the spatial organization of different subunits within the filaments remains to

be determined. ESCRT-III factors, particularly IST1, then recruit the VPS4 enzymes prior to

membrane fission (94, 100, 101). Membrane fission occurs ∼1 μm away from the midbody

at constriction zones where the microtubules are cut (Figure 6g,h) (94, 171). ESCRT-III

assemblies localize to both midbodies and cut sites but appear to be discontinuous (170).

ESCRT proteins also recruit a subset of the many other factors that localize to intercellular

bridges (176). The complexity of abscission appears to explain why mammals have evolved

so many different ESCRT-III subunits, and all proteins that contain MIT domains must be

considered candidates for ESCRT-regulated roles in cytokinesis. For example, the ESCRT-

III protein CHMP1B binds the MIT domains of the AAA ATPase spastin (Figure 4e), which

severs microtubules immediately prior to abscission (77). Additional MIT domain-

containing proteins recruited by ESCRT-III subunits to function in abscission include the

phospholipase D–like protein, MITD1 (CHMP1A, CHMP1B, CHMP2A, and IST1) (177,

178), spartin (SPG20) (IST1) (179), and the protease calpain 7 (IST1:CHMP1B complexes)

(180).

Multiple signaling and cell cycling pathways presumably help coordinate ESCRT activities

during abscission, and their roles are now emerging. For example, Wnt5a signaling was

recently shown to position ESCRT-III at functional sites within intercellular bridges (181).

The role(s) of Ub in cytokinesis is (are) not yet well understood, but Ub concentrates at

midbodies prior to abscission, and the Ub ligase BRUCE as well as the deubiquitylating

enzymes UBPY and AMSH are required for abscission (182, 183). ESCRT-III proteins also

help regulate abscission timing via the Aurora B-mediated abscission checkpoint (NoCut)

(184). CHMP4C phosphorylation within a unique region that is absent in CHMP4A and

CHMP4B promotes binding to the Borealin subunit of the chromosomal passenger complex,

which activates the abscission checkpoint and thereby delays abscission until any lagging

chromosomes have cleared the intercellular bridge. Thus, this system links proper

chromosome segregation to ESCRT-III abscission activity via the phosphorylation state of

CHMP4C.
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In summary, the mammalian ESCRT pathway catalyzes a series of critical membrane fission

reactions and is integrated into many important cellular processes resulting in rich biology

and physiology: See the sidebar ESCRTs in Cell Biology, Development, and Disease and

Table 1.

Models for Membrane Constriction and Fission

It is of fundamental importance to understand how the ESCRT machinery draws opposing

membranes together and mediates fission. ESCRT-III proteins perform central roles in these

processes, apparently by forming filaments within the necks of budding vesicles, viruses,

and intercellular bridges (16, 80, 81, 169). Many ESCRT-III proteins can form filaments in

vitro (37, 66, 91, 111, 185, 186) and in cells (88, 89, 157, 171), and these filaments often

wrap up into helical tubes or spirals. The role of VPS4 in fission is less clear because the

enzyme is not required for single rounds of vesicle formation in a reconstituted yeast MVB

system (85), but appears immediately prior to virus budding (Figure 6e) (92, 93) and

abscission (94), where it seems to be required for fission (92, 93).

ESCRT-III filaments likely function in pairs (or contain paired strands) because both known

ESCRT-III-recruiting complexes, ESCRT-II and ALIX, contain two ESCRT-III-binding

sites (37, 54, 56, 57, 62) and because yeast Snf7p (CHMP4) can form paired helical

filaments on supported lipid monolayers (187). One recurring assembly is a 3–4-nm wide

filament, which has been observed in several ESCRT-III assemblies in vitro, including

helical CHMP2A:CHMP3 copolymers (157), CHMP4B and Snf7p filaments (37, 187), and

lipidated IST1 tubes (J. McCullough & A. Frost unpublished findings), as well as in cellular

CHMP2B and CHMP4A assemblies (88, 89). These filaments can further associate into

single, paired, or multistart helical tubes with diameters of 40–400 nm. However, distinct

ESCRT-III filaments and tubes of differing widths and morphologies have been reported in

other cases (111, 171, 185, 186), and a clear consensus structure has therefore yet to emerge.

In particular, the 17-nm ESCRT-III filaments that spiral toward the cut sites within the

intercellular bridge (171) must either contain multiple copies of smaller ESCRT-III

filaments or be different structures entirely.

Another key issue is how ESCRT-III filaments can promote membrane constriction and

fission. As illustrated in Figure 7a, a leading model holds that ESCRT-III filaments spiral

inward and promote membrane constriction by pulling the opposing membranes together

over the resulting “domes” (80, 188). Spiraling would require ESCRT-III subunits to make

nonidentical contacts between consecutive coils, which is unusual behavior because

protein:protein interfaces typically do not accommodate the required continuum of different

contacts. Nevertheless, ESCRT-III tubes can taper into terminal dome-like structures in

vitro, demonstrating that such constricting spirals are physically possible (66, 91).

Furthermore, cryoelectron microscopy tomograms of the ESCRT coats that mediate

cleavage furrow ingression and cell division in Sulfolobus suggest an “hourglass” model in

which two opposing domes of spiraling ESCRT-III filaments create a symmetric cleavage

furrow, pulling the membranes on either side of the furrow down into a single fission point

(G. Jensen, personal communication). Spiraling dome models are attractive because they

nicely explain how ESCRT-III assemblies can mediate membrane constriction and fission
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across very different size scales, ranging from the necks of budding MVB vesicles (∼25 nm)

and retroviruses (∼50 nm) to mammalian intercellular bridges and crenarchaeal cells (each

∼1 μm). In all cases, ESCRT-III assemblies could initially form rings that match the starting

diameter and then spiral closed toward the fission point. In principle, VPS4 could help

promote ESCRT-III filament constriction (188) or remodel the dome to promote the

hemifission to fission transition (93).

A variation on the dome model (Figure 7b) was proposed to explain the observation that

ESCRT-III proteins form discontinuous structures within intercellular bridges, first

appearing as wide rings that are proximal to the midbody and later concentrating at the distal

abscission sites (94, 170). This “break and slide” model holds that (a) ESCRT-III filaments

nucleate near the midbody and initially begin to polymerize as wide spirals; (b) these wide

spirals are unstable owing to their expanded diameters and eventually break, apparently

assisted by VPS4 activity; (c) the unanchored spirals then slide along the membrane and

constrict into lower-energy helices that narrow the intercellular bridge to the point where a

fission dome can form. This model nicely explains the observation that ESCRT-III

components concentrate at two different sites, and the model is supported by computational

analyses, but ESCRT-III filament sliding has yet to be visualized directly.

Finally, Hurley and colleagues have recently proposed another significant variation on the

dome model, termed the “whorl” model (Figure 7c). They propose that the necks of MVB

vesicles are ringed with 6–10 copies of the ESCRT-I:ESCRT-II supercomplex that align

with their long axes parallel to the neck and that each nucleate two ESCRT-III filaments

(63). The filaments then grow toward the center of the neck like spokes, forming a multistart

whorl that constricts the membrane along one face. VPS4 assemblies could then help

organize the central site, where the growing filaments ultimately meet. This model is

consistent with a large body of biophysical and structural data on MVB vesicle formation

(63) but is more difficult to envision in the cases of mammalian abscission and crenarchaeal

cytokinesis because the whorling ESCRT-III filaments would need to extend ∼500 nm to

meet at the center of the midbody. Hence, a hybrid model seems more attractive in those

cases.

In summary, ESCRT-III filaments play central roles in membrane fission reactions, and it is

critical to define (a) their molecular structure(s); (b) how the different ESCRT-III subunits

copolymerize and why so many different subunits are required, particularly during

cytokinesis; (c) the mechanism by which ESCRT-III filaments constrict membranes; and (d)

whether VPS4 enzymes play an active role in this process or instead function primarily to

disassemble the ESCRT-III filaments following fission.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

ESCRT endosomal sorting complexes required for transport

Intercellular bridge a thin membrane tubule ∼1 μm in diameter that connects

daughter cells during cytokinesis

Multivesicular body
(MVB)

a late endosome filled with small intraluminal vesicles

Phosphoinositides phospholipids that help define different cellular membranes,

including endosomes [PI(3)P] and plasma membranes

[PI(4,5)P2]
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Exosomes small extracellular vesicles (50–100 nm in diameter) that are

released when multivesicular bodies fuse with the plasma

membrane

Shedding microvesicles small extracellular vesicles (50–80 nm in, diameter) that bud

directly from the plasma embrane

Late assembly domains short viral protein motifs that recruit ESCRT factors,

including YPXnL:ALIX, P (T/S)AP:TSG101 (ESCRT-I),

and PPXY:NEDD4 proteins

NEDD4 proteins a family of nine human ubiquitin E3 ligases, many of which

are associated with the ESCRT pathway

Ubiquitin-binding
domains (UBDs)

these domains bind ubiquitin and are common in adaptors

and early acting ESCRT factors

ESCRT-III proteins a homologous family of 12 small filament-forming human

proteins named CHMP (charged multivesicular body

protein) or IST1

Microtubule interacting
and transport interaction
motifs (MIMs)

motifs within the C-terminal tails of ESCRT-III proteins that

are bound by MIT domains

Microtubule interacting
and transport (MIT)

domains found in more than a dozen human proteins that

bind ESCRT-III filaments

AAA ATPases ATPases associated with diverse cellular activities that form

ring-like assemblies that remodel cellular macromolecules

Midbody a protein-dense structure in the center of the intercellular

bridge
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ESCRTs in Cell Biology, Development, and Disease

The ESCRT pathway impacts developmental biology and physiology in important ways,

reflecting the central roles of cellular ESCRT functions. Mammalian ESCRT factor

knockouts are typically embryonically lethal (189), but partial loss of function mutations

have been linked to a variety of different pathologies, including neurodegeneration and

cancer, whose underlying mechanisms are often unclear (reviewed in References 130 and

189–192). ESCRT factors have also been implicated in other less well-characterized

cellular functions, including autophagy, cell cycle regulation, RNA localization, and cell

polarity and migration. In some cases, these functions do not obviously involve

membranes and may instead reflect ways in which the ESCRT pathway is integrated with

other cellular pathways. Table 1 highlights Such “noncanonical” ESCRT pathway

functions and important ESCRT connections to developmental biology and disease.
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Figure 1.
Membrane fission reactions promoted by the mammalian ESCRT pathway. Adaptor

complexes that direct the pathway to specific sites of action are shown schematically, and

ESCRT-remodeled membranes are highlighted red. Circled numbers denote the panel in

Figure 3 that shows the adaptor structure.
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Figure 2.
Core ESCRT components and their interactions, shown within a stylized bud neck. Lines

denote regions of unknown structure, dashes denote linkers, cylinders denote helices, arrows

denote protein-protein interactions, and circled numbers denote the panel in Figure 4 or 5

that shows the relevant interaction. Relevant Protein Data Bank identity numbers are shown

in parentheses: human ALIX (20EV); yeast ESCRT-I core (2P22); human TSG101 UEV

domain (1S1Q); yeast Vsp28p C-terminal domain (2J9U); MAPB domain (3TOW);

SOUBA domain (4AE4), note that the MAPB and SOUBA domains would not be present

simultaneously in any single ESCRT-I complex; ESCRT-II core (2ZME); EAP45 GLUE

domain (2HTH); human CHMP3 (2GD5), with individual subunits modeled into a circular

filament; VPS4 MIT (2JQ9); VPS4 core (1XWI), modeled as a hexamer based on the

structure of the related AAA ATPase p97 (1E32); Vta1p C-terminal domain (2RKL); and

LIP5:CHMP5 (2LXM). Abbreviations: CTD, C-terminal domain; MIT, microtubule

interacting and transport; PRR, proline-rich region; Ub, ubiquitin.
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Figure 3.
ESCRT adaptors. The functions and cellular locations of the different adaptors are shown in

Figure 1. Here, each adaptor is shown as a cartoon representation, as a schematic model

showing domain and motif maps, and, where possible, a composite of structurally

characterized domains (ribbon diagrams) and intermolecular complexes (surface

renderings). Circled numbers in panel a denote ubiquitin complexes that are shown in

Figure 5. Relevant Protein Data Bank identity numbers are shown in parentheses. Panel a

contains the HRS:STAM helical core (3F1I), HRS tandem VHS-FYVE domain (1DVP),

HRS DUIM (2D3G), HRS PSAP:TSG101 UEV domain complex (3OBQ), STAM SH3

domain (1UJ0), and the STAM VHS domain (3LDZ). Panel b contains the syndecan

peptide:syntenin PDZ2 domain complex (1YBO). Panel c contains HIV Gag Myr-MA

(1UPH), CA (3H47), NC (1MFS), PTAP:TSG101 UEV domain complex (1M4Q),

LYPXnL:ALIX (2R05). Panel d contains the CEP55 coiled coil:ALIX proline-rich region

(PRR) complex (3E1R). Abbreviation: CBB, clathrin-binding box.

McCullough et al. Page 30

Annu Rev Biochem. Author manuscript; available in PMC 2014 June 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
The structural basis for intercomplex interactions within the ESCRT pathway. The relevant

interactions are as depicted in Figure 2, except that interacting domains from yeast Vps28p

(ESCRT-I) and Vps36p (ESCRT-II) are shown in panel b because the divergent human

ESCRT-I:ESCRT-II interaction site has not been structurally characterized and that

interacting domains from yeast Vta1p and Vps4p are shown in panel d because the

homologous human LIP5:VPS4 interaction has not been structurally characterized. Multiple

ESCRT-III MIM:MIT domain interactions have been structurally characterized, and four

distinct classes of interactions are shown [and see Figure 2 for the structure of the

LIP5(MIT)2:CHMP5 complex]. Relevant Protein Data Bank identity numbers are shown in

parentheses. Abbreviations: MIT, microtubule interacting and transport; MIM, MIT

interaction motif.
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Figure 5.
Structurally characterized ubiquitin interactions within the ESCRT pathway. Ubiquitin (Ub)-

binding domains from the HRS:STAM adaptor (ESCRT-0) (see Figure 3a) and from

ESCRT-I and ESCRT-II (Figure 2) are shown in red, bound to ubiquitin in gray. The Ub I44

side chains are shown explicitly (stick) to emphasize that the very different ubiquitin-

binding domains recognize the same Ub surface. Relevant Protein Data Bank identity

numbers are provided within the figure.
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Figure 6.
(a-c) ESCRT pathway functions in multivesicular body (MVB) vesicle formation, (d-e)

enveloped virus budding, and (f-h) the abscission stage of cytokinesis. (a) Slice from an

electron microscopy (EM) tomogram showing a vesicle budding into an endosome (large

arrow) at a site adjacent to the HRS:STAM:clathrin coat (arrowheads). The small arrow

shows a gold particle used to label the endosome. (b) EM tomographic reconstruction of an

MVB, pseudocolored to show the internal vesicles and limiting membrane (green). Panels a

and b were reprinted with permission from Reference 193, copyright 2003, National

Academy of Sciences, U.S.A. (c) Fluorescence micrographs showing that Snf7p (CHMP4,

green) concentrates at the neck of an MVB-like vesicle budding into a giant unilamellar

vesicle in a reconstituted system. Ubiquitin cargos (blue) and membranes (red) are shown to

define the vesicle. Reprinted with permission from Reference 15. (d) Cryoelectron

microscopy (cryo-EM) image of a budding HIV-1 viral particle. The virion is ∼100 nm in

diameter, the Gag protein lattice is visible as a protein-dense layer inside the plasma

membrane, and the open neck of the virion is the site where ESCRT-mediated membrane

fission occurs. Reprinted with permission from Reference 109, copyright 2012, Cold Spring

Harbor Laboratory Press. (e) Graph showing the time course of CHMP4B (ESCRT-III)

recruitment (green) as HIV Gag molecules (red) assemble into a single budding virion on a
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HeLa cell plasma membrane. Note that Gag assembles gradually (over ∼7 min), whereas

CHMP4B appears in a sharp burst immediately prior to virion release. Reprinted with

permission from Reference 92. (f) Structured illumination microscopy fluorescence image of

an intercellular bridge prior to abscission, showing TSG101 (orange) forming two rings on

either side of the midbody (with an alternate view inset) and microtubules (white). Reprinted

with permission from Reference 94 (g) Cryo-EM tomographic image of an intercellular

bridge showing the midbody, microtubules, and 17-nm filaments within constriction zones

that undergo microtubule severing and abscission. Panels g and h were modified and

reprinted with permission from Reference 171. (h) Pseudocolored EM reconstructions

showing an intercellular bridge late in cytokinesis. Microtubules are shown in red with balls

denoting their ends, and 17-nm filaments are shown in green shades. Abscission occurs at

the narrow, microtubule-free constriction zone to the right of the filaments.
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Figure 7.
Models for ESCRT-mediated membrane fission reactions. (a) The “dome” model for

multivesicular body (MVB) vesicle budding (188), (b) the “break and slide” model for

intercellular bridge constriction and abscission (94, 170), and (c) the “whorl” model for

MVB vesicle budding (63). ESCRT-I:ESCRT-II supercomplexes are shown in red; ESCRT-

III filaments are shown in shades of green and yellow; VPS4 enzyme complexes are shown

in purple; and red arrows denote motion. Panels in the left column show ESCRT factors

assembling within membrane tubules (brown). Panels in the central column show models for

membrane constriction. Panels in the right column show models for the membrane fission

step (see text for details).
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Table 1
ESCRTs in cell biology, development, and disease

Biological phenomenon ESCRT connection Key references

Autophagy

Protein aggregate clearance CHMP2B 194

Autophagosome accumulation CHMP2B 195

Endosomal microautophagy TSG101, VPS4 196

Cell cycle regulation

Abscission checkpoint/chromosomal passenger complex CHMP4C 184

Chromatin structure CHMP1A 197

Centrosome/spindle maintenance TSG101 198

Arabidopsis Tsg101 199

Schizosaccharomyces pombe, Vps22 200

ESCRT-III, VPS4 87

Drosophila CHMP5 201

RNA localization

Maternal RNA localization Drosophila ESCRT-II 202

siRNA spreading Drosophila Vps25 203

Drosophila Hrs 203

HRS, TSG101 204

Drosophila Hrs, VPS36, Alix 205

Cell polarity and migration

Apicobasal polarity, cell migration ESCRT pathway 206

Cancer

Tumorigenesis and metastatic potential HRS 207

Benign brain tumors HRS 208, 209

Ovarian cancer TSG101 210, 211

Mammary cancer TSG101 212

Gastrointestinal stromal tumors TSG101 213

Papillary thyroid cancer TSG101 214

Metastatic tumors TSG101 215
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Biological phenomenon ESCRT connection Key references

Neoplastic transformation Drosophila Tsg101 203, 216

Hepatocellular carcinoma VPS37A 217

Ovarian cancer VPS37A 218

Neoplastic transformation Drosophila Vps25 219

Prostate cancer CHMP3 220

Non-small cell lung cancer CHMP3 221

Ductal pancreatic cancer CHMP1A 222

Renal cell carcinoma CHMP1A 223

Hyperactive epidermal growth factor receptor signaling Drosophila Hrs 224

TSG101 225

CHMP6, VPS4A 226

Neurodegeneration/other diseases

Frontotemporal dementia UBAP1 227

CHMP2B 228

Amyotrophic lateral sclerosis CHMP2B 229

Lewy body disease CHMP2B 230, 231

Spongiform neurodegeneration TSG101 232

Charcot-Marie-Tooth disease TSG101 233

HRS:STAM 234

Hereditary spastic paraplegia CHMP1B 235

Autosomal dominant cataracts CHMP4B 236
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