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Abstract

Binary (0,1) matrices, commonly known as transactional databases, can represent many

application data, including gene-phenotype data where “1” represents a confirmed gene-phenotype

relation and “0” represents an unknown relation. It is natural to ask what information is hidden

behind these “0”s and “1”s. Unfortunately, recent matrix completion methods, though very

effective in many cases, are less likely to infer something interesting from these (0,1)-matrices. To

answer this challenge, we propose INDEVI, a very succinct and effective algorithm to perform

independent-evidence-based transactional database transformation. Each entry of a (0,1)-matrix is

evaluated by “independent evidence” (maximal supporting patterns) extracted from the whole

matrix for this entry. The value of an entry, regardless of its value as 0 or 1, has completely no

effect for its independent evidence. The experiment on a gene-phenotype database shows that our

method is highly promising in ranking candidate genes and predicting unknown disease genes.
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1 Introduction

A key task in biomedicine in postgenomic era is to understand the gene-phenotype

relationships. In humans, such knowledge leads to the discovery of genes causing or relating
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to (disease) phenotypes. The gene-phenotype relationships can be exactly described by a

binary matrix if we associate each phenotype with confirmed causative genes. However,

since our knowledge on causative disease genes are still limited, this binary matrix is far

from complete. Recovering a matrix with partly known entries is a general problem with

growing interest. Recent advances in matrix completion techniques [10], [31], [15], [5], [27]

provide very good solutions to many applications. Thus, motivated by discovering unknown

gene-phenotype relationships, a natural question appears here: is it possible to use current

matrix completion methods to recover such a binary matrix describing gene-phenotype

relationships? Unfortunately, we find that the answer is no. The reason will be explained

immediately in the following section.

Nevertheless, the efforts to discover unknown gene-phenotype relationships never stop. In

addition to the traditional methods of genetic discovery, such as linkage analysis and

positional cloning (See [8] for a review), recent advances in computational methods provide

researchers many choices in testing gene-phenotype relationships through large number of

genes, or even the entire genome. These methods often prioritize genes for a given

phenotype, and the performance are often measured by fold enrichment, which measures

how well the known causative genes are ranked among all candidate genes for a given

phenotype. However, there are two main weaknesses in current methods. First, it is hard to

make the fold-enrichment evaluation both unbiased and complete. Second, it is difficult to

justify the resulting rank of each individual candidate gene (imagine a clinician asks why

one gene is ranked among the top genes, or why one gene is ranked higher than another

gene).

Other than modeling gene-phenotype relationships, these binary matrices exist in many

biomedicine applications. They are also well known as transactional databases [25] in the

data mining area. The term “transactional” implies that the database is composed of many

transactions, e.g., a store record showing what items are included in each transaction. It is

easy to see that a transactional database can be presented by a (0,1)-matrix. In this work, we

propose a novel transactional-database-transformation problem that always leads to unbiased

solutions. Our method not only produces results with a high fold enrichment that is both

unbiased and complete, but also provides a unique feature to support our rank of every

candidate gene for a given phenotype by clear evidence, whose details can be easily

reconstructed as needed. The experiment on a typical gene-phenotype database shows that

our method is highly promising in ranking candidate genes and predicting unknown disease

genes.

1.1 Related Work

Matrix Completion—The problem of matrix completion is of general interest: given a

sampling of m entries of a matrix M, how to recover the complete matrix? Several methods

[10], [31], [15], [5], [27] have been proposed recently to recover a low-rank matrix with

some samplings. It is even proven in [11] that the recovery is most likely to be successful

when the number of samplings is larger than a threshold, which is a function of the matrix

size and its rank. However, this sample model does not apply to transactional databases such

as gene-phenotype data, because “1” is the only nonzero value. Each entry is either 0, which

Xiang et al. Page 2

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2014 June 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



means unsampled, or 1, which means sampled and the result is positive. When there are

enough sampled entries being 1 only, there is little reason to believe an unsampled entry to

be a value other than 1 (or not close to 1 when floating-point operation applies). We tried

Opt-Space [31] on gene-phenotype data and the results (every entry is getting close to 1 after

some iterations) confirmed our analysis.

Readers may wonder, what if gene-phenotype data are not simply a transactional database?

For example, if it contains negative entries that completely exclude some gene-phenotype

associations. In this case, it is still not clear whether matrix completion methods will work.

As suggested in [11], the possibility to recover a matrix depends on the number of

samplings, the matrix size, and its rank. Low-rank matrices are considered to have high

redundancy in their entries and thus it is possible to recover them with only a small percent

of samplings. Here, we only know a very small percent of gene-phenotype associations and

there is no clear evidence that actual gene-phenotype relationships can make up a matrix

with a correspondingly low enough rank.

Prioritizing candidate genes by computational methods—Recent advances in

computational biology made it possible to study the gene-phenotype relationships between

many genes and phenotypes quickly [20], [46], [55], [57], [2], [3], [19], [21], [33], [58],

[37], [29], [53], [13], [12]. A couple of the latest work (e.g., [21], [58], [37]) can be used to

study such relationships over the whole genome. A number of recent work (e.g., [3], [19],

[21], [33], [58], [37], [12]) share some common workflow. First, they use text mining to

establish similarities among phenotypes. Then, they use various Protein-Protein Interaction

databases to study the relationships among genes. Finally, various scoring methods were

developed to prioritizing genes. After these somewhat complicated steps, one may wonder

that how reliable the final results are. Most of the available work relies on fold enrichment

as an objective measurement of the effectiveness of their methods.

The fold enrichment is a measurement of how good the tested known genes are ranked with

respect to their associated phenotypes. The detailed computational method and the test

selection make the fold-enrichment value somehow tricky, and it should be interpreted with

the complete details of how it is obtained. Without those details, it could be hard to tell

whether there is any systematic bias toward known gene-phenotype relations. To make fold

enrichment unbiased, the information of a known gene phenotype is removed in [21], [58],

and [37] before testing its rank. This definitely makes the result more sound, but it greatly

increases the testing time. Thus, the fold enrichment in [21], [58], and [37] is based on a

small number of tested cases only, making it hard to perform a complete unbiased evaluation

of the method and the results.

In addition, since there is no reason to believe unknown gene-phenotype relations are not

important, a highest fold enrichment does not necessarily imply that the corresponding

results are the best for predicting unknown disease genes. Thus, other than the fold

enrichment, evidence that supports each individual rank will be very helpful but not always

available.
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Mining bicliques for biomarkers—In most graphs that model real life, dense subgraphs

are often indication of important patterns. Various algorithms for finding dense components,

such as cliques and quasi cliques [1], [36], [50], [51] from graphs, have been developed (See

[34] for a survey). Since bipartite graphs are essentially (0,1)-matrices or transactional

databases, there are quite a few methods for mining them in the data mining community.

Compared to traditional biclustering or coclustering [26], [41], methods powered by

frequent item set mining techniques [25] take into account the exponential number of

patterns, and thus are possible to produce results much closer to optimal for many problems.

Bicliques discovered by these methods often have other names, such as tiles [22], [23],

hyperrectangles [59], and blocks [28], but essentially they are considered to be

representative patterns of the transactional database. Clique or biclique patterns are very

likely to be associated with important patterns in real applications. For example, in [47] and

[44], authors mine clique patterns for candidate biomarkers. In [32], authors find biclusters

of drug-gene associations. In [28], we also show that some block patterns are candidate

biomarkers for breast cancer. These patterns in the form of dense subgraph components hint

us to find evidence to support a gene-phenotype relation from its covering patterns.

1.2 Our Contributions

Motivated by the related work as discussed above, in this work we aim at proposing a

succinct computational method to unbiasedly evaluate every entry in a (0,1)-matrix. Our

main contributions are

• We propose a novel concept to transform transactional databases into matrices of

features. It can be regarded as an extension of the matrix completion concept to

(0,1)-matrices.

• Each original entry of the (0,1)-matrix, regardless of its value as 0 or 1, has no

effect on its independent evidence. This makes our final results unbiased. In

addition, it is easy to obtain a complete and unbiased fold-enrichment evaluation

for human gene-phenotype relationships, without the need to do any extra leave-

one-out validation (i.e., test a known gene phenotype after removing such

knowledge, see [58]).

• Unlike previous methods that simply give a score or rank to a candidate gene, we

can support our evaluation for each individual gene phenotype (an entry in the

(0,1)-matrix) with clear evidence, whose details can be reconstructed as needed.

• As our method uses evidence hidden in the given data, it is a general framework to

evaluate any transactional databases, including gene-phenotype data. Our

algorithms are succinct and easy to implement or incorporate into other methods.

• Our problem formulation leads to  NP-hard problems, where  is the

number of transactions in the transactional database (i.e., the number of rows in the

(0,1)-matrix), and  is the number of items in the transactional database (i.e., the

number of columns in the (0,1)-matrix). However, we propose a very succinct and

efficient solution for our problem.
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• The study on a very sparse gene-phenotype data shows the effectiveness of our

method. Using only a very sparse gene-to-phenotype data itself, our method

achieves a very high fold enrichment that is both unbiased and complete. Detailed

case studies also show that our method is highly promising in ranking candidate

genes and predicting unknown disease genes.

2 Problem Formulation

Recently, by formulating the disease and gene relationships as a bipartite graph, disease

networks and the corresponding gene networks have been derived [24], [38], [6]. This also

implies that by matching a group of related disease phenotypes with a group of

corresponding genes, we can predict previously unknown gene and disease phenotype

relationships, and generate new hypotheses for experimental and clinical study. Our problem

formulation is motivated by this notion.

Let M be a transactional database in the form of (0,1)-matrix; let  be the complete set of

transactions (rows), and  be the complete set of items (columns). For simplicity, we

assume transactions are numbered continuously from 1, and the same for items. Let M(i, j)

denote the value of entry (either 0 or 1) at row i and column j of M, where  and

. A (0,1)-matrix is equivalent to a bipartite graph, if we model the set of rows as

a set of vertices, and the set of columns as another set of vertices, with one entries

corresponding to edges. In the following, the term (0,1)-matrix (or matrix for short) implies

its corresponding bipartite graph.

Let P = T × I = {(x, y) : x ∈ T, y ∈ I} be a pattern of M where  and . P is

essentially a Cartesian product between a subset of rows and a subset of columns, and

equivalent to a submatrix of M. Note that a biclique (i.e., a submatrix of all 1s) is a pattern

but the reverse is not necessarily true. An entry (i, j) is covered by P if and only if (i, j) ∈ P.

We say a pattern P is a supporting pattern for entry (i, j) if and only if P covers (i, j) and,

M(x, y) = 1 for any entry (x, y) ∈ P\{(i, j)}. Note that here the value M(i, j) itself is NOT

considered when defining a supporting pattern for (i, j).

To avoid redundant supporting patterns, we only consider supporting patterns that are

maximal. A supporting pattern P for an entry (i, j) is maximal if and only if there does not

exist another supporting pattern P′ for (i, j) such that .

Let S(i, j) be the set of all maximal supporting patterns for the entry (i, j). We consider S(i, j)

to be the independent evidence to support the hypothesis that entry (i, j) is 1. Since S(i, j)

may contain a good number of supporting patterns, we will extract the most important

feature from it. Let  be the function for feature extraction. Then,  is the feature

extracted from S(i, j).

Thus, one very general problem is: How to efficiently transform M into , such that  can

unbiasedly predict the unknown transaction-item relationships?

Fig. 1a is an example of a supporting pattern for an entry (6, 7). Fig. 1b is the graph

representation of the supporting pattern.
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As suggested in [24], [38], and [6], if a set A of genes causing a set B of diseases also cause

disease k, and if there appears another gene causing the set B of diseases, it is more or less

reasonable to conjecture this gene can also cause disease k. Such inference is also the basis

for various associate rule mining applications [25]. The strength of the inference is

proportional to the size of A and the size of B. Thus, in this work, we simply define the

 to be

and our specific problem in this paper is: How to efficiently transform M into  defined

above, such that  can unbiasedly predict the unknown gene-phenotype relationships?

In the next section, we will primarily focus on answering the above specific question. We

will see that  is equal to the area of a maximum edge biclique of a specific submatrix

corresponding to entry (i, j). A maximum edge biclique in a bipartite graph is often defined

as a maximal biclique with the largest number of edges. There could be more than one

maximum edge biclique in a bipartite graph. A maximal biclique is commonly known as a

biclique which is not a subgraph of any other biclique. For readers’ convenience, we

summarize major notations and definitions in Table 1.

3 IndEvi and IndEviRe Algorithms

In this section, we mainly focus on solving the specific problem proposed in Section 2. First,

we show how to find independent evidence S(i, j) and calculate  for one entry (i, j) in

the (0,1)-Matrix. Then, we propose an efficient algorithm INDEVI to calculate  for all

entries in the (0,1)-Matrix. Since INDEVI calculates  for all entries without building S(i,

j) for all entries, we will discuss how to efficiently reconstruct S(i, j), the details of the

independent evidence, either completely or partly, for a desired entry (i, j).

3.1 Find Independent Evidence S(i, j) and Calculate  for One Entry

S(i, j) is defined in Section 2 as the set of all maximal supporting patterns for the entry (i, j).

In the following, we will show that S(i, j) has one-to-one correspondence with the set of

maximal bicliques in a submatrix of M. Let M[X; Y], where  and , be a matrix

formed by selecting rows in X and columns in Y from M. Then, we have the following

lemma:

Lemma 1. Given an entry (i, j), let

. Then, S(i, j) has to

one correspondence with (but not equal to) the set of maximal bicliques in M[X; Y].

Proof. To proof this lemma, we will show that 1) “⇒” A pattern T × I ∈ S(i, j) is

corresponding to a maximal biclique (T{i}) × (I{j}) of M[X; Y]. 2) “⇐” A maximal biclique

T × I of M[X; Y] is corresponding to a pattern .
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Proof of 1. We only need to show (T\{i}) × (I\{j}) is a maximal biclique M[X; Y]. First,

according to the definition of S(i, j) and M[X; Y], it is easy to see that  and

. Thus, (T\{i}) × (I\{j}) is a biclique of M[X; Y]. If it is not maximal, then there

must exist another biclique T′ × I′ of M[X; Y], such that .

Then, we can construct a pattern , which is a support

pattern for (i, j). Thus, it is a contradiction to the fact that T × I is a maximal supporting

pattern.

Proof of 2 is similar as proof of 1 and thus omitted.

Given Lemma 1, it is easy to see the following corollary holds.

Corollary 1. Given entry (i, j),  is the area, i.e., the number of edges, of a maximum

edge biclique of M[X; Y], where

.

From Lemma 1, one can see that the task of finding all maximal supporting patterns for

entry (i, j) is equivalent to finding all maximal bicliques of M[X; Y] where

. To facilitate our

discussion, in the following we call bicliques, maximal bicliques, and maximum edge

bicliques of M[X; Y] as supporting bicliques, maximal supporting bicliques, and

maximum supporting bicliques, respectively, for (i, j). For example, in Fig. 1, {1, 3, 6, 8}

× {2, 4, 6, 7, 8} is a supporting pattern for (6, 7), while {1, 3, 8} × {2, 4, 6, 8} is a

supporting biclique for (6, 7). In many places of the following, we will use maximal

supporting bicliques instead of maximal supporting patterns since they have one-to-one

correspondence as suggested by Lemma 1.

Unfortunately, the problem of listing all maximal cliques (or just a maximum clique) for a

graph is well known to be NP-hard [30]. For finding a maximum edge biclique for a

bipartite graph, it is also proved to be NP-hard [45]. It is easy to see that listing all maximal

bicliques (which include every maximum edge biclique) for a bipartite graph is NP-hard too.

Nevertheless, algorithms for frequent closed item set mining [25] provide practical

solutions. It is not difficult to understand that a maximal biclique in a bipartite graph

corresponds to a closed item set in the corresponding transactional database (See [35] for

additional details). In [35], authors use frequent closed item set mining results for mining

maximal biclique subgraphs. The main advantage of frequent closed item set mining is that

it takes frequency (often called “support”) as a user-specified parameter. The lower the

frequency, the closer the results to the exact solution. If there are  rows (i.e.,

transactions), the final results are exact if the frequency is set to be  or lower. Thus,

users can set up a frequency as lower as possible, with respect to the input data and the

computational resource. To give some idea on how long it takes to list all maximal bicliques

for a typical graph, we cite a result in [35]: it takes LCM [56], a state-of-art frequent item set

mining algorithm, 126.294 hours to list all closed item sets for a transactional database with

 and  (which is the adjacency matrix of a graph with 8,000 vertices
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and 319,959 edges). We will not go into detail of closed item set mining in this paper.

Interested readers may refer to [25]. It is sufficient to know there are data mining algorithms

that can list all maximal bicliques or close, for the following discussion.

The above discussion is for finding independent evidence S(i, j) and calculate  for

one entry only. It is not a good idea to directly extend the above method to calculate 

for all  entries. This will make the running time  times as long as the average

running time for finding independent evidence for one entry under the same settings, making

it impractical to get a nontrivial result in most cases. Thus, in the next section, we propose

an efficient algorithm INDEVI to calculate  for all entries. INDEVI also makes it possible to

efficiently reconstruct S(i, j) for any desired entry (i, j).

3.2 Calculate  for All Entries and Reconstruct Independent Evidence S(i, j) for
Desired Entries

As indicated by Lemma 1, S(i, j), the independent evidence for one entry (i, j), is

corresponding to the set of maximal bicliques of M[X; Y] where

. Since M[X; Y] is a

submatrix of M, a maximal biclique of M[X; Y], is at least a biclique (although it may not be

maximal) of M. It is easy to see that any biclique in a bipartite graph is covered by at least

one maximal biclique in that graph. Hence, we conclude that any maximal biclique of M[X;

Y] is covered by at least one maximal biclique of M. This observation clues us to find

independent evidence for all entries by scanning all maximal bicliques of M.

To make our method easy to understand, we start with entries that are 0. Then, we consider

entries that are 1. It is better to emphasize again that although we consider entry values here

for algorithm design, the problem formulation has never been changed, and the value of any

entry has completely no effect on its independent evidence. That is, by changing the value of

an entry only, no matter from 1 to 0, or from 0 to 1, its independent evidence remains the

same.

3.2.1 Entries of Value 0—It is easy to observe that for a maximal biclique C of M, its

corresponding part in submatrix M[X; Y], if any, is a biclique. Formally, the following

lemma holds.

Lemma 2. Given an entry (i, j), let

. Let C = TC × IC be a

maximal biclique of M which contains S = TS × IS, a maximal supporting biclique for (i, j).

Then, .

Proof. It is not difficult to verify that

. In the following, we will

prove that  and .

Assume . Then, at least one of the following cases must hold: 1) 

such that , 2)  such that .
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Case 1. Since t ∈ TC where TC × IC is a maximal biclique, it is easy to see {t} × IC is a

biclique. Given  and t ∈ X, we conclude that  is a biclique in M[X; Y],

a contradiction to the fact that S = TS × IS is a maximal biclique in M[X; Y]. Hence, case 1

cannot hold.

Case 2. Since TS × IS is a maximal clique in M[X; Y], we conclude . Given t ∈ TS

and , we conclude that  implies , contradiction to the fact that

. Hence, case 2 cannot hold.

Thus, we proved by contradiction that . In the similar way, we can also prove

that .

The purpose of introducing Lemma 2 will be clear in the following. It leads to two

corollaries, which make an efficient algorithm possible.

Corollary 2. Given an entry (i, j) that M(i, j) = 0, let

. Let C = TC × IC be a maximal

biclique of M which contains S= TS × IS, a maximal supporting biclique for (i, j). Then,

.

Proof. Since M(i, j) = 0, we conclude that  and .

Thus, X′ = X and Y′ = X, where

. According to Lemma

2, we conclude .

Note that in Corollary 2, X′ only depends on column j and Y′ only depends on row i. This

observation suggests that given a maximal biclique TC × IC of M, we can first get 

for each column and  for each row. Then, a  for every zero entry can be easily

calculated.

3.2.2 Entries of Value 1—Interestingly, we find it is not necessary to treat 1 and 0 entries

completely different. The following corollary suggests that entries of value 1 can also be

handled similarly as entries of value 0.

Corollary 3. Given an entry (i, j) that M(i, j) = 1, let

.

Let C = TC × IC be a maximal biclique of M which contains S = TS × IS, a maximal

supporting biclique for (i, j). Then,

.
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Proof. Since M(i, j) = 1, we have i ∈ X′ and j ∈ Y′. Thus, X = X′\{i} and Y = Y′\{j}. Further,

we have , and

. According to Lemma 2, we conclude

.

3.2.3 Final Algorithms—Hinted by Corollaries 2 and 3 (both can find a maximal

supporting biclique S from C by set operations on X′ and Y′, instead of X and Y), we propose

Algorithm 1, INDEVI for Independent-Evidence-based transactional database transformation.

The input  for INDEVI is a set of maximal bicliques.

In Algorithm 1, we completely eliminate the huge burden of calculating  for every

entry as discussed in Section 3.1. Rather, it is done by two fast batch processes for every

.

In the first step, we preprocess a maximal biclique C into , a list of numbers

corresponding to rows (shown on Fig. 2 as the rightmost list of numbers), and , a list of

numbers corresponding to columns (shown on Fig. 2 as the lowermost list of numbers). In

this step, we only need to project the biclique C to every row and every column of M, rather

than individual entries.

Then, in the second step (line 3-18), each entry can get a  by using the previously

computed  and  value, with additional consideration of itself (i.e., 0 or 1) and whether

it is covered by the maximal biclique C.

Fig. 2 is an example to understand the algorithm. The shaded part is a maximal biclique TC

× IC of M. Each number on the lower most row is  where

. Each number on the right most column is  where

. Then, let us some representative entries: M(t4, i12) = 0,

. Here,  is the area (i.e., the number of edges) of a
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maximum edge biclique of  where

. Given these

examples, it shall be easy to figure out how INDEVI works.

Combining Corollaries 2, 3, and related analyses, we have the following theorem of

unbiasedness for INDEVI.

Theorem 1.  returned by Algorithm 1, INDEVI, is an unbiased predicting function for every

gene-phenotype pair (or transaction-item pair in general). That is, by changing a value of an

entry (i, j), either from 1 to 0, or from 0 to 1,  remains the same.

INDEVI also returns two other functions,  and c.  is the number of maximal bicliques of

M that contain supporting bicliques for (i, j). g is used as a heuristic information for tie

breaking when prioritizing genes which have the same  value. Since it is generally

impractical to have enough memory or disk space to store complete S(i, j) for all entries, we

use c(i, j) to save the index of the maximal biclique of M that contains a maximum

supporting biclique for (i, j). Function c can be used to reconstruct a maximum supporting

biclique for any desired entry (i, j). The reconstruction follows the principles as suggested in

Corollaries 2 and 3. Algorithm 2 is the pseudocode.

In Algorithm 2, we only reconstruct a maximum supporting biclique for (i, j). However,

with reasonably large storage space, it is still practically possible to quickly reconstruct all

the details of the independence evidence, i.e., all maximal supporting bicliques, for (i, j)

(thus, the complete S(i, j)). To realize this, we only need to let c(i, j) record the set of indices

for all supporting bicliques, instead of just a maximum supporting biclique. When

reconstructing, we also need to compare and eliminate supporting bicliques that are not

maximal. Under limited storage settings, we may also choose to reconstruct partly the

maximal supporting bicliques (e.g., the top 100 maximal supporting bicliques with largest

areas). The implementation is not difficult by revising Algorithms 1 and 2.

4 Experimental and Case Study

There have been many efforts for archiving the gene-phenotype relationships such as the

OMIM database [40], [4]. In this paper, we select the gene-to-phenotype data set1 (“G2P”

for short in the following) for our experimental study. Although G2P is small, containing

 genes and  phenotypes, and 34,503 confirmed gene-to-

phenotype relations (i.e., only 0.3434 percent entries are 1), it is derived from sources

including OMIM and is well curated with strict criterion [48], [49].

For maximal biclique generation (closed item sets), we use MAFIA2 [9], one of the popular

publicly available tools for generating frequent closed item sets. For data set G2P, we set the

frequency to be 0.05 percent, a value low enough to obtain a complete set of maximal

bicliques. Our algorithms are implemented in C++, and tested on Linux with a 2.6 kernel.

1Publicly available at: http://human-phenotype-ontology.org/genes_to_phenotype.txt Last access for this work: 10/03/2010.
2Publicly available at: http://himalaya-tools.sourceforge.net/Mafia/.

Xiang et al. Page 11

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2014 June 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://human-phenotype-ontology.org/genes_to_phenotype.txt
http://himalaya-tools.sourceforge.net/Mafia/


We cross validate our gene ranks by web tool www.geneanswers.com3 (“GACOM” for

short in the following), which is based on a newly developed disease ontology [17], [18].

4.1 Fold Enrichment

The details for calculating fold enrichment vary among literature. We feel it is necessary to

make the rule unequivocal. By referring to some recent work [21], [58], [37], we use the

following rule:

• Let E′ be a subset of E, the set of confirmed gene-phenotype relations. Let |E′|/|E| =

x%. If for any element (i, j) ∈ E′, gene i is ranked among top y percent of the

candidate genes (i.e, all the genes involved in ranking) for phenotype j, the fold

enrichment of E′ over E is x/y.

• A gene is ranked in y percent of the candidate genes if and only if there are 100 – y)

% candidate genes ranked lower.4

In papers that aim at providing unbiased fold enrichments [21], [58], [37], the set E refers to

the sampled known gene-phenotype relations, rather than the complete set of all known

gene-phenotype relations as we do in this work. To the best of our knowledge, there is no

reported fold enrichment that satisfies both completeness and unbias as ours. Nevertheless,

to facilitate comparison with others, we list our statistics as follows.

Given the closed item sets outputted by MAFIA, our INDEVI implementation finishes

transforming the G2P data set within an hour, with less than 1 GB memory requirement, on

an AMD Opteron 2.4 GHZ machine. For a phenotype, genes are ranked by  (high to low),

with  (high to low) for tie breaking (recall  in Sections 2 and 3.1, and  in Section 3.2).

After transformation of G2P by INDEVI, we obtain the following results: among all 34,503(=|

E|) known gene-phenotype relations, 4,598(=|E′|) of them with gene ranked among the top

0.1107%(= y%) of the  candidate genes for it, achieving 120.4(=x/y =

13.3264/0.1107) fold enrichment. The number 120.4 itself is among the highest fold

enrichment values [33], [21], [58], [37] to the best of our knowledge.

Nevertheless, as we mentioned before, the fold enrichment should be handled with care. If

we simply comment out line 6-9 of INDEVI, then we can achieve a 270.4 fold enrichment.

However, in this case it is not difficult to see that the transformation is biased toward the

entries of value 1.

4.2 Rank Cutoff

Although every gene has a rank with respect to a given phenotype, it remains a good

question what percentage of top ranked gene-to-phenotype relations are most significant for

prediction. To answer this question, we plot the fraction of known gene-to-phenotype

relations over the top ranked gene-to-phenotype relations in Fig. 3, which shows the

aggregated results over all 5,560 phenotypes.

3Last access for this work: 10/04/2010.
4This is to avoid unfair calculation for equally ranked genes, e.g., considering an extreme case that all genes are ranked equally as top
1.
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From Fig. 3, we can observe that at the beginning, the percentage of known gene-to-

phenotype relations increases sharply when rank increases. However, the increase rate

changes significantly twice: one is around rank 200-400, and the other is around rank 1,000.

For the two rate changes, we found that more than 70 percent of known gene-to-phenotype

relations are ranked within top 16 percent gene-to-phenotype relations, and more than 98

percent of known gene-to-phenotype relations are ranked within top 60 percent gene-to-

phenotype relations.

This suggests that in most cases a known gene-to-phenotype relation will not get a very low

rank. Thus, if we mark top ranked (e.g., top 15 percent) gene-to-phenotype relations as

positive results, and bottom (e.g., bottom 15 percent) ranked as negative results, with others

being neutral, then, known gene-to-phenotype relations will not be falsely tagged as

negative in nearly all cases. Moreover, the rank around 200-400 provides a good cutoff for

prediction. Biologists may primarily focus on the top 200 gene-to-phenotype relations on

average for a given phenotype.

4.3 Case Study

In this section, we use three well-known syndromes, colon cancer, breast cancer, and

osteoarthritis, to evaluate results generated by INDEVI on data set G2P.

4.3.1 Colon Cancer—For colon cancer, there are nine confirmed gene-phenotype

relations in the data set G2P. The , , rank, and percentile of them are listed in Table 2.

We can see most of them are ranked among the top 5 percent of the 1,807 genes.

Next, in Table 3 we list the top 10 ranked genes for colon cancer. We cross validate these 10

genes by GACOM, and three genes that are not known causative genes for colon cancer in

G2P are confirmed by GACOM. For the remaining fours genes, we performed a literature

search, and found documents supporting that they are directly related to colon cancer (PMS2

[54], MAP2K1 [43], [52], MAP2K2 [7], PTPN11 [42]). Interestingly, the somatic mutation

of MAP2K2 in colon cancer is a very recent discovery [7].

4.3.2 Breast Cancer—Although there are many identified genes for breast cancer, the

G2P data set contains only 19 confirmed genes (for details see Table 4; note BRCA1 is not

even in , the gene set of G2P). Nearly half of them are ranked among the top 5 percent of

the 1,807 genes. Again, we perform a cross validation of the top 10 genes (for details see

Table 5) by GACOM. Two genes that are not known causative genes for colon cancer in

G2P are confirmed by GACOM. For the other five unconfirmed genes, we found four of

them relating to breast cancer in the literature. (BRAF [16], MAP2K1 [39], MAP2K2 [7],

MED12 [No literature found], FBN1 [14]). This time, a confirmed gene KRAS in G2P does

not appear in the GACOM for breast cancer, showing that GACOM may not be complete

either.

An interesting observation is that for gene MED12 we cannot find any literature to link it

with breast cancers. However, we found that in a large set of public microarray data

(GDS2250) from the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)

for human biopsy samples from 40 breast cancer patients and seven normal subjects,
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MED12 shows a 1.94 fold decrease in cancer patients (one-tailed Student t-test p-value =

0.00057). In addition, in the BioGRID database, the protein of MED12 is shown to directly

interact with estrogen receptor (ER) alpha (ESR1) with experimental confirmation using two

different methods. ESR1 is a well-known critical gene in ER+ breast cancers. These results

suggest that MED12 could be a potential candidate breast cancer associated gene.

4.3.3 Osteoarthritis and Examples of Using INDEVIER—Table 6 shows the top 10 genes

for disease osteoarthritis. Since GACOM currently does not contain an entry for

osteoarthritis, the last column in Table 6 is marked with “N/A.” Again, it is easy to find in

literature relationships between these genes and osteoarthritis. To understand why a gene is

currently ranked for osteoarthritis, we run INDEVIRE (Algorithm 2), and find its supporting

maximum biclique T × I. For example, for a known disease gene TNXB in Table 6, INDEVIRE

returns:

TTNXB = {COL3A1, COL5A1, COL5A2}; ITNXB = {AUTOSOMAL DOMINANT

INHERITANCE, ECCHYMOSES, JOINT DISLOCATION, MITRAL VALVE

PROLAPSE, SOFT SKIN};

Since TNXB is a known disease gene for osteoarthritis, we also known that the supporting

pattern for (TNXB, OSTEOARTHRITIS), i.e., {COL3A1, COL5A1, COL5A2, TNXB} ×

{AUTOSOMAL DOMINANT INHERITANCE, ECCHYMOSES, JOINT DISLOCATION,

MITRAL VALVE PROLAPSE, SOFT SKIN, OSTEOARTHRITIS} is a biclique. Actually,

we can also show it is a maximal biclique, as indicated by the following lemma (proof is

simple and omitted):

Lemma 3. For an entry (i, j) with M(i, j) = 1, any pattern in S(i, j) (independent evidence

defined in Section 2) is a maximal biclique of M.

For an unknown disease gene VWF in Table 6, INDEVIRE returns:

TVWF = {COL3A1, COL5A1, COL5A2, TNXB}; IVWF = {AUTOSOMAL DOMINANT

INHERITANCE, ECCHYMOSES, MITRAL VALVE PROLAPSE,};

Being related to all the phenotypes in IVWF, the genes in TVWF are related to osteoarthritis;

gene VWF is related to all the phenotypes in IVWF too. This provides a clue for biologists to

confirm whether gene VWF is related to osteoarthritis too.

5 Discussion and Conclusion

In this paper, we present a novel transformation algorithm for transactional databases. This

method will have impact on many biomedical data mining applications, since many

biomedical relationships can be formulated using transactional databases and the lack of

complete knowledge in these relationships is a ubiquitous problem. Using the independent-

evidence-based transactional database transformation approach, new hypotheses with strong

evidence can be generated and prioritized for further experimental or clinical studies. We

demonstrated the effectiveness of this method using a relatively small human gene-

phenotype database to prioritize potential clinically significant genes. Even though the genes
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in this database are less than 10 percent of the known human genome and many well-known

disease genes are not included (e.g., BRCA1), our algorithm was able to predict missed

relations for which many can be confirmed by other sources in our case study. It can be

conceived that if more information such as linkage, disease ontology, and protein-protein

interaction can be incorporated like used in other studies [3], [19], [21], [33], [58], [37],

[29], [53], [13], [12], our method could yield an even larger repertoire of hypotheses.

In addition, we leave the flexibility to readers to revise our algorithms easily. First, there are

various ways to define  according to different applications. For example,  can

be defined as the maximum number of vertices of a supporting biclique, i.e.,

. Comparing to our current definition, this

 definition does not prioritize supporting patterns with balanced transactions and

items. Nevertheless, it provides a different angle of view on the supporting patterns. More

important, It is not difficult to see that our algorithms INDEVI and INDEVIRE can be slightly

adjusted to fit this new  definition. Second, readers may choose to supply INDEVI with

different , such as bicliques corresponding to maximal frequentC item sets [25], and quasi-

bicliques [1], [36], to approximate maximal bicliques. Though it is clear that the results

depend on the input, it is interesting to observe that Theorem 1 always holds.

We expect to see in the future both applications of our algorithms (and their variations) on

many available data sets, and improvements of our algorithms for very large data sets or

data sets other than binary matrices.
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Fig. 1.
(a) A supporting pattern for (6; 7). (b) The visualization of this supporting pattern by a

bipartite graph.
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Fig. 2.
Numbers on the left-most column are transaction ids, and number on the upper most row are

the item ids. The shaded part is a maximal biclique of M.
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Fig. 3.
The fraction of known gene-to-phenotype relations contained in the top-ranked gene-to-

phenotype relations.
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TABLE 1

Summary of Notations and Definitions

Notation/Name Defined in Definition

M Section 2 transactional database in the form of (0,1)-matrix

T Section 2 complete set of transactions (rows) of M

I Section 2 complete set of items (columns) of M

M(i, j) Section 2 value of entry (either 0 or 1) at row i and column j of M

pattern (Cartesian product) Section 2 P = T × I = {(x, y) : x ∈ T, y ∈ I} where T ⊆ T and I ⊆ I

supporting pattern P for entry (i, j) Section 2 Pattern P covers (i, j) and, M(x, y) = 1 for any entry (x, y) ∈ P\{(i, j)}

maximal supporting pattern P for entry (i,
j)

Section 2
There does not exist another supporting pattern P′ for (i, j) such that P ⊂ P ′

S(i, j) (independent evidence for
hypothesis M(i, j) == 1)

Section 2 the set of all maximal supporting patterns for entry (i, j)

F(i, j) (feature extracted from S(i, j)) Section 2 maxT × I ∈ S(i,j)(|T| – 1) * (|I| – 1)

M[X; Y] (submatrix of M) Section 3.1 a matrix formed by selecting rows in X and columns in Y from M, where X ⊆ T
and Y ⊆ I

supporting biclique for entry (i, j) Section 3.1 biclique in M[X;Y] where X = {x : x ∈ T \ {i}, M (x, j) = 1},
Y = {y : y ∈ I \ { j}, M (i, y) = 1}.

maximal supporting biclique for entry (i,
j)

Section 3.1 maximal biclique in M[X;Y] where X = {x : x ∈ T \ {i}, M (x, j) = 1},
Y = {y : y ∈ I \ { j}, M (i, y) = 1}.

maximum supporting biclique for entry (i,
j)

Section 3.1 maximum edge biclique in M[X;Y] where
X = {x : x ∈ T \ {i}, M (x, j) = 1},
Y = {y : y ∈ I \ { j}, M (i, y) = 1}.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2014 June 06.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Xiang et al. Page 24

TABLE 2

Nine Confirmed Genes for Colon Cancer in G2P

Gene INDEVI-F INDEVI-G rank percentile

MLH1 22 1436 3 0.22%

MSH2 22 1436 3 0.22%

HRAS 19 4634 6 0.33%

RPS19 16 4509 11 0.60%

TP53 12 1443 43 2.37%

BMPR1A 11 1968 44 2.49%

SMAD4 11 1968 44 2.49%

CDKN2A 8 1425 794 43.94%

APC 8 1404 795 43.99%
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TABLE 4

Nineteen Confirmed Genes for Breast Cancer in G2P

Gene INDEVI-F INDEVI-G rank percentile

KRAS 69 13974 2 0.11%

FGFR2 54 13817 6 0.33%

TWIST1 32 10978 7 0.39%

PTEN 24 11241 11 0.61%

MLH1 22 6592 16 0.94%

MSH2 22 6592 16 0.94%

TP53 20 6711 69 3.87%

PIK3CA 20 6698 73 4.04%

SLC22A18 18 6671 744 41.17%

PARK2 18 6622 745 41.23%

STK11 18 5198 746 41.28%

CTNNB1 18 3442 747 41.34%

AKT1 18 3428 748 41.39%

RAD54L 18 3415 749 41.62%

PPM1D 18 3415 749 41.62%

RB1CC1 18 3415 749 41.62%

BRIP1 18 3415 749 41.62%

CDKN2A 18 3221 749 41.67%

TIMP2 18 3195 749 41.73%
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Algorithm 1

1: for each C = TC × IC ∈ C do

2:     {CT, CI} = Preprocess(M , C);

3:     for each entry (i, j) of M do

4:         localT = CT
(i);

5:         localI = CI
( j);

6:         if M(i, j) = 1 then

7:             if i ∈ TC then localI = localI − 1; end if {Note the update is on localI, not localT, if i ∈ TC}

8:             if j ∈ IC then localT = localT − 1; end if {Note the update is on localT, not localI, if j ∈ IC}

9:         end if

10:         FC
(i, j) = localT ∗ localI

11:         if FC
(i, j) > 0 then

12:             G(i, j) = G(i, j) + 1;{A counter of maximal bicliques of M that contain supporting bicliques for (i, j). It is an auxiliary
information for tie breaking.}

13:             if F(i, j) < FC
(i, j) then

14:                 F(i, j) = FC
(i, j);

15:                 c(i, j) = index of C in C;{An index for reconstructing evidence of maximum supporting biclique.}

16:             end if

17:         end if

18:     end for

19: end for

20: return F, G, c;

Procedure Preprocess(M, C)

1: for all i ∈ T do

2:
    CT

(i) = ∣ IC ∩ Y ′ ∣  where Y ′ = {y : y ∈ I, M (i, y) = 1};

3: end for

4: for each j ∈ I do

5:
    CI

( j) = ∣ TC ∩ X ′ ∣  where X ′ = {x : x ∈ T, M (x, j) = 1};

6: end for

7: return CT, CI
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Algorithm 2

1: Let C = TC × IC be the biclique in C indexed by c(i, j);

2:
Let X ′ = {x : x ∈ T, M (x, j) = 1}, Y ′ = {y : y ∈ I, M (i, y) = 1};

3: if M(i, j) = 0 then

4:
    return (TC ∩ X ′) × (IC ∩ Y ′);

5: else

6:
    return ((TC \ {i}) ∩ X ′) × ((IC \ { j}) ∩ Y ′);

7: end if
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