
J Physiol 592.11 (2014) pp 2267–2281 2267

Th
e

Jo
u

rn
al

o
f

Ph
ys

io
lo

g
y

TO P ICAL REV IEW

Bioattractors: dynamical systems theory and the evolution
of regulatory processes

Johannes Jaeger1,2 and Nick Monk3

1EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
2Universitat Pompeu Fabra (UPF), Barcelona, Spain
3School of Mathematics and Statistics, and Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield, UK

Abstract In this paper, we illustrate how dynamical systems theory can provide a unifying
conceptual framework for evolution of biological regulatory systems. Our argument is that
the genotype–phenotype map can be characterized by the phase portrait of the underlying
regulatory process. The features of this portrait – such as attractors with associated basins and
their bifurcations – define the regulatory and evolutionary potential of a system. We show how
the geometric analysis of phase space connects Waddington’s epigenetic landscape to recent
computational approaches for the study of robustness and evolvability in network evolution.
We discuss how the geometry of phase space determines the probability of possible phenotypic
transitions. Finally, we demonstrate how the active, self-organizing role of the environment in
phenotypic evolution can be understood in terms of dynamical systems concepts. This approach
yields mechanistic explanations that go beyond insights based on the simulation of evolving
regulatory networks alone. Its predictions can now be tested by studying specific, experimentally
tractable regulatory systems using the tools of modern systems biology. A systematic exploration
of such systems will enable us to understand better the nature and origin of the phenotypic
variability, which provides the substrate for evolution by natural selection.
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Introduction

The evolution of complex traits depends on the dynamics
of underlying metabolic, physiological and developmental
regulatory processes. These generative processes form a
non-linear map from genotype to phenotype (Alberch,
1991; Wagner & Altenberg, 1996; Pigliucci, 2010; Félix,
2012). (Terms in italics are defined and explained in
the glossary.) The genotype–phenotype map determines
which phenotypes can be realized by a specific genome
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embedded in its organismic and environmental context.
In other words, the genotype–phenotype map defines the
theoretically possible distribution of phenotypic variability
produced by a given set of genotypes (Wagner & Altenberg,
1996). The actual, observable phenotypic variation in real
world populations results from evolutionary processes
such as natural selection and neutral drift acting on this a
priori distribution (see, for example, Wagner & Altenberg,
1996; Salazar-Ciudad & Marı́n-Riera, 2013). While we
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have a solid understanding of how these population-level
processes produce evolutionary change given an observed
range of phenotypic traits, we know very little about
how the distribution of theoretically possible phenotypes
originates in the first place through the process of ontogeny.

The origin and nature of phenotypic variability poses a
central problem for evolutionary theory. A better, more
mechanistic and more detailed, understanding of the
genotype–phenotype map is essential for us to address
the question why organisms can evolve in the first place
(for a range of perspectives on this topic, see Dawkins,
1989; Alberch, 1991; Wagner & Altenberg, 1996; Pigliucci,
2010; Wagner, 2011). For instance, we still do not know
why there are beneficial mutations at all – why do some
random perturbations improve fitness, rather than break
the system – and why such adaptive mutations occur
at frequencies sufficient for selection to act upon. Most
engineered systems do not improve this way, as they are
already designed for minimal redundancy and optimal
performance. Biological systems are different, but we do
not yet know why that is.

What is missing is a theory – or at least a more
systematic, quantitative and integrative understanding
– of ontogeny, including metabolism, physiology and
development. How do complex traits originate? How do
they react to genetic or environmental perturbations? How
does the internal wiring of the underlying generative
processes, their regulatory organization, influence and
bias the direction of evolutionary change? What kind of
phenotypic transitions are likely to occur? Besides, what
kind of trait is impossible to evolve, even in principle?
Generally, we do not have any satisfying answers – based
on mechanistic, causative explanations – to any of these
questions.

In this paper, we argue that the theory of dynamical
systems can provide such answers. We show how
dynamical systems theory allows us to connect important
conceptual frameworks, such as Waddington’s epigenetic
landscape and the theory of genotype networks, to provide
a more unified approach to the study of regulatory
evolution. Considering the evolution of dynamical systems
allows us to classify general types of evolutionary trans-
itions, and provides insights into the mechanisms under-
lying robustness and evolvability of generative regulatory
processes. Finally, we illustrate how dynamical systems
theory can be used to understand the role of phenotypic
plasticity and self-organization in the evolution of
complex phenotypes.

From Waddington’s landscape to genotype networks

One famous attempt to address the problem of regulatory
evolution was made by Conrad Hal Waddington who
aimed at reuniting genetics, evolution and embryology
(Waddington, 1957, 1975; Gilbert, 2000; Slack, 2002).

To this end, Waddington proposed the concept of
the epigenetic landscape to explain how regulatory
organization affects the evolution of generative processes
(Fig. 1, top left, upper panel) (Waddington, 1939, 1940,
1957). In this landscape, the current state of a biological
system is represented by a ball. Over time, the ball rolls
down valleys within the landscape that represent robust
or canalized physiological and developmental trajectories.
Waddington called these trajectories ‘chreods’. Branch
points in these valleys or chreods indicate ontogenetic
decisions, e.g. differentiation into one cell type or another.
Genes exert their effects by altering the landscape.
Waddington represented this genetic influence by pegs
attached to the underside of the surface via guy ropes
(Fig. 1, top left, lower panel). Simply put, development
occurs on a given topography, while evolution changes
this topography over time. Both processes are therefore
connected and constrained by the structure of the
landscape.

Waddington admonished his readers on several
occasions that his landscape is intended to apply at a
metaphorical level only (see, for example, Waddington,
1957). It is not supposed to be mechanistically rigorous.
This point has been criticized by several authors (Gilbert,
2000; Slack, 2002) as it limits the applicability of the
concept in an empirical setting. It is difficult to measure a
metaphor, after all.

A rather different approach to understand the influence
of the genotype–phenotype map on evolutionary
dynamics is based on the simulation of large sets (called
ensembles) of discrete gene regulatory networks (reviewed
in Kauffman, 1993, 2004; Wagner, 2005, 2011). In most
of these studies, genes are represented as simple on/off
switches. Such networks, it is argued, capture the essence
of the genotype–phenotype map. The ‘genotype’ of a
network is defined as the set of its regulatory interactions:
an interaction between two genes can be activating,
repressing or absent. Given some initial state, every
genotype will produce a particular output state, or
‘phenotype’, consisting of a particular combination of
genes that are switched either on or off. It turns out
that, in general, many different genotypes produce the
same phenotype (Kauffman, 1993; Borenstein & Krakauer,
2008; Munteanu & Solé, 2008). Such genotypes form an
‘invariant set of genotypes’, or simply, a ‘genotype set’
(Wagner, 2011).

Genotypes are linked to each other through mutations,
forming a network of networks (or ‘meta-network’; Fig. 1,
bottom). Neighbours in this meta-network are connected
through a mutational change – addition, removal or sign
reversal – in just one regulatory interaction. Genotype
sets are usually highly connected, forming what are called
‘neutral’ or ‘genotype networks’ (Maynard Smith, 1970;
Schuster et al. 1994; Fontana, 2002; Gavrilets, 2004;
Wagner, 2005, 2008, 2011; Ciliberti et al. 2007a,b; Draghi
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Figure 1. From Waddington’s landscape to genotype networks
Top left: the upper panel shows Waddington’s most famous
illustration of his epigenetic landscape. Developmental trajectories
are represented by a ball rolling down the valleys of the landscape.
Branch points represent developmental decisions. The lower panel
illustrates the influence of the genes, which are drawn as pegs
connected to the underside of the landscape by guy ropes. Genes
can alter the shape of the landscape by pulling on these ropes. Both
illustrations are from Waddington (1957), Strategy of the Genes. At
the bottom of the figure we illustrate the concept of a genotype
network. Variants of a toggle switch model are represented by
network diagrams, where green/blue nodes represent regulatory
genes, while arrows indicate activating and T bars repressing
regulatory interactions. A genotype network is a (meta-)network of
such networks, which are connected by mutational steps (addition,
removal or sign reversal of a regulatory interaction). Two genotype
networks are shown: one for regulatory networks converging to a
state where low levels of the blue and green factors coexist (cyan
background), the other for networks converging to a blue off, green
on state (green background). Middle panels show two examples of
phase portraits corresponding to specific network structures or
genotypes in the bottom panel. Axes of these portraits correspond
to regulator concentrations (as indicated in the panel on the right).
Black arrows represent the flow of the system. Blue circles are
attractors, red circles saddle points. Basins of attraction are indicated
by blue, green and cyan background respectively. Basin borders
correspond to separatrices (black lines). An example trajectory is
shown in yellow for both phase portraits. Top right: this panel shows
the potential landscape derived from the phase portrait on the right.
Attractors, saddles and separatrices are shown as in the phase
portraits. The slope of the potential surface is determined by the
flow of the system. Attractors lie in local troughs, valleys correspond
to unstable manifolds that connect the saddle to the two attractors.
The potential surface is a mathematically explicit formulation of
Waddington’s landscape metaphor. See text for details.

et al. 2010). This means that mutations can change
the interactions within a network without changing the
resulting output phenotype. Genotype networks are often
large, spanning a considerable fraction of the space of all
possible genotypes.

As an example to illustrate the concept, we consider
mutational variants of a genetic toggle switch network (see
Jaeger et al. 2012, and references therein), corresponding
to regulatory structures such as those displayed at the
bottom of Fig. 1. The basic version of this network
consists of two regulatory factors (indicated in blue
and green) that repress each other while exhibiting
constitutive external activation and/or auto-activation.
Connectors between network variants represent single
mutational changes in regulatory structure. Two examples
of genotype networks are shown: cyan background colour
indicates networks that produce an output state, or
phenotype, with coexisting low levels of the blue and
the green gene product; green background indicates an
alternative phenotype with high green and low blue (Fig. 1,
bottom).

Genotype networks help us understand a number of
systems-level properties of evolving regulatory processes.
Their large size and high connectivity, for example, explain
the mutational robustness of regulatory systems, and
show that considerable cryptic variability can accumulate
in a population as it drifts along mutational paths
within the network (Wagner, 2005, 2008, 2011; Ciliberti
et al. 2007a,b). Similarly, genotype networks provide an
explanation for the capacity of regulatory networks to
reach novel phenotypes – a concept called ‘evolvability’, or
sometimes more precisely ‘innovability’ (Dawkins, 1989;
Müller & Wagner, 1991; Wagner & Altenberg, 1996;
Fontana, 2002; Müller & Newman, 2005; Wagner, 2005,
2008, 2011; Ciliberti et al. 2007a,b; Pigliucci, 2008; Draghi
et al. 2010; Müller, 2010). As a population drifts across
a genotype network, it reaches novel regions of genotype
space and brings it in contact with alternative genotype
networks implementing different kinds of phenotypes.

Simulation-based studies of genotype networks have
provided many important and interesting new insights
into the origin and evolution of phenotypic traits.
However, most of this research is based on numerically
sampling and simulating large numbers of regulatory
networks, and the insights derived from it are therefore
of a statistical and correlative nature. This limits the
explanatory power of the approach, as it provides no
mechanistic or causative explanations for the existence,
size and geometry of genotype networks. In other words,
these studies show that such networks exist and how they
influence robustness and evolvability, but they do not
provide us with answers to the deeper questions of why
genotype networks exist in the first place, and why they
have the particular extent and shape observed in ensemble
simulations.
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The evolution of dynamical systems

We can address the problem of the existence and geometry
of genotype networks by treating regulatory processes
as evolving dynamical systems (Goodwin, 1982; Oster
& Alberch, 1982; Webster & Goodwin, 1996; François
& Siggia, 2012; Jaeger & Crombach, 2012; Jaeger et al.
2012; Jaeger & Sharpe, 2014). Dynamical systems theory
(Hirsch et al. 2004) provides us with powerful conceptual
tools to understand the underlying causal mechanisms
that produce genotype networks. The geometric analysis
of state or phase space is particularly relevant in this context
(for a highly accessible introduction, see Strogatz, 2000).
Phase space is an abstract space. Its axes represent the
values of the state variables of the system. In our toggle
switch example, these are the concentrations of the blue
and green regulatory factors that constitute the network.

As we have seen above, each variant of the network can
be considered a particular genotype of the system (Fig. 1,
bottom). At the level of our argument, we assume that
each genotype (or network structure) is in turn associated
with a particular geometry of phase space – a specific
phase portrait (for justifications of this simplification,
see Cotterell & Sharpe, 2010; Wagner, 2011). The phase
portrait links genotype to phenotype, and thus represents
the characteristics of the genotype–phenotype map as
shown in Fig. 2.

Figure 1, middle panels, shows two specific examples
of phase portraits for the toggle switch model. The
system may begin at any combination of initial regulator
concentrations, that is, at any point of phase space. This
defines the initial state or condition of the system. Given
a specific initial condition, the equations of the system
determine a dynamic trajectory (yellow and magenta
arrows in Figs 1 and 2) by describing the rate of change
in system state over time. In other words, a trajectory

reflects the temporal progression of the system, equivalent
to the rolling ball in Waddington’s epigenetic landscape.
The totality of possible trajectories in phase space, from
any arbitrary initial condition, constitutes the flow of the
system (black arrows in the phase portrait on the right in
Fig. 1).

Trajectories converge towards subregions of phase space
called attractors. These are the stable steady states of the
system. Attractors can be specific points (blue circles
in Figs 1 and 2) or more complex features of phase
space (limit cycles and strange attractors) (Strogatz,
2000; Hirsch et al. 2004). All but the simplest systems
have multiple attractors, so their phase portrait encodes
multiple, qualitatively distinct, dynamic behaviours. This
defines the dynamical repertoire of a multi-stable system.
It describes the developmental potential of a regulatory
process: the different phenotypic outputs it can produce
given different initial conditions. Our example phase
portraits show the toggle switch network in its tristable
(left) or bistable (right) regime, with three and two
alternative point attractors. The two bistable attractors
correspond to steady states with high blue and low green,
or low blue and high green, respectively. In the tristable
regime, there is an additional attractor at which low levels
of blue and green factor coexist.

Each attractor has an associated region of phase space
– called its basin of attraction – that contains the set
of trajectories that converge towards it (different back-
ground colours in the phase portraits in Figs 1 and 2). The
attractor that is reached by the system is determined by the
basin of attraction to which the initial condition belongs.
The boundaries between basins are called separatrices.
Trajectories that lie on separatrices do not converge to any
of the attractors of the system, but rather to an unstable
steady state, called a saddle point (red circles in Fig. 1).
A saddle point is unstable, as any trajectory leaving it in

Figure 2. Phase portraits characterize the genotype–phenotype map
Genotype space is shown on the left, example phase portraits of the system in the middle, and the resulting
trajectories in phenotype space on the right. A population of individuals with variation in initial conditions (due
to the environment) and systems parameters (due to genetic variation) is represented by pentagons. Given a
specific genotype and specific environmental conditions, the system will follow a particular trajectory to produce
a particular phenotypic outcome. Examples of such trajectories are shown in yellow and magenta in the middle
and right-hand panels). The geometry of phase space determines which phenotypic outcomes can be reached.
See text for details.
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a direction other than the separatrix will diverge to one
of the attractors. Those trajectories that connect saddle
points to attractors are called unstable manifolds.

For systems with one or two state variables, we can
visualize the phase portrait in the form of a potential
surface or landscape (Fig. 1, top right) (Strogatz, 2000). In
this representation, the slope of the landscape corresponds
to the local rate of change in state variables, as defined
by the equations of the system. Attractors correspond
to local troughs, and saddle points resemble mountain
passes with their associated separatrix coming in along
the ridgeline. Unstable manifolds form chreods that
follow the valleys connecting saddles to attractors. The
similarities between this representation of a phase portrait
and the epigenetic landscape are obvious. Basically,
the potential landscape of a dynamical system is a
mathematically rigorous implementation of Waddington’s
famous metaphor (Huang, 2009, 2012; Bhattacharya et al.
2011; Wang et al. 2011; Ferrell, 2012; Furusawa & Kaneko,
2012; Verd et al. 2014).

Figure 1 summarizes how dynamical systems theory
connects genotype networks to the epigenetic landscape.
Genotype networks can be seen as regions of parameter
space within which a particular local topography of the
landscape is conserved. Inside such regions, the system
converges to equivalent output states in a way that is
qualitatively similar between different genotypes. In this
sense, dynamical systems theory provides a unifying
conceptual framework for the evolution of biological
regulatory systems. This general proposition has been
made previously (Goodwin, 1982; Oster & Alberch,
1982; Alberch, 1991; Webster & Goodwin, 1996). In
the following sections, we go further by showing how
dynamical systems concepts can be applied to specific
problems of regulatory evolution.

Types of evolutionary transitions

The pioneering theoretical work of René Thom (1976,
1989) aimed at providing a mathematically rigorous
foundation for Waddington’s conceptual framework.
Thom proved analytically that, for a precisely defined class
of dynamical systems, there are only a limited number of
possible types of phenotypic (or morphogenetic) trans-
itions when parameters change. He called these transitions
elementary catastrophes, and argued (quite differently
from what we say here) that they correspond to specific
types of valleys or chreods in Waddington’s landscape. The
main problem with Thom’s work on catastrophe theory is
that many real world regulatory networks do not conform
to the specific class of systems for which his proofs are valid.
Still, Thom’s analysis raises the interesting possibility that
a general classification of phenotypic transitions may be
possible (see also Goodwin, 1982; Webster & Goodwin,
1996; Jaeger & Sharpe, 2014).

To take a first step towards such a classification, we have
established in Jaeger et al. (2012) that there are only four
distinct modes by which phase space can change during
evolution (apart from a change in the dimensionality of
phase space itself, which we will not consider further here)
(Fig. 3). Only the first mode conforms to Darwin’s concept
of gradualism in evolution. Let us illustrate this with a
specific example based on the toggle switch model: when
the constitutive activating inputs to both regulatory genes
are varied, the position of the system’s attractors shift
position in phase space, while their associated basins and
the separatrix between them remains unchanged (Fig. 3,
top panel). Thus, if we start at the same initial state, the
system will remain in the same basin of attraction, while
the exact concentration values of the steady state – the
phenotypic output of the system – will change smoothly
and continuously as parameter values are altered. Only
concentration levels, but not the basic on/off switch
behaviour of the system, are modified. This results in
gradual ‘phenotypic’ change.

In the other three scenarios, however, threshold effects
occur, and the change in phenotype is qualitative rather
than quantitative. The resulting transition is drastic and
discrete. In the first of these discontinuous situations, we
alter the initial condition of the system (Fig. 3, left-hand
panel). This reflects, among other possibilities, a mutation
with a maternal effect. As long as we remain in the
same basin of attraction, no phenotypic change occurs:
the system is robust. As soon as the initial conditions
cross a separatrix, however, an instantaneous switch to
an alternative attractor will happen.

In the second scenario, the separatrix shifts its position
(Fig. 3, right-hand panel). This can result from a change in
the relative strength of the mutually repressive interactions
between the two regulator genes. The system becomes
asymmetric, and will converge to an alternative attractor
as soon as its initial conditions are ‘overtaken’ by the
moving separatrix. The resulting change in phenotype
is again drastic and discrete, similar to the previous
scenario.

Finally, parameter changes can create or annihilate
attractor states. Such events are called bifurcations
(Strogatz, 2000; Hirsch et al. 2004; Kuznetsov, 2004).
In Fig. 3 (bottom panel), we show a bifurcation from
the bistable to the tristable regime of the toggle switch
model. It occurs due to the introduction of auto-activation
for both regulatory genes. Above a certain strength,
auto-activating inputs will allow a novel steady state to
come into existence, at which both regulatory factors
co-occur at low concentration levels (cyan attractor basin
in Fig. 3). If the initial condition of the system comes
to lie in the new basin, the system will converge to this
intermediate attractor. Again, the transition is drastic and
discrete, contradicting the gradualist view of small and
smooth phenotypic change.

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society
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As far as we can see, these four modes of change are
not limited to low-dimensional systems such as the toggle
switch. Any transitions due to change in phase space
geometry must involve the basic elements considered in
our simple analysis. Therefore, we can draw a number
of general conclusions about the evolution of regulatory
networks.

First, our analysis shows that many changes in
parameters (or initial conditions) do not change the
qualitative behaviour of the system. This feature of
biological processes is called structural stability. It provides
an explanation for the robustness of regulatory networks
towards mutational changes (Thom, 1976), and may
contribute to the punctuated dynamics of evolution, where
long periods of stasis alternate with relatively quick and
drastic shifts in phenotypes (Jaeger et al. 2012).

Second, our analysis suggests that many changes
in regulatory interactions must lead to discontinuous

changes in the phenotype of the system. No smooth trans-
ition occurs, for example, between the two alternative
steady states of the toggle switch in the three non-gradual
scenarios described above. Similarly, bifurcations can lead
to a sudden, discontinuous switch of the system to a
novel steady state, or an equally drastic change away from
an annihilated attractor state. This necessarily discrete
– as opposed to gradual and smooth – nature of many
phenotypic transitions is an important phenomenon to
consider when trying to understand the difference between
macro- and micro-evolutionary dynamics (Jaeger et al.
2012) and the origin of novel phenotypes (see below).

Finally, the geometry of phase space – separatrices,
saddles and attractors with their basins, together with the
bifurcations that occur when parameters are changed –
strongly constrains the probability of transitions that can
occur during regulatory evolution (see also, Goodwin,
1982; Oster & Alberch, 1982; Alberch, 1991; Webster

Figure 3. The four types of change in
phase space geometry during evolution
Regulatory structures and phase portraits of
toggle switch models are shown as in Fig. 1.
The original network is shown in the middle.
It converges to the green on, blue off
attractor at the top left corner of the phase
portrait. The four peripheral panels indicate
the four possible ways in which phase space
can affect evolutionary change. Top, shift in
attractor position has occurred due to
weakened activating inputs to the two
regulators (dashed arrows in network
diagram). The system converges to a different
state with lower concentrations of the green
factor, while its basic on/off behaviour
remains unaffected. This corres-
ponds to Darwin’s concept of gradual
evolution (indicated by the grey background
colour). All three other types of change lead
to discrete threshold effects. Left, a change in
initial condition can either be buffered (as
long as it remains in the same basin of
attraction) or lead to a sudden and drastic
switch to the alternative (blue) attractor state.
Right, introducing an asymmetry in repressive
strength between the two regulator genes
causes the separatrix to shift. As soon as it
crosses the position of the initial condition,
the system will converge to the alternative
(blue) attractor state. Bottom, introduction of
autoactivation can lead to the creation of a
third attractor state (shown in cyan) by a
bifurcation event. If the initial condition
comes to lie within the newly created
attractor basin, the system will converge to
the novel state. Again, this transition is abrupt
and discrete. See text for details.
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& Goodwin, 1996; Jaeger et al. 2012; Jaeger & Sharpe,
2014). In fact, some transitions simply cannot occur
(we will revisit this point in the next section). Their
probability is zero, as the required attractor states do
not coexist in the same region of phase and parameter
(or genotype) space. Understanding such constraints for
specific evolving regulatory processes would enable us to
make probabilistic, local predictions concerning the future
direction of evolutionary change in biological systems. In
other words, it could turn evolutionary biology from a
purely historical into a more predictive branch of science.

Robustness, innovation and evolvability

So far, we have only briefly touched upon topics such
as robustness, innovation and evolvability. Dynamical
systems theory reveals its full explanatory power
concerning these phenomena when combined with the
concepts of Waddington’s epigenetic landscape and
Wagner’s notion of genotype networks (see Fig. 1).

For the purpose of our argument, we will use a
very specific, somewhat coarse-grained, definition of a
genotype network: it is a mutationally connected set
of genotypes for which a specific initial condition lies
within the basin of attraction associated with a particular

phenotype. This concept is illustrated in Fig. 4: the
regulatory network associated with the phase space in A
lies within the blue genotype network, as the trajectory
originating from its given initial condition converges to
the blue attractor. Likewise, phase spaces in B–D belong
to the green genotype network, while the trajectory in
E falls into the intermediate attractor basin shown in
cyan. It is important to note that in our present context
we do not consider smooth, quantitative changes in the
attractor position as phenotypic transitions. Thus, the
genotypes corresponding to phase portraits in Fig. 4B
and C belong to the same genotype network although
the exact concentration levels defining their respective
attractor states differ between the two.

Ensemble simulations have shown that the robustness
of a phenotype depends on the size and connectivity
of its genotype network (Wagner, 2005, 2008, 2011;
Ciliberti et al. 2007a,b). In our conceptual framework,
genotype networks are associated with specific basins of
attraction (Fig. 4). Therefore, the explanation of why
genotype networks exist and how they lead to robustness
is straightforward in dynamical systems terms. The
probability of observing a given phenotype in an evolving
population, and its robustness against perturbations,
depend directly on the size, geometry and structural

Figure 4. Robustness, innovation
and evolvability
This figure illustrates how features of phase
space can explain the presence and
geometry of large genotype networks,
which determine the robustness and
evolvability of a regulatory system. It shows
three genotype networks, one for each of
the tristable attractor states (blue, green
and cyan network nodes). Connectors
between nodes represent mutational steps.
The inset on the top right shows that each
node corresponds to a specific genotype or
regulatory structure (as in Fig. 1). A–E,
phase portraits for selected nodes (axes and
layout as in Fig. 1). Individual trajectories
given a specific initial condition are shown
as yellow arrows. Boundaries of genotype
networks correspond to the initial condition
crossing a separatrix, thus causing the
system to converge to an alternative steady
state. The curved red line in the genotype
network diagram represents the bifurcation
boundary where the cyan attractor state is
created/annihilated. Note that it does not
coincide with any genotype network
boundary. This allows the system to cross a
bifurcation boundary by neutral drift,
thereby increasing its innovation potential
by increasing the number of alternative
genotype networks it can encounter in
phase space. See text for details.
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stability of the associated attractor basin in phase and
parameter (or genotype) space. Basins that cover a
large fraction of phase space across different genotypes
will probably be encountered by selection or other
evolutionary processes (see, for example, the green or blue
basins in Fig. 4, which are present and cover large areas
of phase space in all panels shown). Furthermore, a large
percentage of changes in initial conditions or parameter
values will retain the system in such a robust dynamical
regime (see, for example, Fig. 4B–D). This is particularly
true if the relevant initial condition for a system is located
well away from any separatrices that bound the basin of
attraction. Note that in this case, the system will also be
buffered against stochastic fluctuations.

Thus, genotype networks conveying robustness
correspond to large basins of attraction, which are spread
across phase space, and persist across large regions of
the parameter space of the underlying dynamical system.
Translated into Waddington’s terms, this means that
robustness and canalization depend on deep valleys
in the epigenetic landscape with a large associated
‘drainage basin’ that persists across a large range of
genetic and environmental perturbations. Alternatively,
as Thom put it and we have already mentioned above,
robust morphogenesis crucially depends on the structural
stability of the underlying dynamics (Thom, 1976).
This is a fundamental mechanistic insight, which can
now be tested empirically using the methods and tools
of modern systems biology. In particular, we need to
investigate whether large and stable basins of attraction
are a rare exception, or whether they are a common
phenomenon in biological regulatory processes. This is
still an open question. A dedicated research programme
to empirically sample, simulate and analyse phase spaces
of experimentally tractable systems will be required to
address it in a rigorous and systematic manner (Jaeger &
Crombach, 2012; Jaeger et al. 2012; Jaeger & Sharpe, 2014).

Shifting our focus back to conceptual issues, we note
that a number of additional systems-level properties
of evolving networks can be fitted into our dynamical
systems framework. For instance, the notion of a genotype
network resolves the apparent contradiction between
mutational robustness and the capacity of a regulatory
system to innovate, that is, to produce novel phenotypes
under suitable selective pressures (Müller & Wagner,
1991; Müller & Newman, 2005; Wagner, 2005, 2008,
2011; Ciliberti et al. 2007a,b; Draghi et al. 2010; Müller,
2010). The basic idea is the following: genotype networks
allow (more or less) neutral systems drift as rewiring the
network through mutations does not necessarily change
the phenotypes they produce. In this way, a population of
regulatory networks can explore large regions of genotype
space. The wider the range of exploration, the higher
the number of alternative genotype networks that occur
in the population’s mutational neighbourhood – the

region of genotype space that can be reached within
one mutational step. When the population encounters a
change in environmental conditions that leads to selection
for an alternative phenotype, it is more probable to have
that particular phenotype mutationally available than
if the population were confined to a small, localized
region of genotype space. If any mutated individual in
the population comes to lie within this new genotype
network, its offspring can outcompete their peers due to
the increased fitness associated with the ‘invention’ of the
novel, more adapted, phenotype.

How does this translate to dynamical systems terms?
As we have seen, large genotype networks correspond
to large basins of attraction that persist across a wide
range of parameter changes. If we study the geometry
of phase portraits, we find that such structurally stable
basins tend to be in contact with a greater number
of alternative dynamical regimes. For example, Fig. 4D
shows a phase portrait where the green and blue basins
of attraction do not connect. It is impossible to trans-
ition from the green to the blue steady state without
crossing the intermediate cyan basin. If we assume
that altered environmental conditions favour the blue
phenotype, but lead to a negative impact on fitness
for the cyan state, then the green-to-blue transition
becomes highly improbable. This evolutionary roadblock
can be circumvented if the population spreads across
the green genotype network. Through this neutral drift
process, it will eventually cross the bifurcation boundary
(indicated by a red line in Fig. 4) where the cyan state is
annihilated. Beyond this boundary, the system will reach
configurations such as those shown in Fig. 4B and C, where
the green and blue basins do touch, and direct transitions
now become possible. Therefore, transition probabilities
between phenotypes are determined by the geometrical
arrangement of attractor basins and their contacts through
phase and parameter space. This provides a mechanistic
explanation for another important concept: the idea
that there are regulatory (or developmental) constraints
or biases on the evolution of phenotypic traits (see, for
example, Alberch, 1982, 1991; Maynard Smith et al. 1985;
Wagner, 1988; Richardson & Chipman, 2003; Arthur,
2004; Salazar-Ciudad, 2006).

From the above example, it is evident that the
boundaries of genotype networks correspond to the initial
condition crossing a separatrix between two alternative
basins of attractors. This differs from the traditional
view that phenotypic or indeed any critical transitions
are always directly caused by bifurcations (e.g. Thom,
1976; Scheffer, 2009). Figure 4 shows that the bifurcation
creating the cyan state occurs well within the green and
blue genotype networks. We will revisit this point when
discussing the role of phenotypic plasticity below. In
our current example, it means that, although the phase
portraits in Fig. 4C and D differ by a bifurcation, they both
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belong to the green genotype network, while Fig. 4D and E
fall into different genotype networks despite exhibiting an
equivalent number and arrangement of attractor basins.

Thus, we can summarize this section as follows. The
existence of genotype networks can be explained by the
presence of large, structurally stable basins of attraction
in the underlying dynamical system. These correspond to
deep, stable valleys in Waddington’s landscape. The extent
and geometrical arrangement of these attractor basins
in phase space determines the evolutionary potential
of the system – its robustness and evolvability, and
its developmental constraints. Only large, structurally
stable, basins are probably encountered by evolutionary
processes. They determine the distribution of phenotypic
variability, the substrate on which selection can act.

The role of the environment

We have seen above that the phase portrait of a system
captures the essential features of the genotype–phenotype
map (see Fig. 2): a developmental trajectory is specified by
a combination of initial conditions and the parameters
(which we called the ‘genotype’) of the system. The
phase portrait provides a natural framework for under-
standing the role of environmental cues in the evolution
of regulatory networks. In our course-grained framework,
we can model the influence of such environmental factors
through changes in the initial conditions of the system
(while noting that, in general, such factors may also change
the parameters of the system).

So far, we have considered the connection between
phase space geometry and genotype networks for the
simplified case of a precisely specified initial condition.
This produces a unique developmental trajectory resulting
in a default or target phenotype (yellow arrows in Fig. 4)
(Nijhout, 2003; Fusco & Minelli, 2010; Espinosa-Soto et al.
2011; Wagner, 2011). It reflects the regulatory dynamics
of a single instance of the network, that is, an individual
organism, in the absence of environmental perturbations.
To render our conceptual model a bit more realistic, we
will extend our considerations to populations. We assume
that the environment has a slightly different impact on
the initial conditions of each individual in the population.
Therefore, instead of a single default trajectory, we get a
cloud of initial states as represented in yellow in the phase
portraits of Fig. 5.

As most biological regulatory systems are multi-stable,
environmental variability has the potential to provide
access to multiple phenotypes for a given genotype. This
results in phenotypic plasticity- the dependence of the
phenotype on external conditions (reviewed in Schlichting
& Pigliucci, 1998; West-Eberhard, 2003; Gilbert & Epel,
2009). Phenotypic plasticity can manifest itself in several
ways. It can lead to a smooth shift in attractor position, and
hence a smooth reaction norm of a phenotype (Schlichting

& Pigliucci, 1998). Here, we will focus on a more drastic
case where environmental changes result in a qualitatively
distinct alternative phenotype because initial conditions
come to lie in different basins of attraction (see, for
example, phase portraits in Fig. 5B, C and E). This
phenomenon is called polyphenism, and there is increasing
evidence that it is much more common in nature than pre-
viously thought (see, for example, Emlen, 2000; Nijhout,
2003; Fusco & Minelli, 2010; Simpson et al. 2011).

Phenotypic plasticity and polyphenism in particular,
have interesting consequences for the evolutionary
dynamics of phenotypic transitions. To illustrate this, we
adopt a modified version of the representation introduced
by Espinosa-Soto and Wagner (2011) depicting each node
of a genotype network with a pie chart. The sectors of
each pie chart indicate the relative size of the attractor
basins in the associated phase portrait. Let us consider
Fig. 5C in a bit more detail. This phase portrait exhibits
two equal-sized blue and green basins of attraction,
which correspond to a pie chart that is half blue, half
green. Note that the cloud of initial conditions lies
mainly in the green basin, but does extend a little across
the separatrix into the blue. Depending on the initial
conditions, this phase portrait can fall either into the
green or the blue genotype network. In this way, poly-
phenism – reflected by multi-stability of the system –
causes different genotype networks to overlap (where pie
charts show multiple sectors). The boundaries between
them are no longer uniquely defined, but depend explicitly
on the environment.

Polyphenism can facilitate phenotypic transitions
through a process called genetic assimilation, another
one of Waddington’s pioneering concepts (Waddington,
1953, 1957, 1961, 1975; for recent reviews, see also
West-Eberhard, 2003; Crispo, 2007). This type of
assimilation occurs when an originally environmentally
triggered phenotype becomes internally induced through
genetic signals during evolution. It can easily be
implemented in our framework. At the outset, a change
in environmental conditions shifts the position of the
cloud of initial conditions in the phase portrait (compare
Fig. 5C and D, shift indicated by grey arrow). This can
bring the population close to a separatrix such that
some or all individuals fall into an alternative basin of
attraction (Fig. 5D, cyan basin). Subsequently, selection
will favour increased penetrance of the new, adaptive
phenotype. Such an increase can be achieved, for instance,
by genetic changes enlarging the size of the alternative
basin (compare the cyan regions in Fig. 5D and E). Finally,
the original environmental trigger is removed (grey arrow
in Fig. 5E), yet the system remains in the basin of the novel,
alternative phenotype (cyan basin, Fig. 5E).

Simulation-based studies have revealed the exact
conditions that need to be met for genetic assimilation
to occur (Espinosa-Soto et al. 2011; Wagner, 2011).
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First, the system needs to be able to encounter
environmentally induced alternative phenotypes while
still drifting along the genotype network of the original
default phenotype. Second, the penetrance of the
adaptive alternative phenotype should have a tendency
to increase as we approach the boundary of the original
genotype network. Third, genotypes that produce a given
alternative phenotype must be mutationally connected
to other genotypes producing this alternative phenotype.
Finally, increasing penetrance of an alternative phenotype
should facilitate its transition to become the new default.

These four conditions for genetic assimilation can be
explained by the following features of phase and parameter

space. First, we have seen in the previous section (and
Fig. 4) that bifurcation boundaries can occur well beyond
the borders of a genotype network. We have further argued
that multi-stability leads to phenotypic plasticity and over-
lapping genotype networks if we let the environment
affect the initial conditions (see Fig. 5). Taken together,
this shows that multi-stability is necessary and provides a
mechanistic explanation for the first condition.

Second, as we move towards the boundary of the
genotype network for the default phenotype, we tend
to see a decrease in the size of its associated basin of
attraction, and a consequent increase in basin size for
the alternative phenotypes (see pie charts in Fig. 5).

Figure 5. The role of the environment: genetic assimilation and self-organization
How polyphenism can lead to self-organized evolutionary convergence toward a novel adaptive phenotype through
genetic assimilation. The basic layout is the same as Fig. 4. Nodes in genotype networks are now displayed as pie
charts reflecting the relative size of the basins of attraction representing each phenotype in the phase portraits
(A–E, blue, green and cyan). Multi-stable nodes (which have more than one coloured sector in their pie charts)
can belong to different genotype networks depending on initial conditions. Genetic assimilation is modelled using
a population of genotypes indicated by yellow clouds in phase portraits A–E. An environmental perturbation
triggers the population to express an alternative phenotype (cyan; shift of initial conditions indicated by the grey
arrow in D). Selection then causes stabilization of this phenotype by enlargement of its basin (transition from
D to E). The novel phenotype is now expressed even in the absence of the environmental trigger (reverse shift
of initial conditions represented by the grey arrow in E). Self-organization of phenotypic transitions is shown as
follows: grey arrows between pie charts represent fastest evolutionary path from the green to the blue genotype
network. This is summarized in the inset on the top right: circles indicate green and blue genotype networks
respectively. Maximally increasing penetrance along the mutational path (grey arrow) leads to self-organized
transition (evolutionary funnelling) of the population to the alternative (blue) state. See text for details.
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This expansion involves movement of separatrices, which
‘overtake’ the cloud of initial conditions explaining the
increasing recruitment of initial conditions into the novel
basin, and thus the increasing penetrance of the alternative
phenotype (see, for example, the blue attractor in Fig. 5A
and B).

Third, in the absence of bifurcation events, which are
generally quite rare, phase space geometry tends to change
subtly and smoothly, as system parameters are varied. This
continuity explains why genotypes producing the same
set of alternative phenotypes tend to be connected. Their
connection is based on the geometrical similarity of the
underlying phase spaces (see, for example, Fig. 4B and C).

The final point is the most interesting. Selection
for an advantageous phenotype will act to increase its
penetrance (see above). Because of the continuous nature
of phase space change between genotypes in the absence
of bifurcation, this mechanism will ‘push’ the evolving
population in the direction of the largest increase in basin
size for the alternative attractor (indicated by grey arrows
between pie charts in Fig. 5). In Waddington’s terms, it will
guide the population in the direction of the deepest valley
with the largest drainage basin. This gives us an intuitive
geometrical explanation of why genetic assimilation can
accelerate phenotypic change. The topography of the
landscape and the way it reacts to genetic changes induces
an element of self-organization into the process (Kauffman,
1993; Camazine et al. 2003). Evolution is still a random
process, but a random process biased towards the novel
advantageous phenotype by the underlying geometry of
phase and parameter space.

Conclusions: cursed by complexity?

In this paper, we have introduced some conceptual tools
from dynamical systems theory, and have illustrated how
they provide explanations for a number of systems-level
phenomena relevant to the evolution of biological
regulatory processes (see Figs 3, 4, 5). These concepts
constitute a unifying framework for regulatory evolution
that connects genotype networks to Waddington’s
epigenetic landscape (see Fig. 1). We argue that the
geometrical analysis of phase and parameter space
provides a deeper level of understanding than insights
based on the numerical study of network ensembles, as
it yields mechanistic and causative rather than statistical
and correlative explanations.

One common objection to this approach is to criticize
its limited practicality. It has been argued that potential
problems – such as the high and dynamically changing
dimensionality of complex regulatory systems – pose
an insurmountable challenge for phase space analysis.
We disagree with this point of view, for a number of
reasons.

Of course, it is true that many biological processes will
not be amenable to this level of scrutiny. However, selected
model systems already are or will become so in the near
future. Such an approach based on case studies in carefully
chosen model systems is very common throughout
biology. Phase space analysis has been successfully used
to analyse the function and developmental potential of
complex patterning systems in embryos of Drosophila
melanogaster (Manu et al. 2009a,b; Vakulenko et al. 2009)
and Caenorhabditis elegans (Corson & Siggia, 2012). This
provides a proof-of-principle for the feasibility of the
approach.

A number of additional considerations indicate that
our suggested approach is practical and worth pursuing.
First, we have shown (in Fig. 3) that there are only a
limited number of possible phase space transitions (Jaeger
et al. 2012). Furthermore, the relevant features of phase
space and their bifurcations are often low dimensional
(see, for example, Manu et al. 2009b; Corson & Siggia,
2012). Or if they are not, there are methods that allow the
reduction of the dimensionality of the system, either by
clustering or eliminating individual factors (reviewed in
Hecker et al. 2009), by identifying and studying subsystems
of attractors (Irons & Monk, 2007), or by more abstract
mathematical approaches to dimensionality reduction
(Radulescu et al. 2008; Vakulenko et al. 2009). And
finally, by choosing a pragmatic bottom-up, rather than
systematic top-down approach to phase space analysis, we
can understand the regulatory and evolutionary potential
of specific, experimentally tractable biological systems, in
which we can rigorously test our model predictions (Jaeger
& Crombach, 2012; Jaeger & Sharpe, 2014).

Based on this last point, we need to emphasize that
our conceptual framework does not provide a general
theory from which we can derive all possible regulatory
behaviours. Instead, we propose a more empirical research
programme to explore the space of possible phase space
geometries from specific, real world instances. Phase space
analysis could be used in the near future to gain new
insights into models of evolving regulatory processes such
as cell cycle regulation, microbial metabolism and physio-
logy, stem cell differentiation, or aspects of development
such as axis formation and segmentation in arthropods,
vertebrate limb development and somitogenesis, and
pattern formation in plant roots, stems and leaves. Only by
examining a large number of such systems will we be able
to derive general insights into potential regularities or rules
that govern biological regulatory dynamics. Knowledge of
such regularities would, in fact, amount to some sort of an
empirical theory of physiology and development (Jaeger &
Sharpe, 2014). Such a theory will bring our understanding
of evolutionary dynamics to an entirely new level, and may
lead one day to a locally predictive theory of phenotypic
evolution in real world populations.
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Box. Glossary

alternative phenotype A phenotype – produced by a multi-stable regulatory system – which shows a lower penetrance
than the default phenotype.

attractor A point or higher-dimensional bounded subregion of phase space towards which trajectories
converge from all directions over time.

basin of attraction The subregion of phase space containing all trajectories that converge to a specific attractor.
bifurcation An abrupt and drastic change in the dynamical repertoire of a dynamical system caused by

smooth variation in parameter values. Usually involves the creation or annihilation of an
attractor and its associated basin, or a change in the type of a steady state (e.g. from attractor
to saddle point).

canalization Characterizes the buffered nature of ontogenetic trajectories with respect to genetic or
environmental perturbations. Is caused by structural stability of the underlying attractors and
their bifurcations.

catastrophe An abrupt and drastic change in the behaviour of a dynamical system, usually due to an
underlying bifurcation event. Nowadays, more often called a ‘critical transition’.

chreod A robust or canalized ontogenetic pathway. Corresponds to the bottom of a valley in the
epigenetic or potential landscape.

default phenotype The phenotype produced by a regulatory system given a specific initial condition in the absence
of any environmental variability or perturbation. Also: the phenotype produced with highest
penetrance by a phenotypically plastic system under variable environmental conditions.

developmental constraint/bias See regulatory constraint/bias.
dynamical repertoire The set of outputs (dynamical behaviours or phenotypes) a system can produce. Defined by the

phase portrait (attractors and their basins, saddles and separatrices) of the system.
(network) ensemble A large set/class of networks with given characteristics.
epigenetic landscape A metaphor proposed by C.H. Waddington to characterize the dynamical constraints and

robustness or canalization affecting the production of phenotypic outcomes, and the
evolution of ontogenetic trajectories.

evolvability The capacity of an evolving regulatory system to produce adaptive phenotypes. Also called
innovability by some authors taking the assumption that adaptive phenotypes can be
considered evolutionary novelties or innovations.

flow The set of all trajectories of a dynamical system starting from any possible initial condition.
Defines the phase portrait and, hence, the dynamical repertoire of the system.

generative process A metabolic, physiological and/or developmental regulatory process that produces some sort of
phenotype. The genotype–phenotype map is formed by the combination of such processes.

genetic assimilation The replacement of an environmental trigger for an ontogenetic trajectory by an internal,
genetic one.

genotype network A set of genotypes that, given identical initial conditions, produce the same (default)
phenotype, and that are directly connected to each other via mutational steps, i.e. a change
(addition, subtraction or sign reversal) in a single regulatory interaction.

genotype–phenotype map A map (in the mathematical sense of the word) that connects genotypes to the phenotypes they
produce via generative processes. This map is degenerate due to phenotypic plasticity (one
genotype, many phenotypes) and robustness or canalization (many genotypes, one
phenotype) of biological systems.

genotype set A set of different genotypes producing the same (default) phenotype.
initial state/condition Is comprised of the initial values of all state variables of the dynamical system.
innovability The propensity of a system to produce novel adaptive phenotypes (innovation).
neutral network See genotype network.
multi-stability The characteristic of a system that can produce more than one (phenotypic) output. Implies the

presence of more than one attractor in the phase portrait.
ontogeny We use this term in a very broad sense here – true to its literal meaning, ‘the generation of

being’ – to include not only developmental but also metabolic and physiological processes
involved in the production of phenotypes.

parameter See system parameters.
penetrance The percentage of individuals in a population that show a given phenotype.
phase portrait Characterizes the phase space of a specific dynamical system, e.g. a gene regulatory network

with a given regulatory structure and a defined set of parameter values. Consists of an
arrangement of attractors and their basins, with separatrices (and associated saddle points)
that form the boundaries between them. Defines the dynamical repertoire of the system.

continued
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Box. Continued

phase space An abstract, usually multidimensional, space whose axes are defined by the state variables of the
system. Contains features such as attractors and their associated basins, saddle points and
separatrices.

phenotypic plasticity The ability of a specific regulatory system, or genotype–phenotype map, to produce a range of
phenotypes under varying environmental conditions.

phenotypic variability Theoretical (a priori) distribution of phenotypes a given regulatory system, or
genotype–phenotype map, can produce. Provides the probability of observing a possible
phenotype before considering the effects of natural selection and genetic drift.

phenotypic variation Observed (a posteriori) distribution of phenotypes in a population, based on the combined
effect of a specific a priori distribution (phenotypic variability), and evolutionary processes
such as natural selection and genetic drift.

polyphenism A type of phenotypic plasticity where the resulting distribution of phenotypes is not continuous
(see reaction norm), but discrete, producing a default, and one or several alternative
phenotypes.

potential surface/landscape Visualization of the phase portrait where the flow of the system is represented by the slope of
the potential, i.e. fast change implies a steep slope and vice versa. Can be seen as a
mathematically rigorous implementation of the epigenetic landscape.

reaction norm A continuously varying distribution of phenotypes produced by a given regulatory system across
a range of environmental conditions (as opposed to the discrete distribution of phenotypes in
polyphenism).

regulatory constraint/bias Describes a limitation or bias in the direction or rate of possible evolutionary change, imposed
by the regulatory organization of a system.

regulatory organization Corresponds to the wiring of a generative process: defines how the components constituting the
process interact dynamically to produce a phenotypic outcome. Includes metabolic,
physiological and gene regulation. We use this term interchangeably with regulatory structure.

regulatory structure See regulatory organization.
robustness See canalization.
saddle point A point or higher-dimensional bounded subregion of phase space located on a separatrix or

boundary between two basins of attraction. Saddle points are unstable: trajectories converge
towards them from the direction of the separatrix only, while they diverge in all other
directions.

self-organization Describes a structure or dynamic pattern that arises due to internal regulatory interactions in a
system, rather than an external forcing or drive.

separatrix The boundary between two basins of attraction. Can contain saddle points.
state (of a system) Is comprised of the values of all state variables of the dynamical system at a given time.
state space See phase space.
state variable Represents the current value of a specific component of a dynamical system that changes over a

short timescale (e.g. the concentration of a regulatory factor).
structural stability Characterizes the persistence of a specific attractor and its associated basin over a large range of

changing parameter values. Underlies the robustness and canalization of biological regulatory
processes.

system parameters A set of numerical values that determine system properties, such as the sign and strength of
regulatory interactions, or rates of production, decay, or diffusion for systems components.
Parameters do not change over time, or if they do, they change more slowly than the state
variables of the system.

target phenotype See default phenotype.
trajectory Describes the changing state of a biological system over time. Corresponds to the path of change

through phase space that a dynamical system will take given a specific initial state or condition.
unstable manifold A trajectory diverging from a saddle point towards an attractor. Concentrates bundles of

trajectories in the subregion of phase space around it before they reach the attractor.
Corresponds to a chreod (the bottom of a valley) in the epigenetic or potential landscape.
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Munteanu A & Solé RV (2008). Neutrality and robustness in
Evo-Devo: Emergence of lateral inhibition. PLoS Comput
Biol 4, e10000226.

Nijhout HF (2003). Development and evolution of adaptive
polyphenisms. Evol Dev 5, 9–18.

Oster G & Alberch P (1982). Evolution and bifurcation of
developmental programs. Evolution 36, 444–459.

Pigliucci M (2008). Is evolvability evolvable? Nat Rev Genet 9,
75–82.

Pigliucci M (2010). Genotype-phenotype mapping and the end
of the ‘genes as blueprint’ metaphor. Philos Trans R Soc Lond
B Biol Sci 365, 557–566.

Radulescu O, Gorban AN, Zinovyev A & Lilienbaum A (2008).
Robust simplifications of multiscale biochemical networks.
BMC Syst Biol 2, 86.

Richardson MK & Chipman AD (2003). Developmental
constraints in a comparative framework: A test case using
variations in phalanx number during amniote evolution.
J Exp Zool B (Mol Dev Evol) 296B, 8–22.

Salazar-Ciudad I (2006). Developmental constraints vs.
variational properties: How pattern formation can help to
understand evolution and development. J Exp Zool B (Mol
Dev Evol) 306B, 107–125.

Salazar-Ciudad I & Marı́n-Riera M (2013). Adaptive dynamics
under development-based genotype-phenotype maps.
Nature 497, 361–364.

Scheffer M (2009). Critical Transitions in Nature and Society.
Princeton University Press, Princeton, NJ.

Schlichting CD & Pigliucci M (1998). Phenotypic Evolution: A
Reaction Norm Perspective. Sinauer Associates, Sunderland,
MA.

Schuster P, Fontana W, Stadler PF & Hofacker I (1994). From
sequences to shapes and back: a case study in RNA
secondary structures. Proc R Soc Lond B 255, 279–284.

Simpson SJ, Sword GA & Lo N (2011). Polyphenism in insects.
Curr Biol 21, R738–R749.

Slack JMW (2002). Conrad Hal Waddington: the last
Renaissance biologist? Nat Rev Genet 3, 889–895.

Strogatz SH (2000). Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry and Engineering.
Perseus Books, New York.

Thom R. (1976). Structural Stability and Morphogenesis. W.A.
Benjamin, Inc., Reading, MA.

Thom R (1989). An inventory of Waddington’s concepts. In
Theoretical Biology: Epigenetic and Evolutionary Order from
Complex Systems, ed. Goodwin B & Saunders P, pp. 1–7.
Edinburgh University Press, Edinburgh.

Vakulenko S, Manu, Reinitz J & Radulescu O. (2009). Size
regulation in the segmentation of Drosophila: Interacting
interfaces between localized domains of gene expression
ensure robust spatial patterning. Phys Rev Lett 103, 168102.

Verd B, Crombach A & Jaeger J (2014). Classification of
transient behaviours in a time-dependent toggle switch
model. BMC Syst Biol 8, 43.

Waddington CH (1939). An Introduction to Modern Genetics.
George Allen & Unwin Ltd., London.

Waddington CH (1940). Organisers and Genes. Cambridge
University Press, Cambridge.

Waddington CH (1953). Genetic assimilation of an acquired
character. Evolution 7, 118–126.

Waddington CH (1957). The Strategy of the Genes. George
Allen & Unwin Ltd., London.

Waddington CH (1961). Genetic assimilation. Adv Genet 10,
257–290.

Waddington CH (1975). The Evolution of an Evolutionist.
Cornell University Press, Ithaca, NY.

Wagner A (2005). Robustness and Evolvability in Living Systems.
Princeton University Press, Princeton, NJ.

Wagner A (2008). Robustness and evolvability: a paradox
resolved. Proc R Soc B 275, 91–100.

Wagner A (2011). The Origins of Evolutionary Innovations: A
Theory of Transformative Change in Living Systems. Oxford
University Press, Oxford.

Wagner GP (1988). The significance of developmental
constraints for phenotypic evolution by natural selection. In
Population Genetics and Evolution, ed. de Jong G,
pp. 222–229. Springer, Berlin.

Wagner GP & Altenberg L (1996). Complex adaptations and
the evolution of evolvability. Evolution 50, 967–976.

Wang J, Zhang K, Xu L & Wang E (2011). Quantifying the
Waddington landscape and biological paths for development
and differentiation. Proc Natl Acad Sci U S A 108, 8257–8262.

Webster G & Goodwin BC (1996). Form and Transformation:
Generative and Relational Principles in Biology. Cambridge
University Press, Cambridge.

West-Eberhard MJ (2003). Developmental Plasticity and
Evolution. Oxford University Press, Oxford.

Additional information

Competing interests

None.

Funding

J.J. and his research group are funded by the MEC-EMBL
agreement for the EMBL/CRG Research Unit in Systems Biology.
Additional financial support was provided by the BioPreDyn
Consortium (funded by European Commission grant
FP7-KBBE-2011-5/289434), and by grants BFU2009-10184 and
BFU2012-33775 from the Spanish Ministerio de Economia y
Competitividad (MINECO, formerly MICINN).

Acknowledgements

We would like to thank Berta Verd and Anton Crombach for
providing raw materials for figures and intense discussions on the
subjects of regulatory evolution and dynamical systems theory.

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society


