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Abstract

The kernel machine-based regression is an efficient approach to region-based association analysis aimed at identification of
rare genetic variants. However, this method is computationally complex. The running time of kernel-based association
analysis becomes especially long for samples with genetic (sub) structures, thus increasing the need to develop new and
effective methods, algorithms, and software packages. We have developed a new R-package called fast family-based
sequence kernel association test (FFBSKAT) for analysis of quantitative traits in samples of related individuals. This software
implements a score-based variance component test to assess the association of a given set of single nucleotide
polymorphisms with a continuous phenotype. We compared the performance of our software with that of two existing
software for family-based sequence kernel association testing, namely, ASKAT and famSKAT, using the Genetic Analysis
Workshop 17 family sample. Results demonstrate that FFBSKAT is several times faster than other available programs. In
addition, the calculations of the three-compared software were similarly accurate. With respect to the available analysis
modes, we combined the advantages of both ASKAT and famSKAT and added new options to empower FFBSKAT users. The
FFBSKAT package is fast, user-friendly, and provides an easy-to-use method to perform whole-exome kernel machine-based
regression association analysis of quantitative traits in samples of related individuals. The FFBSKAT package, along with its
manual, is available for free download at http://mga.bionet.nsc.ru/soft/FFBSKAT/.

Citation: Svishcheva GR, Belonogova NM, Axenovich TI (2014) FFBSKAT: Fast Family-Based Sequence Kernel Association Test. PLoS ONE 9(6): e99407. doi:10.1371/
journal.pone.0099407

Editor: Yun Li, University of North Carolina, United States of America

Received February 16, 2014; Accepted May 14, 2014; Published June 6, 2014

Copyright: � 2014 Svishcheva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Russian Foundation for Basic Research (13-04-00272, 14-04-00126). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aks@bionet.nsc.ru

. These authors contributed equally to this work.

Introduction

The development of new and effective whole-exome and whole-

genome resequencing technologies demands the establishment of

powerful and computationally efficient statistical methods to test

the associations between rare variants and complex traits. Methods

developed for the analysis of common variants can be used to map

rare variants; however, these methods are underpowered because

of the small number of observations for any given variant and the

more stringent multiple-test correction compared with that for

common variants [1,2]. The statistical power of the association

analysis of rare variants is expected to increase when genetic

variants in a region of interest are tested simultaneously instead of

separately [1,2]. The simultaneous consideration of a set of

variants from a gene or metabolic pathway not only increases the

number of observations for a set of rare variants and decreases the

number of tests but also simplifies the interpretation of results [3].

The simplest approach to region-based association analysis uses

various methods for collapsing rare variants within a region of

interest. In this case, a set of rare variants in a region is replaced by

a single genetic variable that is then tested for association through

conventional genome-wide association study (GWAS) methods

[1,4–6]. Therefore, the computational complexity of regional

association analysis based on the collapsing approach is similar to

that of GWAS, where fast software packages have been developed

even for structured samples (e.g., [7–10]). However, the power of

association analysis based on the collapsing approach decreases

when numerous rare variants are not causal or the effects of causal

variants have opposite directions [11].

An alternative approach that employs kernel machine regres-

sion has been proposed for regional association analysis [12–16].

With respect to quantitative traits, this method compares the

average similarity of a set of single nucleotide polymorphisms

(SNPs) in the analyzed region for each pair of individuals with

pairwise phenotypic similarities. Pairwise genetic similarity is

measured by using a kernel function, which reduces the

information on multiple SNPs for a pair of individuals into a

single scalar factor. Compared with collapsing-based methods,

kernel-based methods are more robust to the effects of causal

variants with opposite directions, the limited number of causal

variants, and the ‘‘lower MAF, larger effect size’’ assumption [16–

18]. A number of software programs have been developed to

conduct kernel-based association tests [16,17,19]; an example is

the sequence kernel association test (SKAT) [16], which is

commonly used to analyze independent samples. The use of this

software to approximately analyze related samples after special

phenotype transformation has been suggested [20].

A method that involves the use of kernel machine regression has

been extended to genetically related samples by three independent

scientific groups [21–23]. This method provides a score-based

variance component test to assess the association of a given SNP
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set with a continuous phenotype using the restricted likelihood

approach. Two software, namely, adjusted SKAT (ASKAT) [22]

and family-based SKAT (famSKAT) [23], implement this method.

However, the running times of these software programs are long

when the sample size and/or the number of regions are large.

Therefore, new and effective algorithms and software packages

must be developed.

In this study, we propose novel software called fast family-based

SKAT (FFBSKAT), which is faster and offers more available

analysis modes compared with ASKAT and famSKAT.

Method and Implementation

In the framework of the kernel machine approach, the

inheritance of a quantitative trait in the sample of n genetically

related individuals is described by the linear mixed model as y =
Xa + h + b + e, where y denotes the n61 vector of phenotypes; X
represents the n6p matrix of covariates; a is the p61 vector of the

regression coefficients of the covariates; and h, b, and e are the

n61 vectors of random effects. As in Ref. [21], we assume that h is

normally distributed with a mean of 0 and covariance tK, N(0,

tK), where K denotes the n6n matrix with elements defined by the

kernel function of individual genotypes in the analyzed region, and

t denotes the variance component representing the correlations

resulting from regional genotypes. For the weighted linear kernel

function, K = GWWGT, where G denotes the n6m matrix of

individual genotypes in the analyzed region, and W represents the

m6m diagonal matrix of SNP weights. Vector b is assumed to be

distributed as N(0, sb
2R), where R is the n6n relationship (twice

kinship) matrix, and sb
2 is the variance component that models

within-family correlations; e,N(0, se
2In), where In is the n6n

identity matrix, and se
2 is the variance component of random

errors. In this model, the quantitative trait follows a multivariate

normal distribution with the vector of means Xa and the

covariance matrix sb
2R + tK + se

2In.

In fitting the null hypothesis (H0: t = 0), the variance

components sb
2 and se

2 are numerically estimated to calculate

the covariance matrix V = sb
2R + se

2In. Coefficients a are

calculated as a = (XTV21X)21XTV21y. The score statistic of t
for testing H0 is

Q~0:5f(y{Xa)T V{1KV{1(y{Xa)gDQ,

where Q denotes the vector of the maximum likelihood estimates of

the parameters a, sb
2, and se

2 under H0. This score statistic can be

rewritten using the projection matrix P = In–X(XTV21X)21XTV21,

that is,

Q~0:5fyTPT V{1PKPT V{1PygDQ:

Under H0, the score statistic Q is distributed as Slixi
2, where l

is a set of eigenvalues of a matrix 0.5V21/2PKPTV21/2, and xi
2 is a

chi-squared distribution with one degree of freedom [21,23]. P

value can be computed analytically using either Davies’ method

[24] or Kuonen’s saddlepoint technique [25].

Thus, the kernel-based association analysis of quantitative traits

in related samples that uses the variance component score test

consists of two steps: estimation of the set of mixed model

parameters under H0 and calculation of score statistic Q and the

set of eigenvalues l for each analyzed region. The first step of the

kernel-based association analysis is similar to that of the score-

based GWAS methods that are widely used on related samples. A

considerable number of efficient algorithms, such as those

described by Lippert et al. [8] and Svishcheva et al. [9], have been

developed for this step. Our FFBSKAT software uses the

‘‘polygenic’’ procedure in the GenABEL package v 1.7–2 or later

(http://www.genabel.org/for the GenABEL project web-site) for

the first step of analysis. Although this analysis step is computa-

tionally intensive, it is performed only once for an analyzed trait.

The second step is repeated many times for each genomic region

and may therefore be a limiting factor in the whole-exome

association analysis. We accelerate this step using the following

analytical and algorithmic improvements.

1. Invariant matrix operations, whose operands are independent

on regional genotypes, are conducted once before the second

step of analysis, in which score statistics Q and P values are

calculated for the set of analyzed regions (for instance, the

matrix operation V21Py).

2. Identical matrix multiplication operations are replaced by the

resultant matrix (for example, the operation V21X).

3. For the linear kernel, the n6n matrix V21/2PKPTV21/2 is

replaced by the m6m matrix WGTPTV21PGW with identical

non-null eigenvalues, where the number of SNPs in region m is

smaller than sample size n.

4. Effective algorithms are utilized for linear algebra operations (in

the case of nonlinear kernel, we use the Cholesky decomposition

to find V21/2 in the expression V21/2PKPTV21/2, because this

method provides the best compromise in terms of both

performance and execution time [26]).

We implemented these optimizations in the R-package

FFBSKAT. The software programs for the Linux and Windows

operating systems are distributed under the GPLv3 license and are

available for free on http://mga.bionet.nsc.ru/soft/FFBSKAT/.

Results and Discussion

We tested the running time of FFBSKAT against ASKAT and

famSKAT on the GAW17 mini-exome family dataset [27]. A

Figure 1. Dependence of the running times of the second step
of mini-exome analysis of quantitative trait Q1 on sample size
for different methods (using one processor at 3.07 GHz). Points
show the estimated running times (RT), lines correspond to the linear
regression equations: RTASKAT = 961026 n3–.753; RTfamSKAT = 6.7610–5

n2–2.8, and RTFFBSKAT = 1.7610–5 n2–3.7, where n is the sample size.
doi:10.1371/journal.pone.0099407.g001
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Figure 2. Comparison of the P values (shown as minus base 10 logarithm) computed with famSKAT, ASKAT, and FFBSKAT given a
sample of 500 individuals, for two causal genes, FLT1 and VEGFA. 200 realizations of Q1 quantitative trait in GAW17 data were analyzed. The
line indicates one-to-one correspondence.
doi:10.1371/journal.pone.0099407.g002
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subset of 500 related individuals in 7 pedigrees genotyped at 9,868

SNPs in 1,550 gene regions was doubled to generate sample sizes

of 1,000, 2,000, and 4,000. SNPs were not filtered by MAF, and

frequencies varied from 0.001 to 0.5 (mean 0.058, median 0.012).

The number of SNPs in a gene region varied from 2 to 102 (mean

6.4, median 4). We used the kinship matrix based on the pedigree

structure to avoid the problems arising from the duplication of

individuals. Different samples consisted of different numbers of

pedigrees (7, 14, 28, and 56 for sample sizes of 500, 1000, 2000,

and 4000, respectively), and kinship matrices included 7, 14, 28,

and 56 independent blocks. Although the kinship matrices had a

block diagonal structure, we did not simplify them during the

association analysis and considered it as a full n6n matrix. We

analyzed the Q1 simulated trait. This trait was affected by age,

smoking, and 39 SNPs in 9 genes, and it had a residual heritability

of 0.44 [27]. Five causal genes with more than one polymorphic

SNP were present in our selected sample. These causal SNPs had

frequencies ranging from 0.001 to 0.027.

Directly comparing the running time for the analysis of the

mini-exome data using FFBSKAT, ASKAT, and famSKAT is not

logical. FamSKAT is suited to the analysis of a single genome

region. Analyzing numerous regions using famSKAT requires

repeating the most computationally intensive first step of the

analysis (estimation of the set of mixed model parameters under

H0) many times. ASKAT does not use an external kinship matrix

but calculates it within the package. This tendency also increases

the full running time. Thus, to compare and estimate the

advantage of our software for the second step of the analysis

(calculation of score statistic Q and estimation of P value), we

implemented the following experiment design. We calculated the

kinship matrix using the information about the structure of the

pedigrees and adjusted the Q1 simulated trait on covariates (age

and smoking) because ASKAT does not allow covariates. Then,

we estimated the mixed model parameters under H0 and

conducted the invariant matrix operations whose operands were

independent of regional genotypes. We extracted procedures for

the second step of the analysis from each software and excluded

the matrix operations whose operands were independent of

regional genotypes from famSKAT and ASKAT. We obtained

three procedures, namely, ‘‘FFBSKAT’’, ‘‘ASKAT’’, and ‘‘famS-

KAT’’, to calculate the score statistic Q and the P value for a single

genome region. We sequentially calculated the score statistic Q
and the P value for each region of the mini-exome using these

procedures and estimated the running time for each procedure

(one processor on the computer server that was equipped with

96 GB memory and two Six Core Xeon X5675 3.07 GHz,

CentOS release 6.5 [Final] Linux 2.6.32-431.5.1.el6.x86_64).

The results presented in Fig. 1 show that ‘‘ASKAT’’ displays

cubic dependence on sample size, whereas ‘‘famSKAT’’ and

‘‘FFBSKAT’’ exhibit quadratic dependence. ‘‘FFBSKAT’’ is

approximately four times faster than ‘‘famSKAT’’. In our

experiment, the ‘‘famSKAT’’ and ‘‘ASKAT’’ procedures were

additionally optimized by excluding matrix operations whose

operands were independent of genotypes operations. Therefore,

the performance of the famSKAT and ASKAT software is

expected to be considerably slow in practice.

Directly introducing covariates into the analysis instead of

preliminary adjusting for them did not significantly change the

running time of ‘‘FFBSKAT’’. The mean difference between these

running times was estimated at 20.004 s on 200 realizations using

a sample size of 500 and was not significant (Ppaired T-test = 0.199).

Although the aim of our experiment was to estimate the running

time for the second step of the analysis, we also estimated the total

running time of both steps. The proportion of the first step was as

small as 0.7 to 6% of the total running time in whole-exome

region-based association analysis of the sample of 500 to 4000

individuals. This result emphasizes practical importance of the

acceleration of the second stage.

For two genes, VEGFA and FLT1, we compared the P values

determined by using ‘‘FFBSKAT’’ with those values obtained by

using ‘‘famSKAT’’ and ‘‘ASKAT’’ to estimate the accuracy of our

software. The P values had a clear one-to-one correspondence

(Fig. 2). The statistical properties of the methods implemented in

ASKAT and famSKAT have been analyzed previously [22,23].

The pure coincidence of the P values for these software and

FFBSKAT warrants the identity of the statistical properties of the

methods implemented in all three software.

Directly introducing covariates into the regional analysis

resulted in P values that were close to those obtained after the

preliminary adjustment of a trait. However, a paired comparison

of the base 10 logarithms of the P values shows that adding

covariates in the regional analysis slightly reduced the P values

(Ppaired T-test = 4.6610–3 for FLT1 and 6.6610–10 for VEGFA).

Therefore, introducing covariates into regional analysis yields a

slightly higher power than a simple pre-adjustment does; that is, at

a= 5610–8, the power changed from 0.320 to 0.325 for FLT1 and

from 0.810 to 0.825 for VEGFA.

Aside from being the fastest method for conducting kernel-based

association tests for quantitative traits in related samples,

FFBSKAT offers the most extensive list of analysis options.

FFBSKAT allows the assignment of different kernel functions (not

only linear but also polynomial, IBS-based etc.) and arbitrary

weight functions and supports covariates and non-additive models.

It can also analyze a set of regions in either parallel or sequential

modes and estimate P values using either Davies’ or Kuonen’s

methods.

FFBSKAT can utilize a kinship matrix calculated using either

the pedigree structure (pedigree kinship) or the genotypes of a

large number of common SNPs (genomic kinship), whereas

ASKAT and famSKAT use only genomic and pedigree kinship

matrices, respectively. A genome-wide association analysis using

genomic kinship has consistently been shown to be more powerful

than pedigree-based analysis [28]. This effect may be explained by

two factors: errors in genealogy can distort the pedigree kinship,

and kinship coefficient computed from a pedigree is an expecta-

tion of the proportion of the genome shared identically by descent

even though the true proportion of the genome shared may

deviate from this expectation [29]. In spite of this effect, the use of

pedigree kinship may be computationally effective if the sample

includes several pedigrees, because in this case the kinship matrix

has a block structure. However, we do not simplify the kinship

matrix in our software, so using the pedigree-based instead of

genome-based kinship matrix does not change essentially the

running time. The pedigree kinship is also preferable if the

number of SNPs is small. The GAW17 pedigree dataset includes

only 3,121 polymorphic SNPs with MAF .5%, thus indicating

that adjusting for pedigree-based kinship results in better control

for false-positive rate than adjusting for genomic kinship in the

region-based association analysis of rare variants based on the

collapsing approach [30]. Thus, the possibility of utilizing any type

of kinship matrix by FFBSKAT is an important advantage of our

software. Therefore, our FFBSKAT package has more advantages

than ASKAT and famSKAT do not only in terms of speed but

also with respect to its features.
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