
Natural soil microbes alter flowering phenology and the intensity
of selection on flowering time in a wild Arabidopsis relative

Maggie R. Wagner,
Duke University Program in Genetics and Genomics, Department of Biology, Box 90338 Duke
University, Durham, NC 27708, USA

Derek S. Lundberg,
Department of Biology, Howard Hughes Medical Institute, Curriculum in Genetics and Molecular
Biology, Carolina Center for Genome Sciences University of North Carolina, Chapel Hill, NC
27599, USA

Devin Coleman-Derr,
Joint Genome Institute, Walnut Creek, CA 94598, USA

Susannah G. Tringe,
Joint Genome Institute, Walnut Creek, CA 94598, USA

Jeffery L. Dangl, and
Department of Biology, Howard Hughes Medical Institute, Curriculum in Genetics and Molecular
Biology, Department of Microbiology and Immunology, Carolina Center for Genome Sciences
University of North Carolina, Chapel Hill, NC 27599, USA

Thomas Mitchell-Olds
Institute for Genome Sciences & Policy, Department of Biology, Box 90338 Duke University,
Durham, NC 27708, USA

Abstract

Plant phenology is known to depend on many different environmental variables, but soil microbial

communities have rarely been acknowledged as possible drivers of flowering time. Here we tested

separately the effects of four naturally occurring soil microbiomes and their constituent soil

chemistries on flowering phenology and reproductive fitness of Boechera stricta, a wild relative of

Arabidopsis. Flowering time was sensitive to both microbes and the abiotic properties of different

soils; varying soil microbiota also altered patterns of selection on flowering time. Thus, soil
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microbes potentially contribute to phenotypic plasticity of flowering time and to differential

selection observed between habitats. We also describe a method to dissect the microbiome into

single axes of variation that can help identify candidate organisms whose abundance in soil

correlates with flowering time. This approach is broadly applicable to search for microbial

community members that alter biological characteristics of interest.

Keywords

Phenology; plasticity; microbiome; soil ecology; selective agents; flowering time; selection; life-
history; plant-microbe interactions

INTRODUCTION

Dissecting complex environments into biotic and abiotic components for individual study

may lead to surprising and novel discoveries about how organisms respond phenotypically

and evolutionarily to their habitats. This is because the net effect of a given environment is

the accumulation of effects due to all relevant components of the ecosystem. Selection on

floral characteristics, for instance, is mediated by many agents including pollinators,

herbivores, temperature, and water availability (Strauss & Whittall 2006). Thus, the

complexity of natural habitats can preclude identification of the precise stimulus for

phenotypic change or natural selection in the field (Anderson et al. 2013). By isolating

simpler components of complex habitats, we can test whether each affects the phenotype

expressed by a given genotype, the adaptive value of that phenotype, or both. These two

effects of environment—phenotypic plasticity (Bradshaw 1965) and differential selection

(Wade & Kalisz 1990)—are crucial to understanding trait evolution and fitness both in a

historical context and in the context of a changing planet. Despite their importance, most

ecological drivers of trait expression and natural selection are unknown (MacColl 2011).

Because environmental effects are best understood as responses of one trait to a specific

stimulus (Bradshaw 1965), disentangling the precise ecological interactions that cause

plasticity and differential selection in nature is an important goal (MacColl 2011).

For plants, soil is a key component of the complex natural habitat. Soils contain intricate

patterns of chemical, physical, and microbial variation that are linked on continental (Fierer

& Jackson 2006) and centimeter scales (Berg & Smalla 2009; Ettema & Wardle 2002).

Feedbacks between above-ground plant communities, below-ground microbial communities,

and nutrient availability are common (Berg & Smalla 2009; Van der Heijden et al. 2008;

Ettema & Wardle 2002). At the level of populations and individual plants, soil microbes can

affect plant growth (van der Heijden et al. 2008; Rodriguez & Falga 1999), resistance to

infection (Berendsen et al. 2012) and aboveground herbivory (Hol et al. 2010). Additionally,

microbes can mediate adaptation to novel environments (Lau & Lennon 2012). Subsets of

the soil microbiome interact with plants by colonizing aerial plant tissues (Vorholt 2012) or

the rhizosphere or root (Bulgarelli et al. 2013; Bulgarelli et al. 2012; Lundberg et al. 2012).

Thus, soil chemistry, plant biology, and microbial ecology are intricately linked (Berg &

Smalla 2009; Ettema & Wardle 2002) and soils are comprised of many potential biotic and

abiotic selective agents.
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In this study, we investigated the role of soil as a driver of plasticity and as an agent of

selection on flowering time, an important ecological trait for plants and their communities

(Forrest & Miller-Rushing 2010). Flowering phenology has a strong genetic component

(Brachi et al. 2010) but also responds to stimuli including temperature (Aikawa et al. 2011),

water availability (Crimmins et al. 2013; Borchert et al. 2004), pathogen infection (Korves

& Bergelson 2003), and herbivory (Brys et al. 2011). While soil chemistry is known to

affect flowering time (Ryser & Sauder 2006; Brun et al. 2003; Stanton et al. 2000; Pigliucci

et al. 1995), soil microbial communities have rarely been acknowledged as possible drivers

of reproductive timing in plants. Furthermore, previous studies that explored the relationship

between soil microbiome, flowering, and selection used domesticated plants, artificial

microbial communities, and/or biota from heavily disturbed soils (Lau & Lennon 2012; Lau

& Lennon 2011; Batten et al. 2007). Although these experiments provide evidence that soil

microbes change plant reproductive timing and selection pressures, they allow us to draw

only limited conclusions about the evolutionary importance of this process.

Here, we asked whether (1) flowering phenology is plastic in response to different soil

microbiomes, and (2) soil microbial communities alter the intensity of selection on

flowering phenology. We further asked whether (3) relative abundance of specific members

of the microbiome predict the observed effects of microbial treatments on flowering time.

To test these hypotheses, we grew gnotobiotic (i.e. germinated in sterile conditions)

seedlings of the non-mycorrhizal wild mustard Boechera stricta (Graham) Al-Shehbaz in

sterilized potting soil inoculated with microbial communities extracted from soils of four

undisturbed natural habitats. To enable comparison of biotic and abiotic soil variables, we

also grew seedlings in field soils collected from the same habitats, which were sterilized to

eliminate their natural microbiomes but retained their chemical and physical differences. For

each individual plant, we recorded the day of first flowering, height, number of leaves, and

number of fruits. We quantified selection on phenology as the linear relationship between

flowering time and fruit production.

Rather than manipulating microbial communities, we used presumably intact communities

extracted from soils collected from undisturbed field sites near wild B. stricta populations.

Our experiment included 48 natural, inbred accessions that represent the breadth of genetic

diversity harbored by B. stricta in the study region (central Idaho, USA). Furthermore, we

focused on a phenotype (flowering time) that is under selection in this species in a nearby

field site (Anderson et al. 2011). To our knowledge, no other study has tested whether

naturally occurring soil biotas from multiple undisturbed habitats affect flowering

phenology and selection on flowering time, nor has any study of the relationship between

soil microbes and phenology explicitly accounted for genetic variation among

undomesticated plant populations.

MATERIAL AND METHODS

In summary, we sterilized potting soil to kill the resident microbiome, and then inoculated

subsets of the sterilized potting soil with microbial communities extracted from soils from

four different field sites. To create four additional treatments that captured abiotic soil

variation, we sterilized the same four field-collected soils.
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Sterilized potting soil was saturated with inoculum and sterilized field soils were saturated

with buffer (see below) for 10 days. Then, 48 accessions of Boechera stricta were

transplanted as gnotobiotic seedlings into all treatments (48 genotypes × 8 treatments × 4

replicates = 1,536 individuals). All pots were randomized into blocks of 200 and maintained

under controlled greenhouse conditions throughout the experiment, except for 7 weeks of

4°C vernalization in a growth chamber. We measured plant height and leaf number on the

date of first flowering. Here we focus on phenology and fecundity of the 51% of plants that

flowered successfully. Among those plants that flowered, the experimental design exhibited

only modest imbalance, with substantial sample sizes remaining in every subspecies ×

treatment cell (mean N=54.6, median N=56.5). Factors influencing probability of flowering

and other fitness components are beyond the scope of this paper; we found no evidence that

any experimental treatments affected flowering probability of surviving plants (χ2=8.86,

dfnum=7, P=0.26). Reproductive fitness was estimated as the number of fruits on each

individual at 33 weeks of age; in B. stricta, fruit set is strongly and positively correlated with

seed production in the greenhouse (R2=0.72, P<0.0001, N=103, A. Manzaneda 2008,

unpublished).

Soil and seed collections

Soils were collected from four natural Boechera stricta habitats (described in Appendix S1

in Supporting Information) in central Idaho, USA, separated by ~26 to ~92 km and differing

in elevation, temperature, water availability, density and diversity of vegetation, and many

soil properties (Wagner, unpublished). Collection locations were named ‘Jackass Meadow’

(abbreviated ‘JAM’), ‘Mahogany Valley’ (‘MAH’), ‘Parker Meadow’ (‘PAR’), and ‘Silver

Creek’ (‘SIL’). These remote sites have little history of disturbance by humans, are home to

endogenous B. stricta populations, and function well as common gardens for B. stricta field

experiments (Rushworth et al. 2011). Therefore, they are legitimate potential habitats that B.

stricta likely encountered during its evolutionary history in this region. Each soil collection

(August 2012) comprised five sub-samples from the four corners and approximate center of

a ~150 m2 area, at a depth of ~10 to 30 cm. Subsamples were combined and mixed

thoroughly, sieved through ~1.25 cm wire mesh to remove rocks and coarse detritus,

shipped to Duke University, and stored in plastic bags at 4°C for ~3 months until use. We

also collected seven ~1 mL soil vouchers from each site for microbial community analysis:

three in August 2011, and at all sites except PAR, four in August 2012. Vouchers were

frozen at -20°C until DNA extraction in late 2012. B. stricta seeds were collected from 48

natural populations, including four from the soil collection sites. Their sites of origin span

over 1,000 m in elevation (Table S1) and are separated by between ~1 km and ~350 km,

with the exception of the “SAD12” genotype from Colorado. Because B. stricta is naturally

inbred and exhibits high FIS (i.e. individuals are largely homozygous) and FST (i.e. low

genetic variation within populations and substantial divergence among populations; Song et

al. 2006), each population was represented by a distinct genotype. This diverse collection of

genotypes included 24 from each of the ecologically divergent “east” and “west” subspecies

(Lee & Mitchell-Olds 2013). We used seeds from a single mother descended from the

original field-collected accession, self-pollinated in the greenhouse for at least one

generation, to minimize maternal effects; i.e. individuals within a genotype were self-full

sibs (as in Anderson et al. 2011).
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Microbial treatments in sterilized potting soil

To create four soils that were identical except for their microbial communities, we extracted

microbes from field soils into sterile buffer and soaked sterilized potting soil in the resulting

suspensions. We prepared inocula from 75 g subsamples of each field-collected soil stirred

into 1 L of 2.5 mM MES monohydrate (Sigma Aldrich, St. Louis, MO, USA) in sterile

diH2O (pH adjusted to 5.7 with KOH). After settling for 30 min the suspensions were

vacuum filtered (11 μm pore size) to remove particulates. Filtrates were centrifuged 30 min

at 3,000×G at room temperature to pellet microorganisms. To remove dissolved nutrients,

we discarded the supernatants and re-suspended the microbe-enriched pellets in 1 L sterile

2.5 mM MES. This process mostly eliminated variation in chemical properties that

differentiate the field soils (Fig. S1, Table S2). Each rack of 200 pots was bottom-saturated

with 400 mL of one of the microbial suspensions, 6 g 20-10-20 fertilizer, and sterile diH2O

for a total treatment volume of 4 L. The fertilizer was added to encourage seedling survival

and to counteract possible soil impoverishment due to autoclaving (Berns et al 2008). An

additional 1 mL of undiluted microbial suspension was pipetted into each pot. Treatments

derived by this process are termed “biotic” or “microbial treatments” throughout. It is

possible that the filtration and re-colonization processes somewhat altered community

structures; however, the differences between our experimental inocula—and their effects on

the plants—originate from corresponding differences between real Boechera habitats.

Sterilized field soil treatments

We sterilized soils from four natural habitats to create growth substrates with different

physical and chemical properties, but without their natural microbiomes. After sub-sampling

to extract microbial communities (see above), we sterilized the four field-collected soils via

autoclaving (Appendix S2). These soils were loosely packed into clean pots and bottom-

saturated with 400 mL sterile 2.5 mM MES, 6 g 20-10-20 fertilizer, and sterile diH2O to

bring the treatment volume to 4 L. An additional 1 mL sterile 2.5 mM MES was pipetted

into each pot. Treatments derived by this process are termed “abiotic” or “sterilized field

soils”. Although it is likely that autoclaving these soils changed their fertility, they appear to

have retained at least some of their natural chemical variation (Fig. S1).

Plant care and trait measurement

Surface-sterilized seeds of 48 genotypes (Table S1) were stratified on autoclaved filter paper

at 4°C in the dark for two weeks, then placed in a growth chamber to germinate for one

week (conditions in Appendix S2). Four germinated seedlings per genotype were

transplanted into each of the eight experimental soils described above, one seedling per pot.

Eight pots per treatment were left unplanted as controls. All pots were immediately

rearranged into randomized blocks and maintained in controlled greenhouse conditions

(Appendix S2) for the duration of the experiment. Plants were top-watered as needed with

RO water, and received an additional 4 mL 20-10-20 fertilizer (dissolved in sterile diH2O)

via pipet when one month old. Two-month-old plants were transferred to a 4°C vernalization

treatment, where they remained for seven weeks.

After vernalization, plants were returned to the greenhouse, checked three times weekly for

flowers and allowed to set fruit. Flowering was defined as sufficient separation of the corolla
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such that four distinct petals could be identified. The number of days between end of

vernalization and first flowering is termed interchangeably “flowering time” and “flowering

phenology” throughout. On the day of first flower for each plant we measured the

individual’s height (defined as the length of green tissue up to the apical meristem) and

number of leaves. The last census was done eight weeks post-vernalization; the 749 plants

that had not flowered by this date were excluded from all future analyses. The experiment

ended two months after the final flowering census, when almost all fruits had matured and

dehisced. These cutoffs for flowering time and fruit production are realistic given the short

growing season observed in the field. At this time we counted the number of fruits produced

by each individual.

Soil bacterial analyses

Due to current methodological limitations, in this study we focus on the prokaryotic

component of the soil microbiome (i.e. bacteria and archaea). We extracted DNA from field-

collected soil vouchers using the MoBioTM PowerSoil DNA Isolation Kit (MoBio

Laboratories, Carlsbad, CA, USA) and amplified variable region 4 of the bacterial 16S

rRNA gene using established primer pairs 515F and 806R and PNA PCR clamps to reduce

plastid and mitochondrial contamination (Lundberg et al. 2013). Paired-end 2×250bp

sequencing of barcoded amplicons was performed on a MiSeq machine running v2

chemistry (Illumina Inc., San Diego, CA, USA) at the Joint Genome Institute (Walnut

Creek, CA, USA). The primer sequences were trimmed from the paired-end sequences,

which were then overlapped and merged using FLASH (Magoč & Salzberg 2011). Merged

sequences were grouped into operational taxonomic units (OTUs) based on 97% sequence

identity, and chimeric sequences were removed, using the UPARSE pipeline (Edgar 2013).

Taxonomies were assigned as in Lundberg et al. (2012). Unclassifiable OTUs at the

kingdom level, OTUs matching Viridiplantae, mitochondrial, or plastid sequences were

excluded by using BLAST to compare them to a custom database of contaminant sequences

(Lundberg et al. 2013). Unclassifiable OTUs at the kingdom level and rare or non-

reproducible OTUs were also excluded as in Lundberg et al. (2012), resulting in 7,844

OTUs. To control for unequal sequencing effort, we normalized data by rarefaction to

40,000 reads/sample using QIIME-1.7.0 (Fig. S2; Caporaso et al. 2010). Diversity analyses

were performed after correcting data for 16S gene copy number variation using scripts

provided in Kembel et al. (2012); OTUs without taxonomic information were assigned the

mean copy number (2.805725). Linear regressions were performed before this correction but

the resulting parameter estimates were adjusted as necessary.

Statistical analysis

To test the hypothesis that soil properties affect flowering time, we used restricted maximum

likelihood (REML) linear mixed models with treatment, subspecies, and treatment ×

subspecies as fixed factors; block, genotype nested within subspecies, and treatment ×

genotype as random factors; and elongation rate (mm/day), height at first flowering (mm),

and leaves per mm stem as covariates (justification in Appendix S2). To test for treatment

effects on overall plant size we used MANOVA with treatment, subspecies, and treatment ×

subspecies as fixed factors. We analyzed the parallel “biotic” and “abiotic” experiments

separately, i.e. one model tested only for effects of soil microbiomes on flowering time, and
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another identical model tested only for effects of physical soil differences; we did not

directly compare the effects of these two types of soil variation. These models were run

using JMP® Pro version 10.0.0 (SAS Institute, Cary, NC, USA). Statistical significance of

random effects was determined by REML likelihood ratio test and results were graphed

using ggplot2 (Wickham 2009) in R version 3.0.2 (R Core Team 2013).

To test the hypothesis that soil properties alter selection on flowering time, we used a REML

linear mixed model with the same terms as above, plus flowering time (days after

vernalization) and flowering time × treatment as additional fixed effects. The response

variable was number of fruits. Thus, the flowering time term describes the change in

fecundity attributed to a change in flowering time, i.e. selection. We analyzed the parallel

“biotic” and “abiotic” experiments separately as above. We performed these models both

with and without including elongation rate, height at first flowering, and leaves per mm stem

as covariates; the former model describes the selection gradient on flowering time (i.e.

direct selection on flowering time independent of selection on covariates), and the latter

model describes the selection differential (i.e. total selection on flowering time, including

indirect effects of selection on covariates). Introducing a quadratic term did not improve fit,

so our model considers only linear effects (i.e. directional selection). Sample sizes were

slightly smaller than for the flowering time models because 17 individuals were accidentally

discarded after flowering. Main models were performed in JMP; selection differentials and

selection gradients were calculated in R.

For some models, non-uniformly distributed residuals might have influenced judgments

about significance. This heteroscedasticity resisted data transformation and resolved only

when covariates were removed. In general, results with and without covariates were similar,

suggesting that significance was robust to heteroscedasticity in the standard model. For the

sake of caution, for all of our major results, we performed permutation tests (which do not

assume uniform residuals) to verify the results of the standard ANOVA.

Rarefied microbial communities were analyzed in the R package ‘vegan’ (Oksanen et al.

2013). Principal coordinates (PCo) of Bray-Curtis pairwise dissimilarities were identified

using the vegan function ‘capscale’. Similarity of samples within vs. among sites was tested

using the non-parametric permutation test ADONIS with 9,999 permutations constrained by

collection year. To ask which components of microbial communities affect flowering

phenology and selection, we regressed mean flowering time in each biotic Treatment (using

residuals from the linear models described above in Table 1a, excluding terms with the

“Treatment” factor) onto the mean PCo score from the corresponding Site. To ask which

OTUs underlie the observed phenotypic effect, we identified the ten OTUs most highly

correlated with the PCo axes and regressed the same flowering time residuals on the OTUs’

mean abundances at each site. We used the Wilcoxon rank-sum test to compare relative

abundances of common taxa between groups of samples associated with extreme

phenotypes. P-values were adjusted using Benjamini-Hochberg false discovery rate. Our

method of searching for microbial community members that underlie our phenotype of

interest is described in more detail in Appendix S3.
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RESULTS

Microbial communities and physical soil types each alter mean flowering time

Soil microbiota altered mean flowering time across all genotypes (Fig. 1a; Table 1a;

F3,87=4.242, P=0.008; permutational ANOVA P=0.005). In particular, the MAH

microbiome delayed flowering by 2.2 days on average (or 1.5 days when controlling for

plant size and growth rate; Table S3). This delay translates to a 9% fitness decrease based on

the selection differential measured at a similar field site (Anderson et al. 2011). Although

western genotypes appear more sensitive to microbes than eastern genotypes (Fig. 1a,c), the

subspecies difference in microbiome-driven plasticity of flowering time was not significant

(Treatment × subspecies: F3,88=2.346, P=0.078). Genotype explained 34.5% of the variance

in flowering time, indicating substantial among-population genetic variation for flowering

phenology across all microbiomes (χ2=30.08, dfnum=2, P<0.0001). In contrast, genotype ×

treatment explained no variation, suggesting a lack of genetic diversity for flowering time

plasticity in response to soil microbiota. Excluding growth-related covariates from the

model did not qualitatively change the results (Table S4a). Neither soil microbiome

(MANOVA Wilks’ λ=0.982, F9,1073=0.90, P=0.53) nor subspecies × soil microbiome

(MANOVA Wilks’ λ=0.976, F9,1073=1.21, P=0.28) affected overall plant size.

Differences between sterilized field soils also affected flowering phenology (Figs. 1b,1d;

Table 1b; F3,96=6.586, P=0.0004). PAR soil had the most extreme effect, delaying

flowering by 2.8 days after controlling for effects on growth. Again, the subspecies did not

differ in their flowering time response to soil type (Fig. 1d; F3,91=0.206, P=0.8919).

Genotype explained only 5.7% of the variance in flowering time (χ2=0.864, df=2, P>0.05)

and genotype × treatment explained 4.72% (χ2=0.160, df=6, P>0.05), indicating scant

genetic variation for flowering time plasticity in response to abiotic soil variation. However,

genetic effects were more pronounced when growth covariates were excluded from the

model (Table S4b).

Microbial community, but not soil chemistry, alters selection on flowering time

Selection on flowering time depended on soil microbiome. This result held both for

selection gradients (independent of selection on correlated traits; Fig. 2c, Table 2a;

F3,246=3.489, P=0.016; permutational ANOVA P=0.024) and selection differentials (net

selection on flowering time, including indirect effects of selection on covarying traits; Fig.

2a, Table S5a). The most extreme change was between the PAR and SIL soil biotas (Fig.

2a), with selection differentials of +0.034 and -0.043 fruits/day (or +1.4% and - 1.8% fruits/

day), respectively. The magnitude of this difference in selection is 1.2 times the selection

differential measured in a nearby field site (Anderson et al. 2011). We detected no

directional selection on flowering time when averaged across all treatments (F1,403=0.009,

P=0.924), suggesting that treatment differences in selection intensity cancelled each other

out. On average, western genotypes produced 0.75 more fruits than eastern—a 27% increase

(F1,69=7.351, P=0.008; Table S3). In addition, genetic differences between populations

within subspecies contributed 20.4% of the variance in fecundity (χ2=13.79, df=2, P <0.01).

However, the lack of subspecies × treatment and genotype × treatment interactions shows

that genetic effects on performance were not microbiota-dependent. Finally, fitness was
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consistent across microbial treatments (F3,86=2.123, P=0.103), indicating no net effect of

different microbiomes on fecundity (Tables 2a, S3).

In contrast, we found no evidence that different sterilized field soils affect flowering time

selection differentials (Fig. 2b; F3,301=0.809, P=0.17) or gradients (Fig. 2d; F3,305=1.552,

P=0.20). However, these treatments affected overall fecundity (F3,110=5.849, P=0.001;

Table S3), indicating strong differences in soil quality. Western genotypes produced 69%

more fruits than eastern genotypes on average (F1,64=16.13, P=0.0002), but this advantage

was consistent across all soils (Table S3). We detected no net selection gradient on

flowering time across all field soils (F1,308=0.376, P=0.540); however, we did find a

significant selection differential on flowering time (-0.036 or - 1.4% fruits/day;

F1,313=6.473, P=0.011; Table S5).

Separation of microbiome components reveals finer details of selection and phenology
control

Sampled soil microbiomes differed between sites within year (R2
ADONIS=0.29, P=0.003) but

not between years within site (R2
ADONIS=0.03, P=0.56). These results are supported by

principal coordinates (PCo) analysis, in which samples clustered mainly by site (Fig. 3a).

The first three PCo cumulatively explained 69.8% of prokaryotic community variation (Fig.

S3). Because the MAH and JAM soils, which had the slowest and fastest flowering times

respectively in our experiment, were separated primarily on the PCo2 axis (Fig. 3a), PCo2

became our candidate microbiome component to test for effects on flowering time. Because

eastern genotypes appeared insensitive to microbes (Fig. 1c), we used flowering time

residuals of western genotypes as the response variable. We did not find a significant

relationship between mean flowering time in each treatment and the mean PCo2 score of

soil samples from the corresponding site (Fig. 3b; F1,2=2.362; P=0.26). Likewise, none of

the individual OTUs with high PCo2 scores predicted flowering time (Table S6); for

instance, abundance of OTU_96997 (Hyphomicrobiaceae) appeared to correlate with

phenology but the relationship was nonsignificant after correction for multiple comparisons

(Fig. 3c; F1,2=25.74; P=0.037; PFDR=0.38). These negative results may be due to lack of

power caused by our sampling scheme (N=4; Appendix S3).

The phyla Proteobacteria and Crenarchaeota were more abundant, and Acidobacteria were

less abundant, in slow-flowering MAH compared to fast-flowering JAM soil communities

(Table 3b). Within phyla, several families—including Koribacteraceae, Solibacteraceae,

Opitutaceae, Verrucomicrobiaceae, Solirubrobacteraceae, and Mycobacteriaceae—differed

in relative abundance between MAH and JAM soil communities (Fig. S4, Table S7). In

addition, Verrucomicrobia and Gemmatimonadetes were enriched in the 5% of OTUs with

the highest loadings on PCo2 compared to the full natural communities (Table 3c),

indicating that these phyla contribute disproportionately to the microbiome variation

summarized by PCo2. These ‘candidate taxa’ are promising organisms for further study of

microbial influences on flowering time.
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DISCUSSION

Our analysis of native plant genotypes and soil microbial communities from four

undisturbed environments suggests that soil microbiomes contribute to the ecology and

evolution of flowering phenology in Boechera stricta. First, we showed that soil microbiota

influenced phenotypic plasticity of flowering time. Second, soil microbiota altered the

strength and direction of selection on flowering time. Finally, we showed how this type of

experiment could be combined with quantitative descriptions of soil community

composition to search for microbial species that affect important phenotypes. Our results

show that experimental dissection of complex environments can reveal the ecological

interactions shaping phenotypic expression and natural selection.

Our finding that both soil microbes and soil chemistry cause plasticity of flowering time

agrees with previous reports, although to our knowledge only one other study has tested the

effects of both biotic and abiotic components of the same soil. Lau & Lennon (2012) found

that Brassica rapa flowered faster in dry conditions, and that a soil microbial community

with a history of drought stress accelerated flowering compared to the wet-adapted replicate

of the same community. Other soil properties reported to delay flowering include heavy

metal concentration (Ryser & Sauder 2006; Brun et al. 2003), nutrient depletion (Stanton et

al. 2000; Pigliucci et al. 1995), high salinity (Van Zandt & Mopper 2002), and a history of

invasive plant growth (Batten et al. 2007). Notably, some species’ phenology may be more

robust than others’ in response to soil heterogeneity (Batten et al. 2007). In general, such

phenotypic plasticity has important ecological and evolutionary consequences (Ghalambor

et al. 2007; Richards et al. 2006; Miner et al. 2005; Thompson 1991; Bradshaw 1965). For

B. stricta in particular, phenological plasticity affects the plants’ ability to time reproduction

for optimal seed set (Anderson et al. 2011). In fact, the exclusion of natural soil

microbiomes from growth chamber replicates of that experiment might be partially

responsible for the low genetic correlation of flowering time in the field and in the lab

(Anderson et al. 2011). Interestingly, our data hint that West genotypes may be more

sensitive to soil microbiome than East genotypes (P=0.078; Fig. 1a,c; Table 1a), suggesting

intraspecific genetic variation for microbe-induced flowering time plasticity. In contrast, the

two subspecies show very similar sensitivities to abiotic soil properties (Fig. 1d), indicating

that plasticity to these two stimuli may have different genetic bases.

Typically, selection analyses allow us to infer and compare the adaptive value of particular

traits in particular environments, but do not tell us why differential selection exists. Here we

identified the soil microbiome as an agent of selection on flowering time in B. stricta (Figs.

2a,c). The evolutionary relevance of this finding is best illustrated by comparison with

Anderson et al. (2011), who measured a decrease in fecundity of 0.06 fruits/day to flowering

(>4% of total mean fitness/day) in a typical B. stricta habitat. Our results suggest that all

else remaining constant, a change in soil microbiome could increase or decrease that

selection differential by up to 0.07 fruits/day, or >120% (based on the magnitude of

differential selection measured in the PAR and SIL soil communities; Fig. 2a). The effects

of the soil microbiome on both flowering time and its adaptive value may prove especially

important in the context of conservation and adaptation to global change, given that both
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microbial communities and plant phenology are sensitive to climate (Castro et al. 2009;

Cleland et al. 2007).

Although we are not the first to report that soil biotas affect flowering time (Lau & Lennon

2012) or selection on flowering time (Lau & Lennon 2011), our experiment adds to previous

work in several unique ways. First, we used deep 16S rDNA sequencing methods to greatly

enhance our resolution of the microbiome (Lundberg et al. 2013). Second, we described how

this type of microbiome data can be combined with experimental phenotype data to

determine which microbial taxa influence traits of interest. Third, including a diverse set of

genotypes in the experiment allowed us to test for intraspecific genetic variation for

flowering time plasticity in response to biotic and abiotic soil attributes, and link this

ecological finding to the field of evolutionary biology. Finally, we are the first to use

microbial communities from several undisturbed field sites to confirm that naturally

occurring variation in soil microbes affects phenology and its adaptive value. We identified

several taxa that are enriched or depleted in soils associated with fast flowering compared to

slow flowering (Tables 3b, S4); these groups are promising targets for future study of the

microbe-flowering time relationship.

As evolutionary biologists, a fundamental goal is to measure selection and trait expression in

the field because the genotype-phenotype-fitness relationship is frequently context-

dependent (Anderson et al. 2013). In particular, the true relationships between plants and

microbial communities may depend on neighboring plants (Berg & Smalla 2009) or on other

soil properties (van der Heijden et al. 2008). For instance, Lau and Lennon (2012) found that

the interaction between microbes and soil moisture synergistically affects fitness (but not

phenology) in Brassica rapa. Factorial application of a wider sampling of microbiomes and

environmental variables—or, eventually, direct manipulation of these variables in the field

—would be especially informative for understanding the ecological mechanisms of plant-

microbe interactions such as the flowering time effect we observed in B. stricta.

Nonetheless, we demonstrate here that greenhouse experiments can reveal ecological

interactions that may have been extremely difficult to detect directly in the field: all else

remaining equal, natural differences in the soil microbiome can influence plant phenology

and patterns of selection. This discovery required the isolation of soil microbiota from the

larger, more complex natural habitat. Further environmental simplification—the reduction of

the microbiome into principal coordinates and then specific OTUs—potentially could reveal

even more details of the relationship between genotype, phenotype, and the microbial

environment (Appendix S3). Although in this experiment we lacked power to fully utilize

this method, it holds promise for future studies on the phenotypic effects of the

environmental microbiome. This approach is generally applicable to search for microbial

community members that alter biological characteristics of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Variation in both soil microbiota and soil chemistry alters flowering phenology. Mean

flowering time post-vernalization (raw data, in days) is shown for each subspecies in (a) four

microbial treatments and (b) four sterilized field soils. Panels (c) and (d) show mean

flowering time residuals, after controlling for genetic differences and growth covariates, for

each subspecies in biotic and abiotic treatments, respectively. Error bars depict one standard

error from the mean. Parameter estimates and standard errors are reported in Table S3
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Figure 2.
Different soil microbiota, but not sterilized field soils, alter selection on flowering time.

Fecundity as a function of flowering time is shown for four different (a,c) soil microbial

communities and (b,d) sterilized field soils. Panels (a) and (b) depict selection differentials

on flowering phenology, i.e. both direct selection on flowering time and indirect selection on

correlated traits, after controlling for block effects and genetic differences in fitness. The

statistics for the selection differential model are in Table S5. Panels (c) and (d) depict

selection gradients on flowering phenology, i.e. only direct selection on flowering time after
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controlling for selection on growth-related covariates in addition to block effects and genetic

differences in fitness (statistics in Table 2)
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Figure 3.
(a) Ordination of Bray-Curtis dissimilarities of rarefied microbial abundances shows

clustering of soil samples by field site of origin (ADONIS P=0.003), but not by collection

year (ADONIS P=0.56). (b) Flowering time response of western genotypes (residuals, after

controlling for block effects, genetic differences, and growth rate) to a gradient of soil

microbiome PCo2, a candidate predictor of flowering time. (c) Flowering time response of
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western genotypes (residuals, as in [b]) to abundance of candidate microbe OTU_96997,

chosen for its high loading onto PCo2 (Table S6; Appendix S3)
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Table 1

Statistics for REML mixed models of flowering time for (a) soil microbial community treatments and (b)

sterilized field soil treatments. All effects are fixed except for Block, Genotype(Subspecies), and

Genotype(Subsp.) × Treatment. For fixed effects the test statistic F is reported. For random effects, the test

statistic χ2 is reported, calculated as twice the difference between log likelihoods of the full model and the

model with the random factor excluded. A similar model that did not control for growth-related covariates

yielded similar results (Table S4)

(a) Soil microbial communities (N = 451, Adj. R2=0.74) (b) Sterilized field soils (N = 336, Adj. R2=0.72)

d.f. F or χ2 P d.f. F or χ2 P

Treatment 3,87 4.242
0.0076

* 3,96 6.586 0.0004

Subspecies 1,67 6.861 0.0109 1,64 0.085 0.7717

Treatment × Subspecies 3,88 2.346 0.0782 3,91 0.206 0.8919

Genotype (Subspecies) 2 30.08 < 0.0001 2 0.864 > 0.05

Geno.(Ssp.) × Treatment 6 0.000 > 0.05 6 0.160 > 0.05

Block 1 0.083 > 0.05 1 0.785 > 0.05

Elongation rate 1,428 304.2 < 0.001 1,278 342.9 < 0.0001

Height at flowering 1,387 239.0 < 0.001 1,240 278.1 < 0.0001

Leaves per mm stem 1,428 15.96 < 0.001 1,298 21.38 < 0.0001

Parameter estimates are listed in Table S4. Bold type indicates significance of at least P<0.05

*
Permutational ANOVA confirmed significance at P=0.005
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Table 2

Statistics for REML mixed models of reproductive fitness for (a) soil microbial community treatments and (b)

sterilized field soil treatments. All effects are fixed except for Block, Genotype(Subspecies), and

Genotype(Subsp.) × Treatment. For fixed effects the test statistic F is reported. For random effects, the

reported test statistic is χ2, calculated as twice the difference between log likelihoods of the full model and the

model with the random factor excluded. Note that in this model “flowering time” reflects the selection

gradient, i.e. direct selection on flowering time after controlling for selection on growth-related covariates. A

similar model without growth covariates revealed that the selection differential, i.e. a measure of combined

direct and indirect selection on flowering time, behaves similarly with respect to the flowering time ×

treatment interaction (Table S5)

(a) Soil microbial communities (N = 439, Adj. R2=0.26) (b) Sterilized field soils (N = 331, Adj. R2=0.47)

d.f. F or χ2 P d.f. F or χ2 P

Treatment 3,86 2.123 0.1032 3,110 5.849 0.0010

Subspecies 1,69 7.351 0.0085 1,64 16.13 0.0002

Flowering time 1,403 0.009 0.9240 1,308 0.376 0.5399

Treatment × Subspecies 3,97 2.053 0.1115 3,109 1.170 0.3247

Treatment × Fl. time 3,246 3.489
0.0164

* 3,305 1.552 0.2011

Genotype (Subspecies) 2 13.79 < 0.01 2 0.145 > 0.05

Geno.(Ssp.) × Treatment 6 0.0 > 0.05 6 4.081 > 0.05

Block 1 0.0008 > 0.05 1 0.130 > 0.05

Elongation rate 1,376 0.0780 0.7801 1,300 0.1829 0.6692

Height at flowering 1,385 3.116 0.0783 1,298 0.1291 0.7196

Leaves per mm stem 1,381 15.03 0.0001 1,303 0.1157 0.7339

Parameter estimates are listed in Table S3. Bold type indicates significance of at least P<0.05

*
Permutational ANOVA confirmed significance at P=0.024
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Table 3

(a) Mean flowering time of western genotypes (residuals after controlling for genetic differences and growth

rates), mean PCo2 score, and mean abundance of OTU 96997 in each microbial community. Flowering time

data come from the greenhouse experiment, community composition data come from soil samples taken from

the same field sites as the inocula for the greenhouse experiment. This set of data can be informative for

finding subsets of the microbial community associated with change in flowering time (Fig. 3; Appendix S3).

(b) Copy number-adjusted relative abundances of dominant phyla in slow-flowering MAH and late-flowering

JAM soils. (c) Copy number-adjusted relative abundances in the full dataset (“All OTUs”) and the subset of

5% of OTUs most strongly correlated with PCo2, a putative predictor of flowering time. Significance of

enrichment/depletion was determined by Wilcoxon Rank Sum tests and adjusted using the Benjamini-

Hochberg false discovery rate

(a) Site Flowering time (residual) PCo2 OTU 96997 (individuals, ± 1 standard error)

JAM −2.088 ± 0.856 −0.646 ± 0.068 22.27 ± 4.04

MAH 1.022 ± 1.057 0.827 ± 0.024 172.60 ± 16.67

PAR −1.298 ± 0.848 0.331 ± 0.107 62.67 ± 12.90

SIL −0.238 ± 0.819 −0.324 ± 0.068 151.47 ± 49.94

Phylum (b) JAM MAH PFDR (c) All PCo2 PFDR

Proteobacteria 17.3% 26.7% 0.002 24.8% 23.5% 0.49

Acidobacteria 21.3% 15.3% 0.002 17.6% 19.0% 0.40

Verrucomicrobia 19.3% 15.3% 0.054 17.0% 22.5% 0.004

Actinobacteria 16.0% 17.8% 0.21 16.0% 14.3% 0.036

Gemmatimonadetes 9.5% 9.4% 1 7.7% 9.6% 0.036

Chloroflexi 5.7% 7.3% 0.054 6.0% 5.5% 0.40

Planctomycetes 3.4% 2.8% 0.054 4.0% 0.43% <0.001

Bacteroidetes 2.9% 2.7% 1 3.7% 2.4% 0.012

Crenarchaeota 0.06% 1.5% 0.002 0.70% 0.95% 0.61

Ecol Lett. Author manuscript; available in PMC 2015 June 01.


