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Abstract

Healing fractures resulting from osteoporosis or cancer remains a significant clinical challenge. In

these populations, healing is often impaired not only due to age and disease, but also by other

therapeutic interventions such as radiation, steroids, and chemotherapy. Despite substantial

improvements in the treatment of osteoporosis over the few decades, osteoporotic fractures are

still a major clinical challenge in the elderly population due to impaired healing. Similar fractures

with impaired healing are also prevalent in cancer patients, especially those with tumor growing in

bone. Treatment options for cancer patients are further complicated by the fact that bone anabolic

therapies are contraindicated in patients with tumors. Therefore, many patients undergo surgery to

repair the fracture, and bone grafts are often used to stabilize orthopaedic implants and provide a

scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials have been

investigated as bone grafts for repair of osteoporotic fractures, including calcium phosphate bone

cements, resorbable polymers, and allograft or autograft bone. In order to re-establish normal bone

repair, bone grafts have been augmented with anabolic agents, such as mesenchymal stem cells

(MSC) or recombinant human bone morphogenetic protein-2 (rhBMP2). These developing

approaches to bone grafting are anticipated to improve the clinical management of osteoporotic

and cancer-induced fractures.
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Introduction

Osteoporotic patients are typically treated with anabolic agents that stimulate bone

formation (e.g., parathyroid hormone (PTH)) or anti-resorptive agents that inhibit bone

resorption (e.g., bisphosphonates, calcitonin, raloxifene, and estrogen) to slow the

progression of disease [1]. However, in many patients this loss of bone mass results in

osteoporotic fractures, which account for approximately 1.5 million fractures in the US each

year and are a significant cause of morbidity, mortality, and hospitalization. Treatment of

osteoporotic fractures is challenging due to diminished capacity for fracture healing [2–4],

and the reduced healing capacity of osteoporotic patients correlates with a much higher

(~50%) failure rate of implant fixation compared to younger patients [5–7]. Since the bone

is unlikely to heal on its own in osteoporotic fractures due to impaired healing, patients will

frequently undergo surgical procedures to fix damaged bone using screws or fixation plates.

Due to the high porosity and low strength of the osteoporotic cancellous bone, implants are

often augmented with bone void fillers to improve outcomes. Restoration of normal bone

repair through local delivery of biologics that enhance osteogenic differentiation has also

been investigated to reduce the high complication rate associated with implant failure [2].

Cancer patients often develop bone metastatic diseases. Similar to osteoporotic patients, they

are often treated with bisphosphonates, though typically given at higher doses. However,

even with treatment, patients will eventually experience fractures, which are often slow to

heal, significantly impeding their mobility and quality of life. While surgeries can improve

quality of life, they are not a cure and are instead performed for palliative purposes. Bone

surgeries performed on patients with traumatic bone injury are rarely effective in cancer

patients, due to impaired healing from drug treatments as well as the tumor itself [8].

Patients with metastases to the proximal femur (one of the most common) typically undergo

cemented endoprosthetic replacement/arthroplasty, which is similar to a hip replacement,

while other long bone metastases are often repaired using locked intramedullary nails [8].

Lesions in the spine are typically treated using vertebroplasty, and other sites are often

repaired using bone cements. Despite the improvements of treatment approaches over time,

these surgeries are not without risk and patient’s survival after surgery is often short

(whether from complications from surgery or from wide-spread disease) [9, 10].

Oral cancer comprises another disease often associated with rapid bone loss, resulting from

both radiation treatments as well as tumor growth. To reduce morbidity associated with the

disease, patients frequently require treatments consisting of tumor removal, reconstruction

of the mandibular defect with vascularized bone from the fibula, and subsequent placement

of dental implants [11]. Transplantation of the fibula flap introduces a significant source of

patient morbidity, and is thus another limitation of the vascular bone graft approach.

Importantly, current available therapies only address the need for bone regeneration without

targeting the tumor, and thus therapeutic improvements are needed.
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Regeneration of bone lost from osteoporosis or cancer presents the challenge of healing in

patients with reduced repair mechanisms. These fractures frequently do not heal, may

require multiple surgeries, and frequently re-fracture the same site. Recent reports from the

German bone evaluation study (BEST) reported a 360-day re-fracture rate of 69% in

osteoporosis patients treated with parathyroid hormone (PTH) and 85% in patients that do

not receive medication [12]. Thus, there is a compelling need for improved bone grafts for

healing osteoporotic fractures. In this review, we will highlight two recent strategies for

significantly reducing the high complication rate resulting from implant failure and long-

term immobilization: (1) osteoconductive bone grafts that provide mechanical stability and

enhance osseointegration of the implant, and (2) osteoinductive bone grafts that enhance

healing by re-establishing normal bone repair (i.e., coupling of the bone remodeling units) in

osteoporotic patients (Figure 1).

Biological Challenges of Healing Osteoporotic Bone

Patients with osteoporosis suffer a reduction in bone mineral density that can result from

multiple pathological conditions and can lead to an increased risk of fracture. While bone

mass is a major predictor of osteoporosis, other factors such as the material properties of

bone can also affect the fracture risk [13]. A common observation associated with

osteoporosis is that the bone deposition by osteoblasts cannot keep up with osteoclast-

mediated bone resorption, ultimately resulting in a net loss of bone over time [14].

Furthermore, the healing potential of osteoporotic patients is impaired, in part due to

reduced ability of mesenchymal stem cells (MSCs) to differentiate into osteoblasts and form

new bone [2, 15]. MSCs from post-menopausal women exhibit a lower growth rate and

deficient osteogenic potential compared to pre-menopausal women [16], and MSCs from

osteoporotic patients synthesize less type I collagen [17]. The reduction in the number of

MSCs with osteogenic potential during aging has been suggested to contribute to the age-

related reduction in number of osteoblasts [18]. The use of intermittent PTH (or Forteo)

stimulates osteoblast differentiation and is the only treatment that promotes healing and new

bone formation in osteoporotic patients.

While patients with tumor-induced bone disease also experience an increase in osteoclast-

mediated bone destruction that osteoblasts cannot repair, they often suffer more pronounced

bone loss compared to osteoporotic patients due to the anti-cancer therapies [19]. Cancer

patients are frequently treated with chemotherapeutic agents, radiation therapy, and/or

steroids that can induce bone loss or necrosis, further complicating their ability to heal

fractures or to heal from surgery [20]. Since PTH is contraindicated in cancer patients, there

are no drugs used in cancer patients that stimulate new bone formation. While the anti-

resorptive drugs (Denosumab and bisphosphonates) can successfully reduce bone

destruction, they do not stimulate new bone and are associated with side-effects when given

at high doses to cancer patients [21]. Better treatments are clearly needed for patients with

osteoporosis or tumor-induced bone loss that enhance bone regeneration while reducing

tumor growth.
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Bone Grafts and Scaffolds for Healing Osteoporotic Fractures

The use of autogenous bone grafts has helped improve the impaired healing of patients with

osteoporotic fractures. Autograft (bone harvested from the patient) or allograft (donor bone)

bone is frequently used to enhance healing and fill space left by the fracture [22]. One study

has reported that osteoporotic patients with acetabular fractures treated with total hip

replacement supported by a fixation device and autografting of the acetabulum showed

incorporation of the graft and good functional outcomes after 11 – 84 months [23]. In

another study, treatment of osteoporotic humeral shaft non-unions with a vascularized

fibular graft was found to achieve successful union in a small clinical study [24]. However,

the bone harvesting surgical procedure is associated with additional morbidity, and the

amount of autograft available is limited [25]. These limitations of autograft have generated

considerable interest in synthetic scaffolds, which aim to reduce the high complication rate

due to implant failure by addressing the need for stabilization of fixation devices and/or

acceleration of fracture healing [2].

Typically, the primary failure mode for internal fixation devices is failure of the weak

osteoporotic cancellous bone rather than the implant [26], which is consistent with

observations that fractures in osteoporotic patients often present metaphyseal voids that are

more extensive compared to younger patients [27]. Bone graft and bone substitutes are

reported to be beneficial in maintaining metaphyseal reduction. Ideally, augmentation of

osteoporotic fractures with osteoconductive bone grafts both maintains reduction of the

fracture and also provides a scaffold for ingrowth of new bone near the interface between

host bone and the fixation device. Settable calcium phosphate cements (CPCs) offer the

advantages of good adhesion to bone, remodeling and consequent replacement with new

bone, injectability [28], and reduced reliance on internal fixation devices [26], and are often

used to fill voids caused by severe osteoporosis or comminution of the host bone [26].

Augmentation with CPCs has been reported to enhance the fixation stability of femoral neck

and trochanteric fractures [29] as well fractures of the intertrochanteric crest [30]. While

treatment of fragility fractures frequently focuses on the proximal femur, upper extremity

fractures to the humerus and radius account for 33% of fractures in elderly patients [31].

Osteoporotic proximal humeral fractures are challenging to treat due to poor bone quality

and unstable fixation [31]. Augmentation of proximal humeral fractures with Norian, an

injectable hydroxyapatite (HA) cement, maintained reduction and promoted unions in all

patients at 1 year follow-up [32]. Augmentation with CPCs has also been reported to

maintain fixation of unstable distal radius fractures [27, 33, 34].

In order to improve the bioactivity or mechanical properties of the graft, calcium phosphate

cements have been modified with other ions or polymers. Strontium (Sr)-substituted HA

cements showed improved Sr and Ca release compared to stoichiometric HA granules [35],

which is anticipated to enhance bone healing in vivo due to the anabolic and anti-catabolic

properties of Sr [36]. Another study has reported that silicate-substituted calcium phosphate

promoted osteogenic differentiation of MSCs [37]. Calcium phosphate/silk hybrid scaffolds

have been fabricated as a composite bone graft for stimulating bone formation and reversing

bone loss [38]. The hybrid scaffolds showed increased new bone formation and decreased
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bone resorption compared to the silk scaffold when implanted in the distal femoral epiphysis

in ovariectomized rats.

While osteoconductive cements and scaffolds improve implant stability and provide a

pathway for ingrowth of new bone, they do not address the impaired healing potential of

osteoporotic bone. Thus, a number of approaches using osteoinductive scaffolds and grafts

have been investigated to improve healing by stimulating osteoblast differentiation. Platelet-

rich plasma (PRP) enhances healing of segmental femoral defects through expression of

TGF-β1 and the osteoinductive factor bone morphogenetic protein-2 (BMP-2) [39]. In an

osteoporotic model of ovariectomized mice, PRP enhanced healing by promoting new bone

formation and suppressing adipogenesis within the bone marrow [40]. By providing a

surface on which new bone can grow, local delivery of biologics (such as PRP or

recombinant human BMP-2 (rhBMP-2)) from a scaffold is known to enhance bone

formation [41, 42]. Local delivery of rhBMP-7 from poly(lactic glycolic) acid (PLGA)

microspheres increased the mechanical strength of vertebral bodies in ovariectomized sheep

[43]. In another study, sustained release of rhBMP-2 from gelatin microsphere/CPC

composite scaffolds enhanced new bone formation compared to the CPC alone in

osteoporotic goats [44]. Local delivery of MSCs from scaffolds has also been investigated as

a strategy for healing osteoporotic fractures. Delivery of MSCs from PLGA/collagen Type I

microspheres enhanced healing of trabecular bone defects in ovariectomized rats compared

to MSCs alone [45]. However, healing of large cortical bone defects requires that the

scaffold also deliver osteoinductive cues to induce differentiation of MSCs to osteoblasts.

Delivery of an MSC sheet from osteoinductive calcined bovine bone increased new bone

formation compared to individual MSCs in 8-mm calvarial defects in ovariectomized rats

[46]. Other studies have shown that local delivery of MSCs transfected with BMP-2 from

calcium phosphate scaffolds enhanced bone healing compared to untreated MSCs in cortical

bone defects in the mandible [47] or femur [48] of osteoporotic rats. Mesoporous-glass/silk

scaffolds seeded with MSCs transfected with both PDGF and BMP-2 have also been shown

to increase new bone formation in segmental femoral defects in ovariectomized rats

compared to BMP-2 alone [49].

Strategies for Healing Bone Damaged by Cancer-Induced Disease

Healing of fractures caused by cancer-induced bone disease (CIBD) presents additional

challenges. Since expression of BMP receptors is up-regulated on cell membranes of certain

cancers [50–52], local delivery of growth factors such as rhBMP-2 presents potential risks

of stimulating tumor growth. In many cancer patients, management of pain is the primary

concern (versus bone regeneration) due to the often limited life expectancy of the patient

[53]. For example, malignant tumoral pathologies in the L5 vertebrae are typically stabilized

using a titanium cage filled with poly(methyl methacrylate) (PMMA) bone cement, which

effectively manages pain [54]. However, other studies have investigated the potential of

vascularized autogenous bone grafts as a more regenerative approach compared to PMMA

bone cement. Orthopaedic CIBD fractures have been successfully reconstructed using

autogenous bone grafts. In one study, thirteen patients who underwent resection for a

malignant pelvic lesion and were reconstructed with a total hip replacement augmented with

an ipsilateral femoral autograft experienced a low (8%) probability of revision for
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mechanical failure after 2 years [55]. A recent case report has noted that the use of a free

vascularized fibula graft resulted in a functional and pain-free hip for a patient with a large

cavitary defect of the femoral head after resection of a chondroblastoma [56]. Additional

studies report found that reconstruction of the distal radius with a free vascularized fibula

graft after resection of a giant cell tumor resulted in good functional outcomes at 4 years

[57].

Oral cancer patients present another challenge for healing CIBD fractures and bone damage.

Bone destruction in the craniomaxillofacial (CMF) complex can result in dramatic changes

in appearance, altered dentition, and reduced ability to speak. Thus, surgical intervention is

required not only for palliative care but also to restore normal function. Oral cancer patients

often require fixation or mandibulectomy (marginal or segmental) to remove tumor that has

invaded the mandible or to repair treatment-induced bone destruction [11, 58]. The current

one-stage procedure comprising tumor excision followed by immediate reconstruction of the

excised mandible with vascularized bone has proven to be the most reliable and cost-

effective approach for treatment of segmental mandible defects [11]. Since partial resections

in patients with mandibular invasion may lead to recurrence [59], surgeons often are

inclined to take large negative margins, which introduces cosmetic and functional defects

[58, 59]. In order to preserve function, the clinical standard of care for reconstruction of

large segmental mandibulectomies utilizes a vascularized free flap, in which a portion of the

fibula is removed and grafted into the mandibular defect [11]. After grafting, patients

frequently are treated with radiation monthly prior to placement of dental implants [60].

While success rates exceeding 90% have been reported for many types of mandibular

surgeries, radiotherapy has been reported to lower success rates [60–63]. Thus, the radiation

treatment intended to prevent recurrence in cancer patients can lead to complications such as

osteoradionecrosis [64], resulting in failure of the graft and revision surgeries [63]. Despite

these aggressive therapies of large surgical margins and radiation, recent studies have

reported recurrence rates varying between 13 – 34% after mandibulectomy, which

underscores the need for new approaches for reducing tumor recurrence while improving

healing [58, 60, 61, 65, 66].

Recent studies have reported that nonvascular bone grafts (NVBGs), which are available in

greater quantity and do not require an invasive harvesting procedure, can achieve successful

outcomes for patients treated for marginal mandibulectomy or small segmental defects [67–

69]. However, patients with large defects still have few options beyond the fibula free flap.

While BMP-2 and other growth factors are used for healing CMF bone defects, the concern

of stimulating tumor growth has prevented the use of these bone anabolic agents for oral

cancer [70, 71]. Alternatively, the use of PRP has been effective for the treatment of

refractory bisphosphonate-induced osteonecrosis of the jaw (BRONJ); however, it is unclear

whether the increased concentration of growth factors will have negative effects on

cancerous or pre-cancerous lesions [72].

Conclusions

Despite the introduction of new therapies for slowing the progression of disease in

osteoporotic and CIBD patients, the loss of bone mass associated with these diseases results
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in pathologic fractures, which are difficult to treat due to impaired bone healing. New bone

grafting strategies addressing the need for implant stabilization, bone ingrowth, and re-

establishment of normal bone repair continue to be developed. Promising strategies include

non-vascularized bone grafts and synthetic osteoconductive bone cements and scaffolds

augmented with osteoinductive agents such as platelet rich plasma, rhBMP-2, and/or MSCs

have shown promise in preclinical studies and clinical trials. Many groups continue to

investigate improved strategies to enhance the mechanical properties of the graft and to

stimulate improved healing. While similar approaches can be taken in cancer patients that

suffer fractures, more research is needed to find drugs that can both stimulate healing while

inhibiting tumor growth.
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Figure 1. Strategies for healing osteoporotic and cancer-induced bone disease (CIBD) fractures
(A) Pre-operative radiograph of a hip fracture (arrow) in an 84 year-old female patient. (B)

Postoperative radiograph showing fixation of the fracture with an intra-medullary hip lag

screw coated with hydroxyapatite (HA). (C) Stabilization and osseointegration of implants

using osteoconductive bone grafts. (D) Re-establishment of normal bone healing by local

delivery of biologics (e.g., mesenchymal stem cells, rhBMP-2, or platelet-rich plasma

(shown in red)) from bone grafts and scaffolds. Adapted from A Moroni et al. Can we

improve fixation and outcomes? Use of bone substitutes. J Orthop Trauma 23:422–425,

2009 [29].
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