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Abstract

Mathematical models have been central to understanding the interaction between neural control

and breathing. Models of the entire respiratory system – which comprises the lungs and the neural

circuitry that controls their ventilation - have been derived using simplifying assumptions to

compartmentalise each component of the system and to define the interactions between

components. These full system models often rely – through necessity - on empirically derived

relationships or parameters, in addition to physiological values. In parallel with the development

of whole respiratory system models are mathematical models that focus on furthering a detailed

understanding of the neural control network, or of the several functions that contribute to gas

exchange within the lung. These models are biophysically based, and rely on physiological

parameters. They include single-unit models for a breathing lung or neural circuit, through to

spatially-distributed models of ventilation and perfusion, or multi-circuit models for neural

control. The challenge is to bring together these more recent advances in models of neural control

with models of lung function, into a full simulation for the respiratory system that builds upon the

more detailed models but remains computationally tractable. This requires first understanding the

mathematical models that have been developed for the respiratory system at different levels, and

which could be used to study how physiological levels of O2 and CO2 in the blood are maintained.

[Every living cell in the human body (as well as in other mammals and animals) needs

oxygen (O2) to survive. O2, combined with the breakdown products of carbohydrate, fat or

protein, releases the energy required for the function of cells. This process results in

production of carbon dioxide (CO2) which needs to be removed from the cells1. Effective

delivery of O2 and removal of CO2 from all of the cells in large organisms is achieved by

coordination between a blood circulatory system that transports the required amount of O2-

rich blood to the tissue cells and returns CO2 to the heart and lungs; and an external

breathing system (the lungs) that transports air to and from a vast gas exchange surface.

Together the two transport systems bring external air into close proximity with blood in the
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lung, hence enabling gas exchange2. The rate at which air and blood are delivered to the gas

exchange surface is critical for effective gas exchange: hence, to ensure adequate and

matched rates of delivery of both air and blood to the gas exchange surface, the body has

evolved respiratory control systems that operate both centrally and locally to adapt the

minute ventilation (the total amount of new air that moves into the lungs each minute) and

the cardiac output (the volume of blood being pumped by the heart) over long and short

periods of time.

Figure 1 shows the components of the cardio-respiratory system that are known to be

essential for the effective exchange of respiratory gases with the environment and the body

tissues. Central control of lung movement and heart rate is initiated from a complex

interacting neural network, located in the brainstem. The neural network receives signals

from various parts of the body including from chemoreceptors within the brainstem3, and in

response it generates the signals that affect lung movement and heart rate. The lung

movement is mainly affected by the diaphragm, which is excited during inspiration by a

signal from the phrenic nerve, and which recoils during expiration. Expiration is usually

passive in mammals, however, when forced expiration occurs, it is mainly affected by the

abdominal muscles2. The resistance to flow in the upper airway and movements of the

tongue are affected by signals from the hypoglossal nerve. The vagus nerve is an important

bundle of nerves that carries signals to and from the brainstem. Signals from chemoreceptors

and baroreceptors in the aorta as well as signals from stretch receptors in the lungs are

transferred via the vagus nerve to the brainstem, and signals that act to slow the heart rate

are transferred by the vagus nerve to the heart. Chemoreceptors and baroreceptors are also

located in the carotid sinus and their signals are transferred to the brainstem via the

glossopharyngeal nerve. The lung itself is a complex organ that comprises of airways and

blood vessels that are ‘suspended’ within a delicate network of gas exchange tissue4. The

airways, pulmonary arteries, and pulmonary veins converge at the alveoli (microscopic air-

filled sacs, with walls comprised of capillaries) where respiratory gas exchange occurs.

The cardio-respiratory system has been studied extensively both experimentally and

theoretically using mathematical models, although many elements of the system have been

studied in isolation (for example, the heart is often studied separately from the lungs, and the

neural system is studied in isolation from the rest of the body). Isolated studies are possible

mathematically by providing adequate boundary conditions for each element. However,

understanding what the correct boundary conditions are under different physiological

conditions in health and disease requires studying the system as a whole, in particular since

the interactions between the different components of the system are difficult to predict.

Understanding how isolated studies contribute to the integrated behaviour of the cardio-

respiratory system is important for achieving the ultimate goal of improving human health.

Here we review mathematical models that have been developed for the respiratory system at

different levels, focusing on the need to maintain physiological levels of O2 and CO2 in the

blood and ignoring other functions of the respiratory system such as speaking, coughing,

laughing and sniffing2. We also focus on response times over a period of minutes and do not

look at the transitions from acute to chronic conditions that occur over time periods of days

and years. Our review is not intended to be comprehensive and we do not mention all of the

models in the field: more comprehensive literature reviews have been published in the
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past5–8 to which we refer the interested reader. Instead, we focus in more detail on a number

of models and use them to highlight the different approaches and trends in the field.

MODELS OF THE ENTIRE RESPIRATORY SYSTEM

“The essence of physiology is regulation”. F.S. Grodins et al.9

The idea that lung ventilation is regulated so that alveolar partial pressure of CO2 remains

constant was expressed as early as 190510, however, it was after World War II and the

consequent rapid development of control-system theory that the first quantitative respiratory

model appeared11. The earliest models, led by Gray12, described an empirical relationship

between minute ventilation and steady state measurements of arterial pH, partial pressure of

CO2 and/or partial pressure of O2
6. The first dynamic model of the respiratory system was

developed by Grodins et al. (1954)9. Although it is the later more elaborate model by

Grodins et al. (1967)13 that became famous, the 1954 model provided the basic principles on

which many models of the entire respiratory system are based. Figure 2, adapted from the

1954 publication9, describes the general features of a feedback regulator. The most

important idea behind Figure 2 is that there is some quantity (the “controlled quantity”) that

is kept as close as possible to some set value. This is achieved by feeding the value of the

controlled quantity into the controlling system, which in turn changes some controlling

quantity that affects the controlled system. As a result the controlled quantity varies such

that it is kept close to the set value even if there are some disturbances to the system. Note

that by algebraic manipulations the “setting value” can be “hidden” among other parameters

of the controlled system and may not appear explicitly in the model equations. However,

having a “setting value” in Figure 2 helps emphasize that the control system has a purpose -

in the case of the respiratory system it is to maintain adequate levels of arterial partial

pressures of O2 and CO2
2.

Models of the entire respiratory system include the general features seen in Figure 2 and

differ in the details of each component, including the number of controlled and controlling

quantities. The models also differ in the experiments that they have been designed for or

shown to mimic. Mathematical models should of course be tested against a variety of

physiological conditions, however, when reviewing mathematical models in this section we

will focus on the model responses to hypoxia (decrease in inspired O2) and hypercapnia

(increase in inspired CO2). These responses are used routinely to test the control function of

the respiratory system and were mimicked by many mathematical models. A typical minute

ventilation response to hypercapnia measured in humans is shown in Figure 3. The data was

extracted from Figure 10 of Reynolds et al. (1972)14 using the ENGAUGE software15. Note

that the minute ventilation increases with increased inspired CO2, that it takes a longer time

to reach steady state when the inspired CO2 increases, and that the “on” step response is

slower than the “off” step response. Also note that the data is an average of the responses of

14 human subjects when 7% CO2 is inhaled, and the average of 10 subjects in all the other

cases. We do not know why a different number of subjects was chosen in one case and how

the subjects were chosen from a pool of 15 subjects. These limitations of the experimental

data will be discussed further later in this review. Figure 4 shows the mean response of

minute ventilation in 10 human subjects to 9% inspired O2. The data was extracted from
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Figure 8 of Reynolds et al. (1973)16 using the ENGAUGE software15. The upper curve

shows the results when the alveolar CO2 concentration was kept constant. In the lower curve

the alveolar CO2 concentration was not controlled and has changed as a result of the

increase in minute ventilation.

Below we discuss three models in detail. 1) The Grodins model which served as a basis and

inspiration to other models in the field. 2) The Khoo/PNEUMA model that represents a

large-scale computational effort to model the cardio-respiratory system and couples together

several sub-models that have been developed by various groups; and 3) the Ben-Tal and

Smith model which represents the first attempts to couple recent knowledge gained on

neural dynamics with lung mechanics and gas exchange.

The Grodins model

As mentioned previously, the first dynamic model of the respiratory system was developed

by Grodins et al. (1954)9, but it is the 1967 model13 that people regard as the “Grodins

model” and which we will describe here (for a review of the 1954 model see Khoo &

Yamashiro6). The controlled system in the Grodins model13 consists of 12 ordinary

differential equations (ODEs) that describe the rate of change of CO2, O2 and N2

concentrations (or volume fractions) and partial pressures in the lungs, brain and tissue. The

lung is modeled as a rigid container with uniform content and zero dead space ventilated by

a continuous unidirectional stream of air and perfused by a unidirectional flow of blood. The

brain compartment includes two reservoirs, one through which blood flows and one

containing cerebrospinal fluid. The tissue compartment represents O2 consumption and CO2

production in the entire body. Time delays in the model represent the blood transport time

between the different compartments. Grodins et al.13 studied three versions of their model

(each taking into account different levels of complexity). In the second and third versions of

the model, the controlled quantities were the brain H+ as well as arterial H+ and partial

pressure of O2 at the peripheral chemoreceptors (recall that pH is a function of log[H+] and

that [H+] can be expressed as a function of CO2). The controlling system consisted of an

empirical function (based on experimental data) whose entries were the controlled quantities

and whose output was the minute ventilation (the controlling quantity).

In response to a step increase of 5% inhaled CO2 there was a fast increase in minute

ventilation followed by a slower increase, but the model did not reach steady state after 30

min of simulation (although steady state of about 20 L/min has been reached after 49 min).

The return of minute ventilation back to normal once the CO2 stimulation was removed was

slower than the experimental observation. Similarly, the response to a 30 min step decrease

of 10% O2 with a subsequent return to air (21% O2) was also simulated by Grodins et al.13.

The model produced ventilation overshoot during the on transient and a prolonged interval

of periodic breathing after the stimulation was turned off, both of which are inconsistent

with experiments.

Despite the obvious limitations of the Grodins model it has served as a basis for many other

models and has inspired other studies in the field (see, for example, references17–23),

perhaps because it could accept a variety of stimulations and physiological conditions and
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because it could produce periodic breathing (although this has not been shown in the

original paper).

The Khoo/PNEUMA model

Perhaps the most detailed (non-commercial) model to date of the cardio-respiratory system

has been developed over the past 30 years by Prof. Michael Khoo and his collaborators. A

comprehensive description of the model can be found in Cheng et al.24 and an

implementation of the model using SIMULINK®/MATLAB® (The Mathworks, Natick,

MA) is available as a software package named “PNEUMA” (see http://bmsr.usc.edu/

software/pneuma/).

The model, which has over 250 parameters and variables, is described as a collection of

modules each with a set of inputs and outputs that are sometimes related via differential

equations and sometimes via empirical functions (this block diagram representation is the

working environment for SIMULINK®). At the highest level of organization, the model is

divided into four interconnected main units: respiratory system, cardiovascular system,

central neural control and sleep mechanism, but we will focus our attention on the

respiratory system unit (which we will regard as the controlled system) and the modules

within the central neural control unit that affect the respiratory system directly (we will

regard these as the controlling system). The controlled quantity in the Khoo/PNEUMA

model (within the context described above) is a chemoreflex-related ventilator drive (called

Dchem) which is the sum of central and peripheral chemoreflex components (as well as a

sleep-wake state index). The controlling quantities are total ventilator drive (called DT or

DTotal) and the breathing rhythm (which is a square signal giving 1 during inspiration and 0

during expiration with equal periods for inspiration and expiration over a single breath). The

respiratory system module includes upper airway and inspiratory muscle mechanics, and gas

exchange in the lungs, body tissues and brain region. The central and peripheral

chemoreceptors are also included under “Gas Exchange and Transport”. The central neural

control unit contains a “Ventilatory Drive” module that combines the chemical drive, Dchem,

with other neural signals (such as the sleep/wake state) and produces the total ventilator

drive.

The Khoo/PNEUMA model has been used to study a variety of responses including the

appearance of periodic breathing under different physiological conditions. Several of these

simulations are shown in Cheng et al.24 and one of them shows the transient response to

isocapnic hypoxia (the transient response to hypercapnia is not shown). The breathing

frequency and the lung volume (called tidal volume in the paper but note that this differs

from the physiological definition, see for example Guyton & Hall1) do not increase as much

as seen experimentally when inspired O2 is reduced from 21% to 10% (the volume

amplitude increases from 0.6 L to 0.7 L and the breathing frequency increases from 12.5 to

12.8 breaths/min; this is roughly an increase of 1.5 L/min, far smaller than the increase in

minute ventilation shown in Figure 4). Some of the parameters used in the Khoo/PNEUMA

model are based on Magosso & Ursino25 who chose the parameters in their model such that

it will fit the isocapnic hypoxia response with 7% O2 published in Reynolds & Milhorn16.

Ben-Tal and Tawhai Page 5

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://bmsr.usc.edu/software/pneuma/
http://bmsr.usc.edu/software/pneuma/


This is perhaps an illustration that the integrated behaviour of the system is different than the

behaviour of isolated components.

The sheer size of the Khoo/PNEUMA model and the computational platform it was

implemented on make it difficult to analyze this model in the same way the Grodins model

was analyzed (for example, by reducing the model using scaling and asymptotic analysis as

was done in Fowler et al.17). Nevertheless earlier versions of the model were analyzed in

isolation (see, for example, references5, 26).

The Ben-Tal and Smith model

There have been several attempts to link neural dynamics to models of the lungs. For

example, Eldridge27 coupled a limit cycle oscillator (the Fitzhugh-Van der Pol-Bonhoeffer)

to a lung model which incorporates volume change and gas exchange, and Longobardo et

al.28 included a respiratory pattern generator in their model. The Ben-Tal & Smith model29

which we will review here in more detail relied less than previous models on empirical

input-output relationships and provided unique insights into the physiological system. The

model consists of nine ordinary differential equations. The controlled system represents the

lungs as a single compartment with a moving plate and takes into account lung mechanics,

gas exchange and gas transport. The controlled quantities are the blood partial pressures of

CO2 and the saturation value of hemoglobin at the end of the capillaries (i.e. where blood

exit the lungs). The controlling quantity is a phrenic nerve signal (ramp signal in the model)

that leads to changes in the intrapleural pressure (via a differential equation representing the

diaphragm displacement). The control system consists of an oscillator, representing the

activity of the pre Bötzinger complex (pre-BötC, an area of the brainstem considered to be

vital for the breathing rhythm generation during the inspiratory phase) and a leaky, resetting

integrator representing ramp generation in the ventral respiratory group (VRG, also located

in the brainstem) which is driven by the pre-BötC and drives the phrenic nerve motor output

to produce diaphragm displacement. The model makes the assumption (based on

experimental observations) that amplitude is controlled at the level of the VRG and

frequency is controlled at the level of the pre-BötC (note however that changes in frequency

will also affect the amplitude of respiration due to the integration of the pre-BötC signal).

Ben-Tal & Smith (2008)29 investigated the dynamic response of the model to 2 min

exposure to hypercapnia or hypoxia when the controlling system was affected by a signal

proportional to an error (the difference between the setting value and the controlled quantity)

and/or to the integral of the error (known as a P-controller and a PI-controller, respectively).

The experiments that this study attempted to mimic were performed on anesthetized dogs

and are described in Figures 4–10 and 5-1A of Comroe2. The effect of an additional

circulatory transport delay on these dynamic responses and on the appearance of periodic

breathing were studied in Ben-Tal & Smith (2010)30. In these two studies the authors

concluded that the PI-controller gave results that fit better with experimental data and that as

a consequence of a PI-type behavior, the system cannot reach steady state under

hypercapnia once a certain level of CO2 is inhaled (unless other mechanisms, that have not

been taken into account in the model, start to operate). This prediction is consistent with

Figure 3 and 4 above where minute ventilation does not reach steady state after 30 min when
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7% CO2 is inhaled, while the hypocapnic hypoxia response stabilizes after less than 2 min

(although the minute ventilation starts to drop later on, an observation also predicted by the

Ben-Tal & Smith model). This conclusion of the Ben-Tal & Smith model brings into

question some of the methodology used to create Figure 3 (although otherwise the

experiment in Reynolds et al.14 was carefully done). Why the mean of 14 human subjects

was used to describe the response to 7% inhaled CO2 and not the mean of 10 subjects as was

done in the other cases (was it to smooth the data?) and how the subjects were chosen out of

the entire pool of 15 subjects? In comparison (as pointed out in Ben-Tal & Smith, 200829),

Dripps & Comroe31 noted that only 27 of 42 individuals reached steady state when 7.6%

CO2 was inhaled and only 13 of 31 subjects when 10.4% CO2 was inhaled (the experiment

continued until steady state was reached or until the subject became too uncomfortable,

when steady state was reached it was in less than 10 min). Reynolds et al.14 noted that

subjects with erratic CO2 responses were eliminated from the experiment.

MODELS OF RESPIRATORY NEURAL CONTROL

“A heart may continue to beat rhythmically for many hours after it has been

removed from the body… The muscles of respiration possess no inherent rhythm”.

J.H. Comroe2.

The quest for finding the sites and mechanisms involved in respiratory rhythm generation

can be traced back to 1812 when Legallois identified a small part of the medulla as the

origin of breathing2, 32. Several regions within the medulla have now been identified as

essential for rhythm generation and control of breathing but there is no agreement over the

details of how the different regions are connected and interact3, 33, 34. Mathematical and

computational models of the respiratory network have been developed at the level of a

single neuron, small and large networks of neurons, and networks of populations of neurons;

these models have helped to form hypotheses and guide experimental studies (see a recent

review by Lindsey et al.35). Most studies (experimental and theoretical) have focused more

on the mechanism of respiratory pattern generation and less on the neural response to

changes in blood partial pressures of O2 and CO2. Some models have taken into account

mechanical feedback from the lungs (sent from the stretch receptors via the vagus nerve36)

and other signals associated with cough37. While activation of the pulmonary stretch

receptors during inspiration shortens the inspiratory phase in rats, cats, dogs and rabbits, it

has little or no effect on humans1, 2, 38. This difference between humans and laboratory

animals highlights one of the difficulties in coupling neural models to lung models:

measurements of lung function which are used to develop lung models are routinely done on

humans while measurements at the neural level are performed on laboratory animals. Some

of the lung models (for example, Ben-Tal39) can be scaled to represent another mammal and

hence can be coupled to neural models developed for that animal. However, developing a

detailed neural model that truly represents the human neural system is more difficult and

remains a challenge.

A recent example where the effects of hypercapnia and hypoxia have been taken into

account in a detailed model of neural network is described in Molkov et al.40. The model is

based on Rybak et al.41 and Smith et al.42, and includes eight interacting neuronal
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populations, each represented by 50 heterogeneous neurons. The aim of the study was to

examine the interaction between neurons that reside in a region of the brainstem called the

Bötzinger complex (BötC) and pre-BötC, and neurons that reside in the retrotrapezoid

nucleus (RTN)/parafacial respiratory group (pFRG) region. The BötC/pre-BötC is

considered to be responsible for generating oscillations that drive the diaphragm during

inspiration while the RTN/pFRG region contains central chemoreceptors43 and is considered

to be a second oscillator that drives the abdominal muscles in response to hypercapnia to

produce forced expiration. The neural system response to changes in O2 and CO2

concentrations was studied in this context. Experimental results from Abdala et al.44 and

within Molkov et al.40 show that when hypercapnia or hypoxia is strong enough, the activity

of the abdominal nerve increases over time with a step-wise increase in the ratio between the

phrenic nerve frequency and the abdominal nerve frequency (changing from 1:5 and 1:4 to

1:3 and 1:2 and, finally, to 1:1). The model in Molkov et al.40 reproduced these results (with

hypercapnia and hypoxia taken as tonic drives). The same results were reproduced and

analyzed using a reduced model in Rubin et al.45. The interaction between the pFRG and

pre-BötC was also investigated in Lal et al.46 and Wittmeier et al.47.

MODELS OF THE LUNGS

”One of the foremost problems is how to ventilate with air and perfuse with blood a

surface about the size of a tennis court – and to do that efficiently, homogeneously,

and with perfusion and ventilation well matched. This is a demanding task of

engineering.” E.R. Weibel48

The lungs are the central organ of external respiration, acting as the interface between air

and blood. Achieving effective oxygen uptake and carbon dioxide elimination requires

bringing inhaled air into close proximity to blood, along with a reasonable spatial and

temporal matching of air and blood delivery to all areas of the gas exchange surface.

Mathematical models of external respiration therefore require consideration of at least

minute ventilation, right ventricular output, and gas exchange. When a model of these

components is considered independent from the rest of the respiratory system, the

specification of boundary conditions is also required to represent interaction with other

system components as illustrated in Figure 1. Here we consider some examples of models

for external respiration from the literature that could be (or have been) used as a component

of a full respiratory system model and we consider their respective advantages and

disadvantages in this context.

Single-unit lung models

External respiration can be approached as a steady-state problem by assuming complete

equilibration of alveolar and arterial partial pressures of O2 and CO2 and specifying only the

rates of alveolar ventilation and pulmonary capillary perfusion49. This mass-balance

formulation has been used in many models of the entire respiratory system (for example in

the Grodins model described above) but limits any understanding of the mechanics of

breathing and the interactions between lung, chest wall, airway resistance, and gas

exchange. Dynamic (sometimes called ‘breathing’) single-unit ‘compartment’ models are

sufficient for understanding the interaction between total ventilation, cardiac output, and gas
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exchange, and can easily be driven by external models or simple boundary conditions that

represent the rest of the respiratory system. Each compartment represents a component of

the lung or chest wall, with spatially-distributed and/or complex function lumped into

relatively simple models. For example, Ben-Tal39 and Liu et al.50 used similar approaches to

modeling dynamic lung and chest wall mechanics and gas exchange, using single-unit

compartment lung models with an equation of motion to relate the rate of change of

intrapleural pressure (Ppl) to the pressures required to overcome airway resistance and

functional lung tissue (i.e. parenchymal) elasticity. Ben-Tal39 presented a ‘simplified’ whole

lung model for external respiration that can be reduced to a simple mass balance (under the

assumption of full equilibration of gas exchange and time-averaged steady-state flows), or

can be scaled to smaller spatial units than the whole lung51, 52, or can be integrated into a

respiratory system model to provide dynamically changing gas partial pressures to a neural

control model which in turn dynamically controls the frequency and amplitude of

breathing29, as described above. Ben-Tal39 assumed constant resting-level values for lung

and chest wall compliance, and rigid airways; in contrast the goal of Liu et al.50 was to

derive a model that satisfactorily described the dynamics of airway and lung mechanics over

the full range of lung volumes from residual volume (RV) to total lung capacity (TLC),

hence they included approximations for nonlinear lung compliance and airway resistance.

The alveolar region in this model was a nonlinear time-varying viscoelastic lumped

parameter unit, with a semi-empirical definition of the pressure-volume relationship for the

lung including an imposed hysteresis. As in Ben-Tal39, the upper airway (anatomical

deadspace) in Liu et al.50 was assumed rigid, but a compliant ‘collapsible segment’ was

included to adequately represent pressure-flow data during simulation of forced expiration.

PO2 and PCO2 were simulated as functions of residence time and location within the

capillary bed in both models, including equations for the biophysics of O2 binding to

hemoglobin. In each model the lung was enclosed in a rigid-walled thoracic cage, with

ventilation driven by a time-varying intrapleural pressure (Ppl). In the Ben-Tal39 model the

Ppl followed a prescribed sinusoid; in Liu et al.50 the Ppl was set to follow measured Ppl

waveforms during the forced expiration. Liu et al.50 used a nonlinear parameter-estimation

algorithm to vary sensitive model parameters to obtain reasonable least squares fits to

experimental data. This differs from the more biophysical approach of Ben-Tal39, which

based model parameters on measured quantities. This relates to an important advantage of

the Ben-Tal39 model and its predecessors, which is its scalability. That is, the model is

equally relevant to a lung, a lobe, or an arbitrary unit of gas exchange with appropriate

change of model parameters. The same scaling is more difficult using the nonlinear model of

Liu et al.50 because of its empirical parameter fitting. Swan et al.52 demonstrated scale

translation of the Ben-Tal39 model in a study of gas exchange within the pulmonary

microstructure, where each ‘unit’ for gas exchange was an individual alveolar duct of the

multi-branching acinus (the original model treated the whole lung alveolar volume as a

‘unit’); Swan51 further showed how the model can be scaled to represent each individual

acinar ventilation/perfusion (V/Q) unit (~32,000) in the human lung, as will be discussed

later.

Dynamic single-unit models such as the two above exemplify the current state-of-the art in

terms of integration with the full respiratory system. When models for the biophysics of O2-
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hemoglobin binding are included, these models provide significant advantage over the

assumption of full equilibration, they are fast to compute, are amenable to mathematical

analysis, and relatively easy to couple with more complex control system models. A

limitation is that they cannot be used to capture the contribution of ventilation/perfusion

(V/Q) mismatch to gas exchange. That is, an inherent assumption in the single-unit models

is that the lungs are homogeneous. However, the branching structure of the airways and

vasculature, the shape of the lungs, inherent regional variations in tissue properties,

gravitational effects, and interaction with external organs such as the diaphragm are all

factors that lead to spatial heterogeneity of function, which requires a multi-unit model.

Multiple-unit models for ventilation/perfusion matching

Both ventilation (V) and perfusion (Q) have a preferentially gravitational distribution in the

normal lung (flow increases on average in the direction of gravity), overlaid with marked

iso-gravitational heterogeneity53. Virtually all diseases of the lung that impair gas exchange

affect V/Q matching. For example, in asthmatic bronchoconstriction the ventilation is

reduced to some regions of tissue; and in pulmonary embolism (occlusion of the pulmonary

arteries, typically by a blood clot embolus) the perfusion to specific regions is reduced. Less

obvious are the effects of pulmonary edema (fluid in the alveolar space) which increases the

diffusion barrier for gas exchange and effectively stiffens the alveolar tissue hence reducing

ventilation; or pulmonary arterial hypertension where arterial wall remodeling could

theoretically increase the heterogeneity of perfusion. When compensatory mechanisms -

either local or system-level – are not sufficient to improve the spatial or temporal matching,

this results in obvious gas exchange dysfunction. Understanding the full respiratory system

interaction during chronic alteration of V/Q has relevance to the older lung, where a myriad

of changes to lung structure and elasticity can alter the V/Q distribution and its

heterogeneity, in parallel with a reduction in sensitivity to change in respiratory blood gases.

Models with prescribed V/Q—Many studies have used multi-unit models of, or

statistical analyses with, prescribed V/Q distributions to study, for example, the effect of

V/Q mismatch on gas exchange54, gas exchange with inhaled N2O55, emphysema and

embolism56, hepatopulmonary syndrome57, acute respiratory distress syndrome58, and lung

inflammation59. While some of these models are not suitable for integration into a dynamic

respiratory system model, others have been designed with this as a long-term goal. For

example, Reynolds et al.59 developed a multi-compartment model for gas exchange with

focus on inflammation in acute lung injury (ALI, an inflammatory process that typically

requires mechanical ventilation). Model compartments comprised the alveolar air space,

‘lung tissue’, and capillary blood. The lung tissue compartment represented the interstitial

space, where inflammation could lead to accumulation of interstitial fluid. Each respiratory

unit in their model comprised on the order of 25 alveoli and their capillaries, and the

functional model comprised equations for O2, oxyhemoglobin, CO2, and bicarbonate (i.e.

consistent with the single-unit models of Ben-Tal39 and Liu et al.50), and a relatively simple

model for inflammation and the movement of water between compartments. To represent

the interaction of the respiratory units with the rest of the lung, the authors assumed the

lengths of inspiration and expiration, blood velocity, and inspired partial pressures of O2 and

CO2. A ‘lung scale’ model was constructed by linking several respiratory units, each with a
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different V/Q. The longer-term goal of this work is to understand how to provide

interventions to a lung that is under inflammatory stress without triggering further

inflammation. This is clearly a multi-scale problem that requires interaction with the full

system behavior: the authors noted that their approach to V/Q was simplistic, and the

assumption of fixed boundary conditions for pulmonary arterial blood gases and acid-base

status was limiting. In a multi-scale approach the prescribed V/Q would be replaced by

dynamic simulation of regional ventilation and perfusion in response to local inflammation

stiffening the lung tissue; full system interaction would provide variable rates of ventilation

and perfusion, and pulmonary arterial blood gases. The detailed focus on inflammation

would of course not be suitable or necessary for all studies of respiratory system interaction,

and the very small spatial scale of the model means that it cannot be included directly and

explicitly for all alveolar units in the intact lung. Its inclusion at a higher spatial scale

requires model reduction, by using the detailed behavior of the inflammation model to

parameterize a lumped model that represents the averaged behavior of alveoli within a larger

spatial unit.

Biophysical models for V/Q matching—The Reynolds et al.59 study highlights the

need for predictive models for V/Q that respond to local alterations in the lung, and that

interact with the rest of the respiratory system. Predictive models for V/Q require inclusion

of the important passive mechanisms that are known to determine V/Q matching.

Distributions of ventilation and perfusion throughout the lung exhibit significant

heterogeneity, and both are influenced by the branching geometry of the airways and blood

vessels, gravity, fluid properties, regional tissue properties, and pathology. Active

mechanisms also contribute to V/Q matching. Perhaps the best understood of these is

hypoxic pulmonary vasoconstriction (HPV), which is a sustained constriction of the

pulmonary arterial smooth muscle in response to low local alveolar PO2, and which acts to

divert blood away from poorly ventilated regions of the lung tissue60. The relative

importance of active in comparison to passive mechanisms in matching V/Q is not fully

understood, however active mechanisms clearly become important when the lung is under

stress, and will be necessary to include in models of pathology.

Gravity contributes to V/Q matching and mis-matching in several ways. Hydrostatic

pressure leads to greater intravascular pressures in the dependent lung, and deformation of

the lung tissue under its own weight (the ‘Slinky effect’) establishes a greater density, on

average, - of vessels per unit volume in this region, and hence more flow per unit volume of

tissue. Hopkins et al.61 proposed that the perfusion gradient became insignificant when flow

per unit of tissue was normalized by density, hence postulating that the gravitational

gradient in perfusion was largely due to the Slinky effect. Clark et al.62 studied this

hypothesis using a computational model that included both tissue deformation under gravity,

and the effect of a hydrostatic pressure gradient on pulmonary blood flow. A finite

deformation elasticity model for deformation of compressible lung tissue63 was used to

simulate the displacement of the lung tissue under gravity, and the elastic recoil pressures

acting on an anatomically-structured model of the pulmonary arteries, veins64, and intra-

acinar microcirculation65. Perfusion and elastic vessel deformation were simulated under

steady-state boundary conditions for right ventricular output and left atrial pressure. The
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steady-state assumption allows simulation of perfusion using Poiseuille flow equations,

rather than the more time-consuming solution of one-dimensional Navier Stokes equations

(which are necessary for pulsatile flow). The study concluded that the hydrostatic pressure

gradient contributes at least as much as the tissue deformation to the gravitational gradient,

disputing the Hopkins hypothesis. A biophysical model for perfusion distribution therefore

requires adequate consideration of hydrostatic effects in parallel with the ‘Slinky effect’.

Gravity also plays an important role in determining the ventilation distribution. The

deformation of the lung under its own weight establishes a gravitationally directed gradient

in tissue expansion at functional residual capacity (FRC, the lung volume at the end of a

restful exhalation), with tissue in the dependent region less expanded than tissue in the non-

dependent region (i.e. the base and apex, respectively, of the upright lung). The lung is

nonlinearly elastic, so this distribution of tissue volumes results in a nonlinear distribution of

tissue compliance at FRC. A uniform decrease in the intrapleural pressure around the lung

therefore expands the lung tissue at different rates, depending on the local compliance, and

hence when inhaling a normal tidal volume from FRC the ventilation is weighted more

towards the dependent than the non-dependent tissue. Multiple-unit models for the lung have

been used to simulate this ventilation non-uniformity; for example, Chang & Yu66 used a

five-lobe model to study the contribution of compliance and airway resistance to ventilation

distribution under quiet breathing, at high flow rates, and using gases of different physical

properties. The model was derived on the basis of balancing the change in pleural pressure

during breathing with the change in pressures due to elastic deformation of each lobe, and

resistive pressure drop along the airways. The model was parameterized using some

measured quantities and some empirical estimates from the literature. The five-lobe model

can reproduce several features of the ventilation distribution: a preferential distribution of

ventilation to the dependent tissue during quiet breathing, reversal of the distribution above

a high flow threshold, and sensitivity of the distribution to gas density and viscosity. A

multi-unit model was also presented by Swan et al.67, who extended the Ben-Tal39 model to

simulate flow to each of the ~32,000 acini of the human lung. The Ben-Tal39 model was

adapted by explicitly including a full multi-branching tree, with each terminal branch

coupled to an independent compliant acinus. Using the same approach as Clark et al.62, an

anatomically-structured airway tree model68 was embedded within a compressible finite

elasticity model for the lung63. Deformation of the lung tissue model was used to initialize

the compliance of each acinus. As in Ben-Tal39, ‘breathing’ was simulated by specifying a

sinusoidally-varying pleural pressure. The model predicted ventilation distribution under

resting breathing that was consistent with experimental studies, and iso-gravitational

heterogeneity as a consequence of variation in material properties in the model. In

agreement with the five-lobe model, resistance was found to play an insignificant role in

distributing the ventilation during baseline conditions. The five-lobe model is a convenient

approach that provides advantages over the single-unit models in terms of its ability to

predict a non-uniform ventilation distribution, however it lacks the dynamics of the single-

unit models. The Swan et al.67 model provides a more comprehensive prediction of

ventilation distribution that is time-dependent, and that can be controlled by modifying the

sinusoidal intrapleural pressure boundary condition to one that is controlled by the

respiratory system interactions. A further advantage is that the model can be reduced to a
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lesser number of units (by appropriate series and parallel summation of tissue compliances

and airway resistances) as is required.

Swan51 integrated the perfusion and ventilation models of Clark et al.62 and Swan et al.67,

respectively, with the gas exchange model in Ben-Tal39 to simulate the spatial distribution

of gas exchange in the full upright human lung. The time-averaged spatial distribution was

remarkably consistent with values estimated by West et al.69 based on measured

gravitational gradients for perfusion and ventilation, exactly the same as the steady-state

distribution from the Kapitan & Hempelman49 model under resting conditions in a healthy

lung model, and with an alveolar-arterial partial pressure difference that indicated slightly

more efficient gas exchange than is expected for the healthy intact lung. Swan51 used the

model to study the sensitivity of gas exchange to diffusion barrier thickening and lung tissue

stiffening in ALI, which is similar to the study of Reynolds et al.59 but on a different spatial

scale and without a model for the inflammatory process. The study concluded that gas

exchange is far more sensitive to lung tissue stiffening than to diffusion barrier thickening,

due to the effect of stiffening on V/Q disturbance. Because this model is an extension of the

Ben-Tal39 single-unit, which has already been extended to dynamic interaction with neural

control29, 30, it should in theory be merely a matter of implementation to substitute the

single-unit model for the multiple-unit model in a full respiratory system model.

Iso-gravitational heterogeneity in the ventilation and perfusion distributions has already

been mentioned in brief. The asymmetric pulmonary arterial tree geometry has been shown

to be an important source of heterogeneity in the perfusion distribution62. In contrast, the

low viscosity of gas in the airway tree means that the airway tree geometry is not likely to

contribute significantly to the ventilation distribution and hence to its heterogeneity under

resting breathing, and in this situation normal variation in the material properties of the lung

is likely to be the important mechanism. On the other hand, when air flow increases the

resistance to flow becomes significant, and tree geometry is likely to contribute to

heterogeneity. Capturing the contribution of airway and vascular tree geometry to these

distributions requires models with anatomically-based and spatially-distributed geometry.

One approach is to adopt a fractal model, where each bifurcation in the tree is assumed to be

scale-independent, and the blood or air flow is divided asymmetrically according to a

prescribed ratio. Using this approach Glenny et al.70 have shown how small asymmetries in

flow division can lead to perfusion heterogeneity on the order of what is observed

experimentally. However this approach lacks any connection to the biophysics of fluid flow

and its interaction with the deforming lung tissue. Clark et al.62 and Swan et al.67 used

spatially distributed models for the pulmonary vascular and airway trees, respectively, that

were dependent on the forces transmitted to them via the lung tissue model in which they

were embedded. Using this approach one could readily examine the effect of a localized

change in lung tissue material properties on perfusion and ventilation distributions, gas

exchange, and feedback from respiratory control (e.g. the effect of increased tissue

compliance as in emphysema).
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Conclusion

Models of the respiratory system have been developed at different levels and at high degree

of sophistication but so far detailed models for lung function have not yet been integrated

with detailed models for neural control. The current challenge is to bring these models

together in a tractable way, and to integrate the system- and organ-level models with models

that operate at the tissue or cellular level, to enable good understanding of the system

function in health and disease. Integrating all of the important functions of the lung with

neural control of ventilation into a full respiratory system model requires models of

individual components that are scalable. The need for scalability has been illustrated in this

article for models of both neural control and the lungs. Scalability improves model

sophistication, enables coupling of models that would otherwise be too cumbersome to bring

together, and is important for the integration of models that were originally developed using

data from different species. Models that can scale in complexity allow us to interrogate the

function of a whole organ or neural circuitry when it is represented in full detail, and to

determine the exact features that can be reduced using simple assumptions of structure (e.g.

symmetry or regular asymmetry of airway or vascular branching) or function (e.g.

homogeneous perfusion and/or ventilation). That is, this approach enables testing of the

degree of complexity that is necessary in each component before it is integrated into the full

system model. With the current trend towards developing multi-scale models that integrate

function across spatial scales from sub-cellular through to tissue and whole organ, this

ability to understand the characteristic responses of a model system and its reducible

features becomes particularly important. Integration of local small spatial-scale behavior or

inflammation brings further challenges of increased model complexity and may require the

addition of local control mechanisms, but is likely to give rise to emergent behavior that

cannot be predicted or understood without a full integrated system model.
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Figure 1.
A schematic description of the respiratory system and other organs with which it interacts.
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Figure 2.
General features of a feedback regulator (adapted from Grodins et al. (1954)9, with

permission, American Physiological Society).
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Figure 3.
Mean response of minute ventilation to 7, 6, 5 and 3% inspired CO2 in 10 human subjects

except for 7% where the mean response is in 14 human subjects. The data was extracted

from Figure 10 of Reynolds et al. (1972)14 (figure used with permission, American

Physiological Society) using the ENGAUGE software available from http://

sourceforge.net15.
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Figure 4.
Mean response of minute ventilation in 10 human subjects to 9% inspired O2. The upper

curve shows the results when the alveolar CO2 concentration was controlled. The data was

extracted from Figure 8 of Reynolds & Milhorn (1973)16 (figure used with permission,

American Physiological Society) using the ENGAUGE software available from http://

sourceforge.net15.
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