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The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant
challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism pre-
diction falls into the general class of problems characterized by an underlying rough energy land-
scape, and consequently, free energy based enhanced sampling approaches can be brought to bear
on the problem. In this paper, we build on a scheme previously introduced by two of the authors
in which the lengths and angles of the supercell are targeted for enhanced sampling via tempera-
ture accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett.
107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that
distinguish different crystalline arrangements as target collective variables for enhanced sampling.
The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and
we discuss one particular strategy for performing the free energy analysis. The method is applied
to the study of polymorphism in xenon crystals at high pressure and temperature using the Stein-
hardt order parameters without and with the supercell included in the set of collective variables.
The expected fcc and bec structures are obtained, and when the supercell parameters are included
as collective variables, we also find several new structures, including fcc states with hcp stacking
faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using
the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeat-
edly, and the free energy profile can be obtained with high efficiency. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4878665]

. INTRODUCTION

In the study of crystals, polymorphism refers to the abil-
ity of certain compounds to form multiple stable structures,
a phenomenon that has significant ramifications for pharma-
ceuticals, high-energy materials, and organic electronics.'
Experimental determination of all of the relevant crystal struc-
tures of a particular compound under a given set of conditions
is both lengthy and costly. Therefore, computational ap-
proaches for a priori polymorphism prediction, if sufficiently
accurate and efficient, can potentially play an important role
in the understanding and designing crystals in these and other
fields.

Considerable effort has been invested over several
decades in the prediction of crystal structures, and numer-
ous theoretical methods have been developed.”? Despite
notable successes in the computational prediction of crystal
polymorphs,*™ such predictions are far from routine, and
the problem remains an important outstanding challenge.
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The most common approach starts with candidate structures
obtained by packing the molecules according the symmetry
operations of the most common space groups, performing a
local optimization, and then evaluating the associated lattice
energy. Although this approach produces many candidate
structures, it may produce false positives or miss solid forms
that are not perfect crystals, including mixed structures and
stable defects,® and it is not likely to identify structures that
crystallize into rare space groups.” Moreover, this approach
relies on a harmonic approximation to the calculation of lat-
tice phonon frequencies of the candidate structures in order to
determine thermodynamic properties such as the free energy.
While the harmonic approximation is often sufficient for
low-temperature crystals governed by strong intermolecular
interactions, when systems are dominated by weak interac-
tions, as is the case in many organic molecular crystals, an-
harmonic effects become important, and alternate approaches
are needed. Obtaining fully anharmonic thermal contribu-
tions requires a methodology based directly on free energy
generation. This category of techniques, however, entails the
considerable challenge of sampling a complex and rough
energy landscape in order to obtain the relative populations
of the different polymorphs. Because of this, polymorphism
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prediction has been compared to the conformational ex-
ploration of proteins.® Although the two challenges are
very different, they share important features, and conse-
quently, some of the methods developed for biophysical
structure prediction can be adapted for crystal polymorphism
exploration. .’

Following this idea, we recently introduced a new free
energy approach for the discovery and thermodynamic rank-
ing of polymorphs of atomic and molecular crystals.%!3
The technique is derived from the recognition that tempera-
ture can be employed to accelerate barrier crossing, an ap-
proach that has been shared by a variety of schemes includ-
ing simulated annealing,'* simulated tempering,'>'® parallel
tempering,'”'® and temperature accelerated dynamics.'” In
our algorithm, we identify a set of collective variables (CVs)
capable of distinguishing different states and subject them to a
high-temperature heat bath. At the same time, these variables
are also assigned high masses in order to effect an adiabatic
decoupling of these variables from the remaining degrees of
freedom. This approach is termed adiabatic free energy dy-
namics (AFED).?%2! In the limit of perfect adiabatic decou-
pling, it can be proved that the CVs move on the correct po-
tential of mean force surface, which is equivalent to the free
energy surface.?’ The approach of Refs. 6 and 13, which we
call Crystal-AFED, is an adaptation of the AFED scheme to
the isothermal-isobaric ensemble, in which the cell lengths
and angles, or equivalently, the elements of the full cell ma-
trix, are employed as the target CVs. Using these CVs, the
polymorphs of crystalline benzene were studied,® and it was
found that 500 ps of simulation time were sufficient to identify
all of the stable polymorphs at 2 GPa and 100 K, and after just
5 ns, the free energy differences were sufficiently converged
to propose a resolution of a controversy concerning the struc-
ture of the benzene II polymorph. This study also highlighted
the importance of entropic contributions in the stabilization of
the putative benzene II structure obtained.

Targeting the cell matrix alone for enhanced sampling
in the discovery of crystal polymorphs is useful when dif-
ferent polymorphs are characterized by very different unit
cell shapes, so that the lengths and angles of the cell are
able to distinguish different structures. In some cases, how-
ever, these parameters alone are insufficient to induce transi-
tions between different solid forms, for example, when col-
lective flipping of molecules is required to effect such a tran-
sition. In addition, predicting crystal formation from amor-
phous or glassy states generally cannot be easily accom-
plished using just the cell matrix. In these examples, tran-
sitions between polymorphs and crystallization from disor-
dered states are better described with the aid of structural
order parameters. We will refer to these as “internal order
parameters” in order to distinguish them from the cell ma-
trix. The well known Steinhardt order parameters>” constitute
one such example. Recently, novel approaches to the genera-
tion of general order parameters for molecular crystals have
been introduced.?>?* Despite these intriguing advances, the
problem of developing such general order parameters remains
a significant challenge. Structural order parameters are of-
ten used in the study of phase transitions, nucleation, liquid
crystals, and various other applications. Therefore, targeting
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molecular order parameters in combination with the cell ma-
trix could potentially constitute a powerful approach to the
discovery of crystal polymorphs based on enhanced sampling
and free energy surface generation. However, because general
order parameters are complicated functions of the primitive
Cartesian coordinates of the atoms in a system, they cannot
be easily treated within the AFED scheme, which requires
that the CVs be explicit coordinates in the system or that
they be made explicit via a transformation to a set of gen-
eralized coordinates that contains the CVs as a subset of the
larger coordinate set. It was shown,?>2% however, that this
problem could be circumvented by introducing an extended
phase-space approach, in which the CVs of interest are har-
monically bound to the coordinates in the extended space.
These extended coordinates are then subject to a high temper-
ature and are adiabatically decoupled from the remainder of
the system. The approach is termed temperature-accelerated
molecular dynamics (TAMD)? or driven adiabatic free en-
ergy dynamics (d-AFED).?® Recently, a Monte Carlo version
of this approach was also introduced,?” which fits the gen-
eral framework of heterogeneous multiscale methods.?®?° In
the limit of perfect adiabatic decoupling and infinitely stiff
harmonic coupling, TAMD/d-AFED can be proved to gen-
erate the correct free energy surface as a function of the
CVs,25:26,30

In this paper, we further develop our previous
temperature-accelerated sampling approach for the discovery
of crystal polymorphs to include internal order parameters as
additional CVs via the TAMD/d-AFED framework. We ap-
ply the approach to the case of solid xenon at high pressure.
Under the conditions chosen, we find that hitherto unexpected
polymorphs and fcc structures with hep stacking faults are ob-
tained. As a second example, we study the liquid-solid phase
transition of copper, which illustrates that our new approach
can also be effective in studying transitions between ordered
and amorphous states.

Il. METHODOLOGY
A. Equations of motion

Consider a system containing N atoms with positions
ry, ..., Iy interacting via a potential U(ry, ..., ry) = U(r)
in a supercell described by three vectors a, b, and ¢ such that
the volume V of the cellis V = a - (b x ¢). These three vec-
tors are collected in the columns of a matrix h according to

ay by o
h=1|a, b, ¢ |, (1)
a; b, c

which is referred to as the cell matrix; its determinant gives
the cell volume: V = det(h). Suppose we are interested in the
free energy surface as a function of n < 3N collective vari-
ables (CVs) qi(r), ..., g,(r). Under isothermal-isobaric con-
ditions with external pressure P, the relevant free energy is the
Gibbs free energy G(sy, ..., s,), which is obtained from the
marginal probability distribution for the CVs g (r), ..., g,(r)
to have corresponding values s, ..., s,. This free energy is,
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therefore, given by

G(sl,...,sn;ﬁ):—%ln [%/a’h

o—BPdei(h)

[det(h)]?

x| dry...deye PYOT 68 (ge(r)—s0) |,
fD 1 N 1_[ q

(h) a=1
2)

where D(h) is the spatial domain defined by the cell matrix, 8
= 1/kgT, A = A(N, P, T) is the isothermal-isobaric partition
function. The s variables are also known as coarse-grained
variables (CGVs). We can also include the cell matrix in the
set of CVs, in which case the relevant free energy is

G(s1, ..., 8y, h; B)

1 e—ﬂPdet(h)
_ __1n[—2f dry...dry e PU®
B Aldet(h)]* Jpm)

x []8ar) - sa)i| ) 3

a=1

In the Crystal-AFED approach of Refs. 6 and 13, the cell ma-
trix alone was selected as the set of target CVs, and it was pos-
sible to drive these variables directly with a high temperature
and adiabatic decoupling. However, when including internal
order parameters in the set of CVs, this is no longer possible,
and it is necessary to employ the extended phase-space ap-
proach of Refs. 25 and 26. In this case, we write the product
of §-functions [[,8(ge(r) — o) as the limit of a product of
Gaussian functions according to

n

12
[ lim <ﬂ"“>
Ke—00 \ 27T

a=1

[ [8ur) = 50) =
a=1

X exp [_%(C]a(r) - Sa)2:| )]

In practice, the inverse width parameters «, are taken to be
large but finite. Thus, if Eq. (4) is substituted into Eq. (2) or
Eq. (3), the result is a modification of the potential U(r) by
the addition of a harmonic potential Vi, (r, s) given by

1 n
Vig(r,$) = 5 D Ka(qu(®) = s)?, ()
a=1

where s = sy, ..., S, so that the potential for the extended
phase space becomes

V(r,s) =U(r) + Viu(r, s). (6)

For finite k, we obtain approximations Gy, ,(s1, ..., Su; B)
= G{K}(S; B) or G{K}(Sl, .o Se hy B) = G{K)(S, h; B) to the
Gibbs free energy surfaces as functions either of s alone or of
both s and h, that approach the exact value as «, — oo.

A set of temperature-accelerated equations of motion ca-
pable of generating the Gibbs surfaces in either Eq. (2) or
(3) is based on the Martyna-Tobias-Klein (MTK) equations
of motion,*!3? for which measure-preserving integrators have
been developed.**** Introducing two temperatures 7 for the
order parameters, and 7}, for the cell matrix, the equations of
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motion take the form

. P Ps
rl_mi+er7
. Pg lTr[pg]
i =Fi — —=pi — — i + Bath(7),
p wP N W p; + Bath(T)
h— Pl

w

N @)
. 1 pz

s (int) _ i

pg = det(h)[P PI] + N ?:1 o I + Bath(T;),

. Ds
Sq = —,

Mo
Ps. = Ka(qa(r) — s¢) + Bath(Ty).

Here, “Bath” refers to some heat bath coupling, e.g.,
Nosé-Hoover chains,® generalized Gaussian Moment
thermostats,?° a Langevin bath, ... 3139

oU aQa constr)
Fi=—g - ;m%(r) s+ ®)

is the total force on the ith atom, including forces from any
holonomic constraints, and Ny is the effective number of de-
grees of freedom. The matrix pg is a 3 x 3 matrix that serves
as a barostat to control the fluctuations of the pressure tensor
estimator, which is given by

I [pop
Pi"(p, r) = —— +F,®r|. O
(P. 1) det(h)g[ e ®r] ©)

The mass-like parameters W and p, that determine the time
scales for the motion of the cell matrix and internal order
parameters, respectively, are determined by the conditions
W = kg Thrlf, o = kg Ty rsz, where 1), and t, time scales rel-
evant to the motion of each set of CVs, respectively. The
units of the harmonic coupling parameters k, depend on the
choice of the associated CVs, so that the harmonic coupling
term in Eq. (5) has units of an energy. Finally, we note that
there are two choices for the parameter 7}, in Egs. (7). If the
Gibbs free energy in Eq. (2) is sought, then 7}, should be set
equal to the physical temperature 7, while if the free energy in
Eq. (3) is the goal, then 7;, should be set equal to 7. In
Ref. 13, we developed the algorithms needed to integrate the
original equations of Crystal-AFED® when holonomic con-
straints are imposed on a system, and the introduction of the
extended variables in Egs. (7) requires no change to this pro-
cedure. Consider, first, the case when T, = T, so that the
Gibbs free energy surface in Eq. (2) is sought. When the ex-
tended variables s are sufficiently slow, they are driven by
forces generated by averaging over the motion of the remain-
ing variables. In this case, the motion of s is effectively gov-
erned by

/“Lot:glot = _i(V{K}(r’ s))s+Bath(Ts)
08y
= (ka(qa(r) — sa))s + Bath(T), (10)

where (---), indicates an ensemble average over the degrees of
freedom (r, p, h, pg) at fixed values of s = (sy, ..., s,). Thus,



214109-4 Yu et al.

the ensemble average of (k,(g,(r) — s,))s can be written as

(Ka(CIot(r) - sOt)
o [ ane [ i
= A, ;3)/ e | g t(h)
x / AT ko (G () — 52)]
D(h)

X eXp { - ,B[H(P, r) + Tr(PgTPg)/ZW
+ P det(h) + Vi(r, 5)]}

— *111 .
=8 35 n Age(s; B)

G ;
__ 3Gk ﬁ). (1
08y
Here, H(p, r) is the physical Hamiltonian H(p,r)

=Y, pi2 /2m; +U(r), C is a normalization constant,
and Gy, (s; B) is the finite-x approximation to the true Gibbs
potential of mean force surface, which is also the free energy

surface. Ay,(s; B) is the finite-« partition function at fixed
S1y .05 8
- [
Pe det(h)P .

x exp { — B[H(p, r) + Tr(p, pg) /2W

+ P det(h) + Vi(r, 5)]}. (12)
Since Eq. (10) generates the density Py.(s; B, B)
o exp (—BsGycy(s; B)), the Gibbs free energy surface can

be constructed from a normalized histogram ﬁ{f?b)(s; B, Bs)
collected during the integration of Egs. (7) under adiabatic
(“adb”) conditions using

Gu(s:p) = =B, ' n PV(s: B )+ C'. (13)

According to Eq. (4), in the limit {x, — 00}, G{,)(s; B) con-
verges to the exact Gibbs free energy surface G(s) in Eq. (2).
In practice, {x,} are chosen sufficiently large that the differ-
ence between Gy, and G is negligible, noting that the error is
bounded and of order max ,(1/k).>° When T, = Ty, a similar
argument can be made for the full Gibbs free energy surface
in Eq. (3).

B. FES construction and representation

While a free energy surface can be obtained directly by
accumulating a histogram over the course of a simulation, this
approach has the obvious limitation that the number of bins
rapidly increases with the dimensionality of the surface. In or-
der to address this problem, we make use of the single-sweep
method proposed in Ref. 40. In this approach, TAMD/d-
AFED is first used to explore the configuration space only,
and centers are deposited in the space of the target CVs. Next,
free energy gradients (i.e., mean forces) calculated at each
center are used to construct the free energy surface (FES) us-
ing a set of radial basis functions (RBF) as interpolants. The
use of RBFs as interpolants in the construction of a FES is a
technique that can be applied on sparse grids with regular or
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irregular boundaries, and therefore a high-dimensional gener-
alization of the thermodynamic integration method.*!

In order to apply the single-sweep method, we first repre-
sent the free energy surface Gy, (s; B) in Eq. (13) as a linear
combination, denoted G(z), of RBFs. This expansion takes
the form

K
> ada(lz = 2. (14)

k=1

G(z) =

Here, z is the full set of coarse-grained variables, i.e.,
z = (s1, ..., sp) if Eq. (2) is sought, or it is the full set of
coarse-grained variables and the box matrix, i.e., z = (sy, ...,
sn, h) if Eq. (3) is sought. Note that each element of h, which
is generally taken to be upper or lower triangular when off-
diagonal elements are needed, is treated as an independent
CV when constructing the linear combination in Eq. (14).
One possible choice of ¢, (7) is a Gaussian kernel of width o'
¢ (r) = exp (—r220%). The K Gaussian centers, z¥, are cho-
sen along a CV trajectory generated from a TAMD/d-AFED
simulation and the optimal coefficients a; and o are deter-
mined via minimization of the cost function

K
E@,0)=Y |+ V.uG@). (15)

k=1

where the numerical mean force f* is obtained from re-
strained molecular dynamics (MD) simulations performed at
the locations of the centers z¥. The mean force £ on the
coarse-grained variable s, is given by the average

TP = (ko (@u(0) = 56)) 200, (16)

where z is fixed at z® in the NPT simulation. The mean force
on h,,,, when h is included in the FES, is calculated from

fu,, = det(h) - Z o l(PEY — Psy)) ] (A7)

with both the coarse-grained variables sy, ..., s, and h held
fixed at the selected centers z*, which now include centers for
the box matrix. Note that, when h is held fixed, the ensemble
is equivalent to an NhT ensemble. For a fixed o value, mini-
mization of the cost function in Eq. (15) leads to a system of
linear equations,40 and the coefficients a; can be obtained us-
ing any linear solver. The calculation can be carried out for a
range of ¢ values in order to find an optimal choice for o that
leads to the lowest mean-squared error.*” Note that one can
also use the modified cost function of Monteferrante et al.*?
The functional form of the free energy surface via the lin-
ear combination of radial basis functions in Eq. (14) may not
provide a transparent picture of the free energy landscape, es-
pecially when the dimension is high. In order to locate all of
the minima on the free energy surface thus constructed, we
run many optimizations in the CGV space using, for exam-
ple, a steepest-descent algorithm, from an ensemble of initial
points. Since the centers used in the reconstruction cover the
important regions of the configuration space, they serve well
as the initial points. After these minima are found, the string
method**** can be used to locate saddle points on the high-
dimensional free energy surface as well as the minimum free
energy paths (MFEPs). Once this information is available, a
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network can be generated in which the minima are the ver-
tices/nodes and any two minima are connected by an edge
if there is a MFEP connecting them directly. We also assign
a weight to each edge, which is the free energy of the sad-
dle on the MFEP. In this way, we obtain a weighted graph
representation for the FES, similar to a recent scheme intro-
duced for protein free energy landscapes.* Such a network is
a reduced representation of the surface that captures its most
salient features, including critical points and their associated
free energy values. Any further analysis, particularly analy-
sis involving integration over the CVs, can then be performed
using Eq. (14).

lll. ORDER PARAMETERS USED IN THIS STUDY

The Steinhardt order parameters,”> Q;, I = 3, 4, 6, ...,
are widely used to identify crystal structures. Q4 and Qg can
distinguish the simple cubic, face-centered cubic (fcc), body-
centered cubic (bcc), and hexagonal closest packing (hcp)
crystal structures found in the solid phases of spherical parti-
cles. For molecular crystals, one typically requires more gen-
eral order parameters.”>>*%¢ Here, we employ the continu-
ous version of the general Steinhardt order parameter given
in Refs. 47 and 48. Thus, the global order parameters used as
CVs in our study take the form

4 1 1/2
_ 2
Q,—[—%Hm;@m} , (18)
where
Ny
Qi = 73— ;fc(rhmm(fh). (19)

Here, N, is the total number of atom pairs separated by a
distance rpg, N is the total number of atoms, and Ny 1S
the first-shell coordination number of each atom. Y}, are the
spherical harmonics, f; is the unit vector along the direc-
tion rp, i.e., £, = (sin 6 cos ¢y, sin O, sin ¢y, cos G,). While
the normalization factor in Eq. (19) should be N}, the quantity
N,, varies as the phase changes, which will cause discontinu-
ities in the function Q;. For this reason, we choose NN,y as
the normalization factor for convenience. In this study, Ncoor
= 6. f.(r) is a smooth switching function defined as

1, r < I'min

{COS[MTF}‘F]}’ Fmin < 7 < Fmax -

Tmax —7'min

Sfer) =

1
2
0, 7 > Fmax

This function is used to remove discontinuities in the original
definition of the Steinhardt parameters>> that occur when each
bond is switched off at a specific radius 7. The value of
Fmax 1S determined from the end of the first peak in the radial
distribution function (RDF).

In order to describe the bond orientation for each atom,
we employ the local Steinhardt order parameters, ¢q;, [ = 3, 4,
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6, ... defined as
[ 1/2
47 2
)= |57 m ] s 20
(i) [2l+lm;|qz <z>|} (20)
where
1 Ny (i)

m(i) = —— > Vi (F:)). 21
0) N;,(i)j; im (R Q1)

Here, N,(i) is the number of all pairs connecting to atom i
within a cutoff 7,x as above. The parameter ¢;(i) can be used
to distinguish different atomic neighbor environments, i.e., a
bce arrangement will have a very different ¢; value from a fcc
arrangement. Another set of local Steinhardt order parame-
ters, denoted as w; (i) and defined as

l [ 1 . . .
Zin1+1112+m3:0 (ml my m3>qlm1(l)q1mz(1)qlrr13(l)

(i)

w,(i ) = P
(22)
is employed to analyze solid structures. Since the temper-
ature in our studies is close to the melting point, thermal
fluctuations are very large. Consequently, the distribution of
these local order parameters is rather broad, which diminishes
their ability to distinguish different crystal structures. There-
fore, averaged versions of these bond order parameters, intro-
duced previously by Lechner and Dellago,*® which are more
sensitive to different crystal structures, are also employed in
the present study, although other local order parameters are
also possible.>” The averaged bond order parameters g;(i) and
w;(i) have the same definitions as Eqgs. (20) and (22) except
that ¢, is replaced by g;,,,, which is given by

1 Np(i)
_m () = — . m k N 23
(i) = 3 g"’ (k) (23)

where summation runs over all neighbors of particle i, includ-
ing particle i, itself. It is obvious that averaged bond order
parameters account for the second shell.

IV. XENON POLYMORPHISM AT HIGH PRESSURE
AND MELTING POINT

Recent simulation studies®’>2 of solid xenon shows

that its crystal structure undergoes a fcc-bec transition at
high pressures (25 GPa-30 GPa) close to the melting point
(2700 K-2900 K).>"-32 These studies also show that bcc grows
naturally from a fcc-liquid mixed-phase state, and the authors
reported a phase diagram with the fcc-bee-liquid triple point
near 25 GPa and 2700 K. Subsequent theoretical investiga-
tions challenged the exact location of this triple point.’*>* En-
hanced sampling techniques have the distinct advantage over
studies of this type in that they allow the metastability and co-
existence behavior to be investigated on the basis of the free
energy surface. To our knowledge, no such calculations have
been performed for this problem, which makes it an interest-
ing test case for our new approach.
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A. Implementation

We consider a system containing 4000 Xenon atoms ini-
tially in a 10 x 10 x 10 fcc arrangement. The h matrix was
constrained to be orthorhombic, and therefore only the diag-
onal elements (the cell lengths a, b, and c) were used. We
chose a temperature of 2700 K and a pressure of 25 GPa as
the imposed external conditions of the simulation. Interac-
tions were described by a Buckingham potential,® which is
believed to improve on the simpler Lennard-Jones potential
for condensed systems of noble gas atoms.’® The accuracy
of this model has been verified against experiment.’> All the
simulations were performed using the PINY_MD code.””-8

We first studied the FES with the variables Q¢ and Q4 as
the target CVs. The extended variables were maintained at 1.5
x 103 K for enhanced sampling with 7, = 50 ps, 7}, = 0.5 ps,
Fmax = 4.5 A, and Fmin = 4.1 A. The coupling constant x was
the same for Qs and Q, and set to 1 x 10'© K. In a second
study, we investigated how the FES changes when h is added
to Qg and Q4 in the CV set, which leads to a five-dimensional
FES. The temperature of the extended variables and h ma-
trix was maintained at 1 x 10° K for enhanced sampling
with 7, = 50ps, T, = 1pS, Fmax = 4.5 A, and Fmin = 4.1 A.
The coupling constant « for Q¢ and Q4 was again taken to
be 1 x 10'° K. Finally, in order to prevent the system from
sampling liquid or glassy states, we restricted Qg > 0.7.

In both cases, we used the following protocol in the simu-
lations: Ten 5 ns long trajectories starting from the fcc crystal
were generated in order to explore the configuration space by
integrating Eqs. (7) with a time step of 5 fs. To reconstruct
the FES associated with Q4 and Qg alone, 764 centers were
deposited along the trajectories in such a way that any new
center should be at a distance of at least 0.01 from any pre-
viously deposited center. Within a neighborhood of 0.003 of
each center, all instantaneous forces on the corresponding ex-
tended variables were collected from the sampling run for the
calculation of the mean forces at that center. In order to recon-
struct the FES associated with Qu, Qg, and h, the cell lengths
were first scaled by a factor of 1/30 so that the range of cell
lengths were comparable to those of Q¢ and Q4. Then, 2462
centers were deposited in the five-dimensional CV space. The
mean forces at those centers were calculated from restrained
MD simulations of 10 ps each. Because of the scaling of h,
the mean forces needed to be scaled up by a factor of 30 in
the corresponding components. Finally, the stability of all the
structures corresponding to minima on the FES were tested
using a standard isothermal-isobaric simulation of length 5 ps
with a fully flexible box.

B. Results and discussion

Figures 1(a) and 1(b) show the trajectories of Q4 and of
the cell lengths when the enhanced sampling targeted only
the Q4 and Qg variables. Both trajectories show two stable
phases, namely, fcc and bcc, under the conditions of the sim-
ulation. The two-dimensional FES subsequently calculated by
the single-sweep method is shown in Fig. 2. The basins corre-
sponding to the fcc and bece structures can clearly be seen on
this surface, which also shows the minimum free-energy path
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FIG. 1. Panels (a) and (c): Trajectory of Q4. Panels (b) and (d): Trajectory
of cell lengths. Panels (a) and (b) are from temperature-accelerated sampling
with only Q4 and Qg as CVs, while in panels (c) and (d), Q4, Q¢, and the cell
lengths are used as CVs. Q4 > 0.3 corresponds to the fcc structure; Q4 < 0.3
corresponds to the bec structure.

between these structures generated using the string method
(note that we neglected the tensor M entering the definition of
the MFEP in this calculation®® since our primary goal was to
calculate the free energies of the minima and the saddle point
on the landscape). Fig. 3 shows the free energy profile along
the MFEP, from which we can estimate the free energy differ-
ence between the bce and fcc structures as 2.5 meV/atom (or
58 cal/mol). Note that for a homogeneous 4000-atom system,
e.g., a pure fcc or pure bce structure, finite-size effects are
small, so that the microscopic unit meV/atom can be trans-
formed directly into a macroscopic unit, e.g., kcal/mol. The
very small FE difference indicates that the bcc and fcc are
thermodynamically equally stable at 2700 K and 25 GPa. Our
results support the previous two-phase studies®'->? in that the
bece structure is stable at 2700 K and 25 GPa, and therefore,

0.9

0.8r

0.7

0.1 015 02 025 03 035 04 045

FIG. 2. Free energy surface as a function of Q4 and Q¢ when these variables
are used as the sole target CVs. The red circles represent the minimum energy
path connecting the bce and fec basins, as calculated from the string method
based on the constructed FES. The free energy values, in eV, correspond to
the total free energy of the system.
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FIG. 3. Free energy profile along the minimum free energy path at 2700 K
and 25 GPa.

the fcc-bee-liquid triple point should be close to this condition
in the P-T plane. Table I gives the energy decomposition anal-
ysis for the fcc and bec structures. Not unexpectedly perhaps,
we find that the bcc structure is stabilized by entropic effects.
Such stabilization was also predicted in relatively early stud-
ies based on simple Lennard-Jones models.”® The high en-
tropy of the bce structure dominates over the enthalpy, thus
allowing it to become more stable than the fcc structure. As
the temperature decreases and entropic effects become less
important, we predict that fcc becomes the dominant state,
which is well known for Xenon and was also seen in early
studies.”® This is a good example showing that the free en-
ergy is the right thermodynamic state function for predicting
crystal polymorphism, particularly when the temperature is
high.

When the three cell lengths are added to the set of CVs,
a larger set of metastable structures is explored at 2700 K and
25 GPa. Figures 1(c) and 1(d) show the resulting trajectory. A
full five-dimensional FES was constructed using the single-
sweep method with the mean forces on the CVs as input. Free
energy minima were also located on this surface. The loca-
tions of the centers used in the FES construction (grey dots)
and of the minima (colored filled circles) are shown in Fig. 4
after projections in the space of Q4 and Qg, and in Fig. 5 in
the space of the three cell lengths. The fact that the minima
are tightly clustered in the projection on the Q4-Qg plane (see
Fig. 4) but are well separated in the space of cell lengths (see
Fig. 5) shows that using Q4 and Q¢ alone as CVs is insuffi-
cient to identify more metastable solid forms for this system;
indeed, the location of these minima cannot be accurately re-

TABLE 1. Free energy decomposition analysis for the fcc and bec struc-
tures. AG is the free energy difference; AH is the enthalpy difference; AV
is the volume difference; AS is the entropy difference, AG = AH — TAS.
All energies are in meV/atom. Enthalpy and volume are calculated from a
10 000-step MD simulation. 7= 2700 K and Pex; = 25 GPa.

AG AH AE P AV TAS

bee-fec -2.5 12.8 10.8 2.0 152
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FIG. 4. Distribution of centers and minima in the space of Q4 and Q¢. Grey
dots are centers deposited in the space of the collective variables. The red
filled circles are minima for bcc, the blue is the minimum for fcc, and the
green are minima for new metastable states identified as fcc with stacking
fault.

solved in the lower dimensional Q4-Q¢ space. Thus, we see
that the inclusion of the cell matrix in conjunction with the
internal order parameters is essential. Finally, in order to bet-
ter visualize the five-dimensional FES, we created a network
representation of it as described in Section II B (see Fig. 6).
Fig. 6 also contains the free energy values (relative to the bce
structure) of the minima and saddle points. In order to avoid
confusion, we should point out that the saddle or MFEP we
obtained may not be the true solid-solid transition path, as
finite-size effects®® could lead to an overestimation of the free
energy barriers.

The structures shown in the network diagram were fur-
ther analyzed using local order parameters and averaged local
order parameters. The values of the local and averaged local
order parameters for all of the structures are shown in Fig. 7.

cellc

cellb

cella

FIG. 5. Distribution of centers and minima in the space of cell lengths. The
cell lengths have been scaled down by a factor of 1/30 in units of A. Grey
dots are centers deposited in the space of the collective variables. The red
filled circles are minima for bcce, the blue is minima for fcc, and the green are
minima for new metastable states identified as fcc with stacking fault later.
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FIG. 6. Network representation of five-dimensional free energy surface in the Q4, Qs, and the three cell length variables. The numbers assigned to each node
correspond to free energies at the minima; the numbers assigned to the edges are the free energy values for the corresponding saddle points. The free energy is

ineV.

In addition to the fcc and bec structures already identified, we
also find fcc crystals with stacking faults characterized by a
hep structure. Even though fcc-hep polytypism is expected
to exist, it is still impressive that our sampling can locate
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these structures. Figs. 7(a) and 7(b) show that there exist two
types of atoms within such a structure. One type is character-
ized by order parameters located in the fcc region (for exam-
ple, w4 € [-0.01, —0.06] and g4 € [0.17, 0.19] in (b)), and
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FIG. 7. Comparison of the distributions of local order parameters for several solid forms. The variables g¢, g4, and w4 are the local bond order parameters;
ge, 44, and wy are the averaged bond order parameters. In order to minimize thermal smearing, order parameters for each atom are obtained by averaging over
200 equilibrated configurations. 4000 dots corresponding to 4000 atoms are given for each solid form. The fcc structure with stacking faults (SF fcc in legend)
show two types of atoms according to their local order parameters (see green clusters in (a) and (b)). The averaged bond order parameters include the second
neighbor shell. Therefore, the atoms of the fcc structure with stacking faults split into more types as the local environment of an atom becomes more diversified

(see green clusters in (c) and (d)).
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SF fcc Il

FIG. 8. Pictures of the fcc with stacking faults. Red corresponds to fcc atom type, with w4 € [—0.10, —0.06] and g4 € [0.17, 0.19]; blue corresponds to hcp
atom type, with w4 € [—0.1, 0.02] and g4 € [0.13, 0.15]. SF fcc means fcc with stacking fault.

the other type is characterized by order parameters located
in the hcp region (for example, w4 € [—0.1, 0.02] and ¢4 €
[0.13, 0.15] in (b)). (See also Ref. 49 for the order parameter
values that characterize the hcp structure.) Fig. 8 shows snap-
shots of several such structures with atoms colored based on
their (w4, g4) values. These pictures clearly show the fcc and
hcp arrangement occurring in an alternating pattern in these
structures. Even though we sample just a few fcc structures
with such stacking faults, we expect that longer runs or runs
employing a higher temperature for h and the extended vari-
ables could yield even more of these. Experimental evidence
for the existence of such states has been reported in pressure-
induced Martensitic fcc-to-hcp transformations,®' where they
are interpreted as intermediate states between the fcc and hep
structures. In order to see whether the defects in our fcc struc-
ture are indeed these intermediate states, we have calculated
the powder diffraction pattern using the Debyer package.®?
Fig. 9 shows the powder patterns of the three fcc structures
with stacking faults. These match well the patterns shown in
Fig. 1 of Ref. 61. The bulk system is treated as a cluster in
the calculation (no periodic boundary conditions) and there-

T T T T T T
fee (3 GPa, 300 K)

M e TN~
; i ; i ;
SF fee I (25 GPa, 300 K)

A AN ‘

SF fec IT (25 GPa, 300K)

AM_ ‘

I
SF fee IIT (25 GPa, 300 K)

10 15 20 25 30 35 40
20

FIG. 9. Calculated powder diffraction pattern of the fcc structures with
stacking faults. The Debyer package®” was used to obtain the powder pat-
terns, and the calculation is based on the Debye scattering equation.’®> The
temperature and pressure are taken to be the experimental conditions for di-
rect comparison. The wavelength is taken to be 0.7 A so that the powder
diffraction pattern of the fcc structure at 3 GPa is identical to the experimen-
tal one in Fig. 1 of Ref. 61. SF fcc means fcc with a stacking fault.

fore, finite-size effects may explain the tiny difference be-
tween the calculated and experimental powder diffraction pat-
terns. From the comparison of the powder diffraction patterns,
there is compelling evidence to suggest that the stacking-fault
structures we obtained could resemble the intermediate states
visited in the pressure-induced fcc-to-hcp transition.

Body centered orthorhombic (bco) and body centered
tetragonal (bct) structures also appeared in our sampling. The
RDFs of the bco, bcet, fee, and bee forms at 25 GPa and 2700 K
are presented in Fig. 10 in order to show the structural differ-
ence. The RDFs for the fcc and bec structures show differ-
ent features, which can also serve as an identifier for fcc and
bce, as was done in previous studies.’!->2 The differences be-
tween bce and bco/bet are sufficiently small that the RDFs
are very similar. Therefore, in order to identify the bco/bct
structure, we calculated their unit cell parameters. Unit cells
at high temperature are generally difficult to determine. Since
atom switching or atomic jump diffusion may happen in the
bulk system at high temperatures, the trajectory-averaged po-
sition of an atom gives misleading information about the fi-
nal lattice as many atoms can be off the lattice sites. Thus,
in order to obtain reliable unit-cell information, we employed
the following procedure: From four well-equilibrated config-
urations, we take each atom in each configuration as a “cen-
tral” atom and find its neighboring atoms within the first peak

— fec
—— bec

RDF
8]
T

r(A)

FIG. 10. Radial distribution function for several solid forms at 25 GPa and
2700 K.
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FIG. 11. Left panel: The bcc structure obtained by the K-means clustering approach (see text). The snapshot shows the central atom in green, the red spheres
represent the centroids of the clusters corresponding to the first-shell atoms, while the cyan spheres show the centroids of the clusters corresponding to the
second-shell atoms. The small yellow spheres represent 8000 randomly selected cluster points from 224 000 total points. Right panel: The fcc structure
obtained by the K-means clustering approach. As with the bcc structure, the green sphere is the central atom, the red spheres are the centroids of the clusters
corresponding to the first-shell atoms, and the small yellow spheres represent 8000 randomly selected cluster points from 192 000 total points.

of the RDF. For the bcce structure, the first peak of the RDF
consists of both first and second shell atoms while for the
fcc structure, it contains only first-shell atoms. The central
atom together, with its neighbors, forms one unit, and we have
16 000 such units (each configuration having 4000 atoms).
Overlaying these units with the central atom at the same loca-
tion and aligning them generates one central atom surrounded
by several well-separated clusters. We then use a K-means
clustering algorithm to find the clusters and calculate their
centroids as the average positions of the atoms associated
with the cluster. The centroid is the most probable position
of the neighboring atoms. We, therefore, infer the unit cell
information from these centroids. In order to illustrate the ap-
proach, Fig. 11 shows the clusters and their centroids thus ob-
tained for the bce and fcc structures. In addition, we have pro-
vided animations in the supplementary material®* showing the
clusters and centroids from different perspectives. The unit
cell parameters of fcc, bce, and bco/bet are summarized in
Table II. In addition to providing a reliable identification of
the bco and bct structures, the high-temperature unit cell anal-
ysis we employed has an advantage over an analysis of the
RDFs: Due to high-temperature thermal smearing, the bcc
structure acquires a putative coordination number of 14 if
that coordination number is computed from an integration of
the RDF up to the first minimum. However, the coordination
number obtained from the high-temperature unit-cell analysis
is eight as expected for the bce structure.

TABLE II. Unit cell parameters for fcc, bee, and the predicted crystal forms
bco and bet at 25 GPa and 2700 K. Cell lengths are in A=y =p8=90.

a b c Z
fee 5.27 5.27 5.27 4
bee 4.25 4.25 4.25 2
bco 4.40 4.23 4.14 2
bet 4.22 4.27 4.27 2

The bct structure remains stable during an isothermal-
isobaric (NPT) MD simulation with a fully flexible cell. The
stability of the bco structure can only be verified when the
simulation box is constrained to be orthorhombic. When we
relax it in an NPT simulation with a fully flexible cell, the
orthorhombic box shape tilts with final box angles being
a = 854, B = 86.8, and y = 91.0, which implies that bco
may not be a true stable/metastable state. This is reasonable
as the FES on the sub-manifold of the orthorhombic cell con-
straint can have minima that may not persist when the con-
straint is removed. However, the success we have shown in
locating this minimum, nevertheless, shows the power of the
present approach in generating the FES and locating new
crystal forms. Because bct/beo structures are only visited once
in our trajectories and since their cell matrices have one short
length of 36.5 A, finite-size effects may play a role, and we,
therefore, exclude them from the five-dimensional FES con-
struction, leaving them for future studies.

V. SOLID-LIQUID TRANSITIONS OF COPPER

MD simulations of melting at superheated conditions
have provided atomistic insights into some of the theoretical
models of the melting mechanism.%>% Relying on MD sim-
ulations to observe the equilibrium melting of a solid is not
optimal because, near the melting point, the melting transition
is a rare event with a mean first passage time many orders of
magnitude greater than characteristic lattice vibrational peri-
ods. Enhanced sampling methods, such as umbrella sampling
and metadynamics, have been used to calculate free energy
changes in solid-liquid transitions of ductile metals®’ and of
ice/water.*”-% Our temperature-accelerated sampling method
offers a robust way to calculate free energy changes for melt-
ing/freezing processes. Here, we use copper as an example to
show that order-parameter-aided TAMD/d-AFED can render
such a calculation very efficient.
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A. Simulation details

The interatomic interactions were modeled using an Em-
bedded Atom Method (EAM) potential for copper developed
by Mishin et al.®® Simulations were performed using a cell
containing 4000 copper atoms (10 x 10 x 10 unit cell). We
have used the Steinhardt order parameters Qg and Q4 as the
collective variables to obtain the FES. In order to explore the
free energy surface, the initial system is slowly heated to the
target temperature 1300 K under a pressure of 1 atm in a series
of NPT simulations. Starting from the final structure of this
first phase, we launched a 1.5 ns TAMD/d-AFED trajectory
with the extended variables at 1 x 10 K. From this trajectory,
we selected 15 configurations every 100 ps and used them as
the initial configurations for 15 independent TAMD/d-AFED
samplings of 1 ns each. The extended variables were main-
tained at 1 x 107 K for the purpose of enhanced sampling
with 7, = 7.7 ps for Q¢ and t, = 15.5 ps for Q4. We have
taken 5 x 108 K and 1 x 10® K as the coupling constants for
Q4 and Qg, respectively. ty, = 0.75 ps. rmax = 2.75 A and T'min
=2.71 A. Along these trajectories, a total of 933 centers were
deposited at distances no less than 0.05 from each other. The
mean force at a center was evaluated from the average of the
instantaneous forces sampled from TAMD/d-AFED trajecto-
ries when the corresponding extended variables were within
0.01 to that center. All the simulations were performed using
the PINY_MD code’”-3® with an integration time-step 1 fs.

B. Results and discussion

Along a representative TAMD/d-AFED sampling trajec-
tory, we observed several melting and refreezing transitions.
A portion of this trajectory has been rendered into a movie and
is available in the supplementary material.** Fig. 12 shows
the free energy surface in the variables Q¢ and Q4 at 1300 K
and 1 atm pressure, which is close to experimental melting
point of 1360 K. The minimum free energy path (red circles
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FIG. 12. The free energy surface in the Qs — Q4 plane at 1300 K and 1 atm.
The MFEP (red circles) is calculated from the string method based on the
constructed free energy surface. The unit for free energy is eV.
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FIG. 13. The free energy profile along MFEP in Q¢ — Q4 space at 1300 K
and 1 atm.

in Fig. 12) on the resulting FES was calculated from the string
method, and the free energy along it is shown in Fig. 13.

Different methods for estimating the melting tempera-
ture have been suggested in the literature, including the Z-
method’”’ and two-phase melting’! to mention a few. One es-
timate of the melting temperature has been reported for the
same EAM potential.”* In this study, a value of T, = 1300
£ 15 K was obtained using the superheating-supercooling
hysteresis applroach,73 while T, was found to be 1350 20 K
with the two-phase method. Finally, an average of these two
values, 1325 K, was used as the melting point in this study.
The small free energy difference of the solid and liquid state
from our calculation (~ 4 eV for 4000 atoms or 1 meV per
atom at 1300 K) is consistent with the previous predictions of
the melting point.

We observe that the solid basin is populated with a host
of metastable states that are characterized by different de-
fects (mainly, vacancy-interstitial pairs, dislocations, intersti-
tial clusters). In order to verify independently the existence of
these metastable states on the high dimensional potential en-
ergy surface, we have used the configurations from TAMD/d-
AFED trajectories to perform isothermal-isobaric MD relax-
ations for 50 ps. A majority of these relaxed configurations,
possibly corresponding to metastable states, lie inside the
solid basin. These locally stable states inside the solid basin
correspond to point defects — different concentrations of va-
cancy interstitial pairs, defect clusters, etc., and line defects
such as dislocations. The presence of multiple metastable
states might suggest the existence of multiple melting path-
ways (i.e., the system can escape from the solid basin along
different pathways), and this possibility will be the subject
of a future mechanistic study.We further note that the MFEP
obtained and the barrier calculated from the FES pertain to
a relatively small system of 4000 copper-atoms. It is, there-
fore, necessary to verify that this system size is sufficiently
large to capture the critical nucleus under the conditions stud-
ied. Moreover, a histogram test’*”> should be performed in
order to validate the CVs chosen. These validations lie be-
yond the scope of the present paper, whose focus is on the
new methodology, however, they will be performed in future
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study focused specifically on the melting process. Neverthe-
less, the present example demonstrates, we believe, the ability
of the new methodology to sample efficiently both the solid
and liquid states.

VL. CONCLUSION

In this paper, we have shown that temperature acceler-
ated techniques employing both the cell matrix and general
order parameters as target collective variables lead to en-
hanced sampling both of crystal polymorphs and of solid-
liquid phase transitions. Our scheme is based on a combi-
nation of the crystal-AFED approach previously introduced
by Yu and Tuckerman®'3 and the temperature accelerated
MD/driven AFED?>?¢ adapted for the isothermal-isobaric en-
semble and applied to the aforementioned order parameters.
Since the resulting free energy surfaces are of relatively high
dimension, we have discussed a robust approach for analyzing
these surfaces, including the extraction of free energy values
at basins/saddles from the string method and the representa-
tion of the FES as a network graph.

The method was applied in studies of polymorphism in
xenon crystals at high pressure and temperature using the
Steinhardt order parameters as collective variables and to the
solid-liquid transition in copper at 1300 K. In the xenon crys-
tal, the expected fcc and bce structures were recovered, and
several additional structures, including a fcc state with a mul-
tiple stacking faults, were identified. For copper, we showed
that the enhanced sampling approach allows the free energy
surface of the solid-liquid transition to be efficiently gener-
ated from the trajectories generated.

In implementing the new approach introduced, a number
of conditions need to be considered. In general, we require
the system size and box shape (orthorhombic, monoclinic, tri-
clinic, ...) to accommodate any possible unit cell size and
shape of the crystal under study, and the search range for the
method can be constrained to restrict the search to a partic-
ular class of structures of particular interest. In an isotropic
system, such as the xenon example presented, restricting the
box matrix to be diagonal, corresponding to an orthorhombic
unit cell, proves sufficient to explore its polymorphs. For an
anisotropic system, such as a molecular crystal, where molec-
ular orientation is an important parameter, use of a fully flex-
ible box is generally required, as proved to be the case in our
recent study of crystalline benzene.® Given that system size N
=N, x N, x N. x Z, where N,, N, and N, are the numbers
of replicas in each crystalline direction and Z is the number
of asymmetric units in the unit cell of the crystal whence the
sampling/search originates, we must choose N,, Np, and N,
such that N is a common multiple of any possible Z value. In
many cases involving small organic molecules, the most com-
mon Z values are 2 and 4 but rare numbers must be considered
if a crystal can support an uncommon unit cell shape or space
group.” At the same time, N should be sufficiently large that
structures with stable defects, such as were identified for crys-
talline benzene,® can be accounted for.

We expect that the framework outlined in this paper to
be a potentially powerful approach for the discovery of dif-
ferent polymorphs in many crystalline systems and for induc-

J. Chem. Phys. 140, 214109 (2014)

ing order/disorder transitions. In addition, such an approach
could also serve as a tool to supplement machine learning
techniques® in order to accelerate and aid in the process of
fitting general order parameters for more complex molecular
crystals, and this will constitute future work in this area.
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