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Abstract

Until recently, knowledge of the impact of abuse drugs on gene and protein expression in the brain
was limited to less than 100 targets. With the advent of high-throughput genomic and proteomic
techniques investigators are now able to evaluate changes across the entire genome and across
thousands of proteins in defined brain regions and generate expression profiles of vulnerable
neuroanatomical substrates in rodent and non-human primate drug abuse models and in human
post-mortem brain tissue from drug abuse victims. The availability of gene and protein expression
profiles will continue to expand our understanding of the short- and long-term consequences of
drug addiction and other addictive disorders and may provide new approaches or new targets for
pharmacotherapeutic intervention. This chapter will review gene expression data from rodent,
non-human primate and human post-mortem studies of cocaine abuse and will provide a
preliminary proteomic profile of human cocaine abuse and explore how these studies have
advanced our understanding of addiction.
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Introduction

The efforts to complete sequencing of the human genome have enabled new endeavors into
the function of these genes in human disorders and have provided a wealth of knowledge
about the molecular underpinnings of behavior. The next challenge in addiction biology is
the utilization of this information to determine the function of the genes and proteins in the
context of human disease. The advent of high-throughput screening technologies has
produced a paradigm shift in the manner in which scientists are able to detect and identify
molecular mechanisms related to disease. Microarray and proteomic analysis strategies
allow the simultaneous assessment of thousands of genes and proteins of known and
unknown function — thereby enabling a global biological view of addictive disorders.
Broad-scale evaluations of gene and protein expression are well suited to the study of drug
abuse, particularly in light of the complexity of the brain compared with other tissues, the
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multigenic nature of drug addiction, the vast representation of expressed genes in the brain,
and our relatively limited knowledge of the molecular pathology of this illness.

The content of this chapter will include recent studies employing genomic and proteomic
strategies to develop a comprehensive understanding of the changes induced by cocaine, a
commonly abused stimulant. Furthermore, the chapter will focus on studies employing
rodent and non-human primate models as well as studies examining the neuropathology
identified in post-mortem human tissue of individuals with chronic histories of illicit
substance abuse. The chapter is limited to studies on cocaine due to the fact that this is the
most-studied abused drug with respect to genomic and proteomic strategies and thus may
provide an investigative template for studying other abuse substances.

The use and abuse of illicit drugs has continued to increase and poses one of the most
significant public health care concerns in American society. A recent report indicates that
approximately 13.6 million Americans are current users of illicit drugs (e.g. marijuana, 11
million; cocaine, 1.8 million; heroin 130,000) and over 4 million Americans meet the
diagnostic criteria for dependence on illicit drugs (SAMHSA, 2002). Despite intense
behavioral and biological research, few effective pharmacotherapeutic strategies exist, with
the arguable exception of methadone and LAAM treatment programs for opiate dependence.
In order to devise effective treatment strategies, it is necessary to understand the interactions
of behavioral, pharmacological and biochemical factors that underlie use and abuse.
Substance abuse is the culmination of a number of contributing factors spanning scientific
disciplines from behavior to molecular biology. As such, to understand the biology of
addiction requires a multidisciplinary approach to identify the contributing factors,
synthesize the information in the appropriate biological context and eventually relate this
context to the behavioral abnormality. The development of new and innovative medications
for drug addiction requires multidisciplinary research approaches examining the spectrum of
drug-induced effects from behavior to the biological and biochemical effects in discrete
neuronal populations.

A generally accepted tenet in drug abuse research is that drugs can function as reinforcing
stimuli. Hence, with respect to drug abuse, the reinforcing effects of certain drugs contribute
largely to their abuse liability. A significant amount of research investigating the
neurobiology of drug abuse is conducted in animal models which closely resemble
characteristics of human drug intake I. Criteria should include, but not be limited to the
following: (1) behaviors are contingent upon drug delivery, (2) behaviors are engendered
and maintained by drug delivery, and (3) drug delivery increases the frequency of those
behaviors. The self-administration paradigm meets these criteria, unlike the other
procedures, and is widely accepted as an appropriate model for studying the reinforcing
effects of drugs. Generally, the self-administration paradigm involves the emission of
specific behavior(s) (e.g. lever-press; nose-poke) that is maintained by drug administration
(e.g. intravenous, oral, or intracranial). Advantages of self-administration include the
following: (1) substances abused by humans can function as positive reinforcing stimuli
under laboratory conditions, (2) general concordance between substances abused by humans
and those self-administered by laboratory animals, (3) a variety of species readily acquire
and maintain self-administration under a number of operant schedules and (4) the ability to
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generate clear dose-effect curves using this procedure (Hemby et al., 1997b; Hemby, 1999).
Procedures such as place conditioning are hindered by the lack of objectively quantifiable
behaviors, lack of dose dependency and most importantly by the fact that drug
administration is not contingent on the behavior of the animal.

The concept of the contingency is critical for researchers attempting to draw conclusions
regarding the involvement of specific neural substrates in drug reinforcement. The majority
of studies investigating the neurobiological basis of drug administration have used
experimenter-controlled drug administration and extrapolated the relevance of those findings
to reinforcement mechanisms (Di Chiara and Imperato, 1988). However, a growing body of
literature has demonstrated pronounced neurochemical differences resulting from the
context and contingency of drug administration (self-administered versus experimenter
delivered) (Wilson et al., 1994; Hemby et al., 1995, 1997a,b). Neurobiological differences
between rats self-administering drugs and rats receiving experimenter-administered
infusions are based on the context of drug presentation and suggest inferences of
reinforcement mechanisms drawn from studies using experimenter-drug administration
protocols may be misleading. These studies clearly indicate a need for reliance on accepted
behavioral models when asserting relevance of biological findings to behavioral phenomena
such as reinforcement. While reinforcement does not solely explain drug abuse, it allows for
the quantification of the initiation and maintenance of drug self-administration.

Neuroanatomy of cocaine addiction

Similar to other psychiatric illnesses, drug abuse is a heterogeneous disorder with multiple
causes all of which can lead to the same functional endpoint — namely addiction. While the
regulation of individual transcripts and proteins have been suggested as mediators of the
addictive process, a more probable scenario is that the coordinate regulation of multiple
genes and proteins in defined neuroanatomical loci are either the mediators of addictive
behaviors or are modulated by chronic drug use. Over the past 20 years, the driving
theoretical construct in drug abuse research has been the psychomotor-stimulant theory of
addiction which attempts to provide a unifying theory for the neurobiological basis of all
abused drugs (Wise and Bozarth, 1987). The theory indicates that both the stimulant and the
reinforcing effects of all abused drugs are mediated by a common neural mechanism, the
mesolimbic dopamine system. The pathway originates in the mesencephalon, ventral
tegmental area (VTA) and projects to several basal forebrain regions including the nucleus
accumbens (NAc), ventral caudate-putamen, bed nucleus of the stria terminalis, diagonal
band of Broca, olfactory tubercles, prefrontal and anterior cingulate cortices. Administration
of drugs that are abused by humans lead to activation of this pathway in humans, non-human
primates and rodents (Porrino, 1993; Lyons et al., 1996; VVolkow et al., 1997). Activation of
this circuit has been correlated with subjective reports of craving and euphoria in cocaine
addicts (Volkow et al., 1997; Childress et al., 1999).

Dopaminergic projections from the VTA to the NAc have been implicated in the reinforcing
effects of psychomotor stimulants (cocaine and amphetamine) and alcohol, whereas the role
of this pathway in opiate reinforcement remains controversial (Hemby et al., 1997b).
Previous studies have shown that rats will self-administer cocaine, amphetamine, opiates,
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and alcohol directly into regions of this pathway. Altering the functional integrity of the
mesolimbic pathway by dopamine-selective neurotoxic lesions and dopamine D1 and D2
receptor blockade attenuate psychomotor stimulant self-administration. Similar
manipulations of the other monoamines serotonin and norepinephrine fail to significantly
influence drug intake. Thirdly, microdialysis studies indicate that extracellular dopamine
concentrations are elevated during cocaine and amphetamine self-administration sessions
(Hemby et al., 1997b). Taken together, the most recent research indicates that the
neurobiological substrates of drug abuse are not the same across all dug classes and
probably involve a myriad of neurotransmitter and receptor systems.

Functional genomics

Over the past 10 years, approximately 20 studies have employed various high-throughput
gene expression strategies to examine stimulant-induced changes in various brain regions of
animal models and humans. Several obstacles prevent the assimilation of the results from
these studies into an overarching understanding of stimulant-induced transcriptional
regulation such as species, brain regions, route and contingency of administration, dose and
duration of drug administration, length of time since the final drug administration,
experimental variables in microarray analysis, validation of findings with alternative
techniques, etc. Although several studies have examined the effects of stimulants on gene
expression, there is minimal literature on stimulant-induced proteomic analysis on a broad
scale; however, preliminary data will be presented on proteomic analysis of human cocaine
overdose victims.

Rodent studies: non-contingent administration

Several studies have examined the effects of cocaine administration on the coordinate
expression of genes in rodent brain regions associated with the mesocorticolimbic pathway,
including the NAc (Toda et al., 2002), prefrontal cortex (PFC) (Freeman et al., 2002; Toda
et al., 2002), hippocampus (Freeman et al., 2001a), lateral hypothalamus (Ahmed et al.,
2005) and VTA (Backes and Hemby, 2003). In the one study, rats were administered
cocaine three times per day (15 mg/kg; intraperitoneal) for 14 days (Freeman et al., 2002) as
an analogous “binge” paradigm, and gene expression was evaluated in the hippocampus
using RNA pools. Using stringent inclusion criteria of 50% induction or 33% reduction, the
authors noted only five transcripts were differentially regulated — all were upregulated in
the cocaine-treated rats: protein kinase A alpha (PKAca), metabotropic glutamate receptor 5
(mGIuR5) and voltage-gated potassium channel 1.1 (Kv1.1), survival of motor neuron
(SMN) and protein phosphatase 2A alpha subunit (PP2Aa). From this set, only mGIuR5,
PKCa, and Kv1.1 showed analogous changes in protein levels in this region. Interestingly,
the authors note that protein tyrosine kinase 2 (PYK?2), protein kinase C epsilon (PKCe) and
{3 catenin, proteins found to be elevated in the NAc of cynomolgus monkeys, were also
elevated in the hippocampus of cocaine-treated rats suggesting these changes are not region
or treatment-specific regimen.

In a separate study, changes in gene expression in the PFC of the same subjects (Freeman et
al., 2002) were examined by screening 588 rat genes (BD Bioscience Clonetech Atlas cNDA
Expression Array). Cocaine administration induced the expression of activity-regulated
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cytoskeletal protein (ARC), NGFI-B and HMG-CoA synthase | and decreased the
expression of casein kinase Il alpha (CKlla), glycogen synthase 3 alpha (GSK3a), and fos-
related antigen (FRAZL). The upregulation of NGFI-B was confirmed by quantitative PCR;
however the remaining encoded proteins of the differentially expressed transcripts were
assessed by Western blot analysis. Interestingly, only ARC protein levels were increased in
the PFC similar to the mRNA levels — which may be due in part to the somatodendritic
localization of ARC in neurons. The authors also examined proteins that had been shown to
be upregulated in the hippocampus of rats and NAc of monkeys administered cocaine
including PYK2, mitogen-activated kinase | (MEK), B-catenin, PKCa, PKCe, — of which
only PYK2 was found to be upregulated in the frontal cortex of cocaine-reated rats. The
study provides confirmatory data from previous studies showing increased ARC mRNA
expression following cocaine administration (Fosnaugh et al., 1995; Tan et al., 2000; Ujike
et al., 2002) as well as extending current knowledge on the ability of cocaine to induce
genes and protein involved in neuroplasticity.

Additional insight into prefrontal and striatal synaptic dysfunction came from a cDNA
micro-array study which screened 1176 rat genes (BD Bioscience Clontech Atlas cNDA
Expression Array) in samples of NAc core, NAc shell, striatum and dorsal PFC of rats
following 3 weeks of withdrawal from 7 days of cocaine administration (intraperitoneal; 15
mg/kg on days 1 and 7, 30 mg/ kg on days 2-6) (Toda et al., 2002). Nine genes were
identified with at least 40% increase or 29% decrease relative to controls in one of the four
brain regions studied. In the PFC, the authors noted a significant downregulation of the
neurotrophic tyrosine kinase receptor type 2 (Ntrk2) in the PFC of cocaine-treated rats.
Ntrk2 is the receptor for brain-derived neurotrophic factor (BDNF) previously shown to be
involved in the behavioral effects of cocaine in the VTA and NAc (Berhow et al., 1996;
Horger et al., 1999; Pierce and Bari, 2001; Freeman and Pierce, 2002). Though not
significantly different at the protein level in the PFC, protein levels of the Ntrk2 truncated
isoforms p95 and p145 were upregulated in the core of the NAc — a region receiving inputs
from the distal regions such as the VTA, hippocampus, etc. Interestingly, the NAc core
region exhibited changes in the expression of five transcripts: mitochondrial ATP synthase
subunit D (ATP5H), adenosine receptor 1 (ADORA1/AL), leukocyte common antigen-
related tyrosine phosphatase (LAR), RET ligand 2 (Retl2) (also known as glial cell line-
derived neurotrophic factor family receptor alpha 2; Gfra2). The authors also identified a
cocaine-induced downregulation of gastric inhibitory peptide (GIP) mRNA (also known as
glucose-dependent insulinotropic polypeptide) — recently shown to be upregulated by
chronic clozapine administration in the striatum (Sondhi et al., 2006) suggesting mediation
of this transcript by dopamine given the reciprocal regulation by cocaine and clozapine.
More recently, Gip was shown to be expressed in rat hippocampus and involved in a
regulatory function in progenitor cell proliferation in the dentate gyrus (Nyberg et al., 2005).
Examination of transcript-encoded transcripts showed significantly elevated levels of
adenosine 1 receptor protein in the NAc core which may represent a compensatory response
to the cocaine-induced upregulation of the D1/Gs signaling cascade documented previously
(Nestler, 2001; Scheggi et al., 2004; Zhang et al., 2005), a decreased Gi/Go function
(Nestler et al., 1990), elevated adenosine levels (Manzoni et al., 1998), or some combination
thereof.
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Kreek and colleagues further examined cocaine-induced gene expression in the striatum
following acute (3 hourly injection of 15 mg/kg for 1 day) and chronic (3 hourly injections
of 15 mg/kg for 3 days) “binge” administration using the Affymetrix rat genome U34A
containing approximately 8000 gene/EST clusters (Yuferov et al., 2003). The authors noted
117 upregulated and 22 downregulated transcripts as a result of cocaine administration.
Upregulated transcripts included immediate-early genes, “effector” and scaffolding proteins
and receptors and signal transduction proteins, while downregulated transcripts was
comprised primarily of transcripts related to mitochondrial function along with transcripts
encoding signal transduction proteins. RNAse protection assays were used to confirm
differential expression as noted by array analysis. In addition to expanding our
understanding of cocaine-induced regulation of several gene families and pathways, the
authors revealed upregulation of the Per2 clock gene and the somatostatin receptor 2
following “binge” cocaine administration. Previously, disruption of Per genes have been
shown to block cocaine-induced sensitization in Drosophila (Andretic et al., 1999) and mice
(Abarca et al., 2002); however, the localization to the striatum is interesting in that previous
studies have found expression limited to the suprachiasmatic nucleus (Masubuchi et al.,
2000). The elevated expression of SSTR2 may possibly reflect a less-studied mechanism of
cocaine-regulated dopamine release in the striatum as noted by the authors. Additional
studies that examine the cellular origin and localization of the Per 2 transcript and protein
and the role of SSTR2 in the behavioral effects of cocaine are warranted.

Rodent studies: self-administration

The previous studies have expanded the knowledge base of the cocaine’s effects in the brain
and provided novel insights into the pharmacological effects of cocaine in various brain
regions; however, all used the non-contingent administration of cocaine and thus may have
limited applicability to understanding the abuse liability/reinforcing effects of cocaine. As
discussed in the Introduction, inferences of reinforcement mechanisms drawn from studies
using experimenter drug administration protocols may be misleading as several studies have
shown significant differences between experimenter- and self-administered drugs of abuse
(Wilson et al., 1994; Hemby et al., 1995, 19974, b; Hemby, 1999). To date, two studies have
combined rodent intravenous self-administration procedures with functional genomics
procedures. Ahmed and colleagues examined gene expression profiles in samples of NAc,
lateral hypothalamus, septum, VTA, medial PFC and amygdala from rats self-administering
cocaine or serving as controls using pooled samples of RNA on the Affymetrix
Neurobiology RNU434 chips (Ahmed et al., 2005). The cocaine self-administration group
was divided into two subgroups: short access (ShA; 1 h/day; 250 mg/infusion) and long
access (LhA; 6 h/day; 250 mg/infusion access) in which one press of a level resulted in the
delivery of the dose of cocaine through the intravenous catheter. This procedure results in a
marked escalation of cocaine intake within the first hour of access and has been proposed as
a model of compulsive drug intake (Ahmed and Koob, 1998, 1999; Ahmed et al., 2002).
Interestingly, the lateral hypothalamus exhibited the greatest number of genes that were
regulated by cocaine self-administration access (ShA and LhA) and by the escalation
paradigm (LhA versus ShA) when compared to the other brain regions studied and
differential expression of select transcripts were confirmed by gPCR. Transcripts altered by
the escalation paradigm were members of several functional classes including functional and
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structural plasticity, receptors, synthetic and metabolic enzymes, neurotransmitter release,
and proteins coding for neuronal growth and survival.

The aforementioned studies utilized dissected brain regions from rats to generate molecular
profiles of cocaine administration. As noted in the previous section on the neuroanatomical
basis of reinforcement, the circuitry that mediates the reinforcing effects of cocaine and
others drugs of abuse is well-defined and includes dopaminergic cell bodies in the VTA that
projects to several forebrain and cortical regions. The advent of discrete cell microdissection
and laser capture microdissection (LCM) combined with RNA amplification strategies
makes it possible to evaluate expression patterns in defined cell populations in the brain
(Ginsberg et al., 1999, 2000, 2004; Hemby et al., 2002; Fasulo and Hemby, 2003). Whereas
previous studies have examined regional gene expression profiles in the VTA as a function
of cocaine administration, the effects of cocaine self-administration on VTA dopamine
neurons remain largely unknown even though these cells are a critical substrate of drug
reinforcement. To this end, the expression profile of 95 transcripts following 1 or 20 days of
intravenous cocaine self-administration was assessed in dopamine neurons of the VTA in
rats (Backes and Hemby, 2003). Tyrosine hydroxylase immunopositive cells were
microdissected from the VTA using LCM microdissection and aRNA amplification was
used to provide a linear amplification of the mRNA from each rat (Van Gelder et al., 1990;
Eberwine et al., 1992; Eberwine, 2001; Hemby et al., 2002). Five GABA-A receptor subunit
MRNAs (a4, a6, B2, v2, and 8) were downregulated at both 1 and 20 days of cocaine self-
administration. In contrast, the catalytic subunit of protein phosphatase 2A (PP2a), GABA-
A al and Gajp were significantly increased at both time points. Additionally, calcium/
calmodulin-dependent protein kinase lla (CaMKIlla) mRNA levels were increased initially
followed by a slight decrease after 20 days, whereas neuronal nitric oxide synthase (nNOS)
MRNA levels were initially decreased but returned to near control levels by day 20. These
results indicate that alterations of specific GABA-A receptor subtypes and other signal
transduction transcripts appear to be specific neuroadaptations associated with cocaine self-
administration. Moreover, as subunit composition determines the functional properties of
GABA-A receptors, the observed changes may indicate alterations in the excitability of
dopamine transmission underlying long-term biochemical and behavioral effects of cocaine.

Transgenic mouse studies

In an elegant series of experiments, Nestler and colleagues utilized AFosB and CREB-
inducible transgenic mice with targets know to be involved in the behavioral effects of
cocaine to ascertain their effects on the down-stream regulation of gene expression. Previous
studies have shown that repeated cocaine administration leads to sustained elevation of
AFosB levels in brain regions associated with the behavioral effects of cocaine (Hope et al.,
1994; Moratalla et al., 1996; Nestler, 2001; Nestler et al., 2001; McClung and Nestler, 2003;
Perrotti et al., 2005; Brenhouse and Stellar, 2006). Using the AFosB-inducible transgenic
mouse model, the investigators were able to demonstrate increased levels of cyclin-
dependent kinase 5 (cdk5) mRNA following induction and similarly increased following
chronic cocaine administration (Bibb et al., 2001) using a 588 cDNA mouse array (BD
Bioscience Clontech Atlas cNDA Expression Array). More importantly, a functional role of
cdk5 in cocaine-mediated behaviors was shown by antagonism of cdk5 in the striatum and
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attenuation of kainate peak currents in the striatum following cocaine administration (Bibb
etal., 2001). In a separate study using the AFosB-inducible transgenic mouse model, the
authors employed the higher density Affymetrix DNA mouse array and found significantly
higher levels of NFkB mRNA and protein in the transgenic mice and similar elevations in
NF«B protein levels in wild-type mice administered cocaine (20 mg/kg; 14 days) (Ang et
al., 2001).

Comparison of the effects of AFosB- and CREB-inducible transgenic mouse models on
transcription in the NAc revealed that the majority of transcripts induced by CREB occurred
after 2 weeks of expression and were sustained at 8 weeks of expression (McClung and
Nestler, 2003). Conversely, AFosB expression generated dichotomous patterns of gene
expression at 2 and 8 weeks with the 2-week expression pattern for AFosB similar to CREB
expression. The longer AFosB expression was similar to effects observed following
expression of the dominant-negative CREB. Interestingly, acute cocaine administration (5
days; 10 mg/kg) induced 21% of the genes induced by CREB expression alone whereas
chronic cocaine administration (15 mg/g; 20 days) induced 27% of the genes induce by
AFosB expression alone, leading the authors to conclude that the effects of short-term
cocaine administration are more dependent on CREB, whereas chronic administration is
dependent on AFosB. The list of genes attributable to the induction of CREB and AFosB is
lengthy and will not be reviewed in here entirely for the sake of brevity; however it is
important to note that these studies have significantly expanded the knowledge of
transcriptional regulation by these transcription factors and the understanding of the
neuroadaptive effects of cocaine administration.

Using a similar approach, Caron and colleagues examined the striatal transcriptomes of three
transgenic mouse models, dopamine, norepinephrine, and vesicular monoamine 2
transporter knockouts and a cocaine-treated mouse model using the Affymetrix mouse
Genechips (MG U74v2 Set) containing approximately 36,000 gene clusters (Yao et al.,
2004). Twenty-six transcripts were altered in all three knockouts and six genes were also
found to be altered following chronic cocaine administration (20 mg/kg per day for 5 days
followed by 14 days of withdrawal) — adenylate cyclase 1 (signal transduction and
plasticity), Pin/Dic-2 (involved in NOS activity and signaling) and post-synaptic density
protein 95 kDa (PSD-95; involved in scaffolding of NMDA receptors and plasticity). In situ
hybridization indicated a significant decrease in PSD-95 levels in the NAc and striatum of
all knockdowns and the cocaine-treated groups, and qPCR confirmed similar decreases in
the whole striatum — separate qPCR assessments in NAc and caudate-putamen were not
performed. Similarly PSD-95 protein levels were decreased in the NAc, caudate-putamen
and in whole striatum of all three knockouts and the cocaine-treated mice. In addition, all
four groups exhibited altered synaptic plasticity of cortical accumbal plasticity.

Non-human primates

One of the first published studies to utilize array technology examined the effects of chronic
intramuscular injections of cocaine in cynomolgus monkeys on gene expression in the NAc
using a low-density human macroarray from Clonetech consisting of 588 probes (Freeman
et al., 2001b). Pools of mMRNA from each group were hybridized to two separate arrays
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leading to the identification of 18 transcripts designated as differentially expressed and
included. Unfortunately, the complete list of differentially expressed transcripts is not
provided in the manuscript and the website containing the complete dataset is no longer
functional. Of the 18 differentially expressed transcripts, eight were selected for post-hoc
analysis using Western blot procedures. Four of the eight selected encoded proteins
exhibited significant increases in abundance (as hypothesized from the array data) and
included PKA« subunit (catalytic; PKAa), the beta subunit of cell adhesion tyrosine kinase,
MEKZ1 and p-catenin. Differences in the protein expression of the remaining four targets did
not agree with the array data, which could be due to several factors including post-
transcriptional degradation, differences in spatial trafficking of mRNA and protein in
neurons, or more practical factors such as the extrapolation of data from pooled RNA
samples. An additional limitation of this study is the cross-species hybridization of monkey
cDNA (generated using human PCR primers) with human extended oligo probes. The
generation of targets for the Clontech assay is a PCR-based method in which primers are
used which correspond to the human cDNA sequence. In this case, the overriding
assumption is that the Macaca fascicularis cDNA is identical to the human cDNA sequence
for the transcripts of interest such that the primers would readily anneal to the monkey
cDNA and prime the PCR reaction. The lack of specificity of the human primers for
cynomolgus cDNA may lead to an underestimation of the abundance of target transcripts
and/or may represent the amplification of multiple transcripts in the cynomolgus monkeys.

Nonetheless, the authors aptly point out that the confirmed targets are members of a
common biochemical pathway that interact with CREB and AP-1 proteins shown previously
to be regulated in rodent models following cocaine administration.

More recently, Hemby and colleagues have used a non-human primate cocaine self-
administration model to validate protein and mRNA changes observed in human post-
mortem tissue of cocaine-overdose victims (Hemby et al., 2005b). Unfortunately, attempts
to recapitulate changes observed in cocaine overdose victims and non-human primate
models in rodent self-administration models have not succeeded (Tang et al., 2004; Hemby
et al., 2005a). Additional studies are needed to specifically address the ability of the rodent
model to recapitulate biochemical changes observed in the primate brain. Whereas rodent
models have provided significant information on drug-induced alterations, non-human
primate models more closely approximate the anatomy and biochemical milieu of the human
brain. For instance, differences between rodents and primates in frontal lobe anatomy
(Preuss, 1995) are likely to be reflected in prefrontal-accumbal glutamatergic
neurotransmission. In addition, mid-brain dopamine projections in rodents have been
ascribed to different midbrain nuclei; however, studies in primates suggest a more complex
pattern (Lynd-Balta and Haber, 1994; Williams and Goldman-Rakic, 1998). The use of non-
human primates may allow the development of a more clear and clinically relevant
characterization of the biochemical changes associated with cocaine use.

Human post-mortem studies

Understanding the consequences of long-term cocaine abuse on post-mortem brain tissues
requires vigorous investigation with the benefit of revealing whether the adaptations
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observed in rodent and non-human primates are applicable to human brain, and which
changes are state or trait markers in human drug abusers. Findings in postmortem brains
often provide the first leads that can be investigated in living brain, for example the loss of
dopamine in Parkinson’s disease (Kish et al., 1988), changes in the levels of the dopamine
transporter (Little et al., 1993a, b; Staley et al., 19944, b; ) or opiate system (Hurd and
Herkenham, 1993; Staley et al., 1997) with chronic cocaine exposure, and the
downregulation of the nicotinic ACh receptor after chronic nicotine (Breese et al., 1997).
Although there are many difficulties with post-mortem brain studies, this approach is one of
the most promising ways to view biochemical changes relevant to human drug abusers and
to educate the public about the consequences of cocaine abuse. Whereas animal studies have
advanced our understanding of the neurobiological basis of drug addiction, the evaluation of
similar questions in human tissue are few, yet are essential. By assessing changes in defined
biochemical pathways in human post-mortem tissue, the fundamental molecular and
biochemical processes associated with long-term cocaine use can be ascertained.

Bannon and colleagues examined gene expression in the NAc of post-mortem brain tissue of
human cocaine abusers and controls using Affymetrix Human U133A and U133B arrays
with represent over 39,000 transcripts (Albertson et al., 2004). Forty-nine transcripts were
present in all pairs (n = 10) of cocaine and control cases and were differentially expressed in
the NAc of cocaine abusers. Transcripts were members of several functional classes
including signal transduction, transcriptional and translational processing, neurotransmission
and synaptic function, glia, structural and cell adhesion, receptors/transporters/ion channels,
cell cycle and growth, and lipid and protein processing. The authors noted a significant
upregulation of cocaine and amphetamine-related transcript (CART), a transcript previously
discovered following cocaine administration in rats (Douglass et al., 1995; Douglass and
Daoud, 1996). In addition, several myelin-associated transcripts were significantly
decreased in the NAc of cocaine abusers including myelin basic protein (MBP), proteolipid
protein 1 (PLP) and myelin-associated oligodendrocyte basic protein (MOBP) and a
significant increase in T-cell differentiation protein (MAL2) — which were confirmed by
gPCR. Immunohistochemistry revealed a similar decrease in MBP immunoreactivity in the
NAc of these subjects as well. These data provide molecular basis of previous studies which
suggested altered white-matter density and myelin expression in cocaine abusers (Volkow et
al., 1988; Wiggins and Ruiz, 1990; Lim et al., 2002).

In a separate cohort, Hemby and colleagues used targeted macroarrays consisting of 96
cDNAs to compare gene and protein expression patterns between cocaine overdose victims
and age-matched controls in the VTA and lateral substantia nigra (I-SN) (Tang et al., 2003).
Evaluated transcripts included ionotropic glutamate receptor (iGIUR) subunits, GABAA
receptor subunits, dopamine receptors, G-protein subunits, regulators of G-protein signaling
and other GTPases, transcriptional regulation, cell growth and death, and others (CART,
cannabinoid receptor 1, and serotonin receptors 2A, 2C, and 3). Array analysis revealed
significant upregulation of numerous transcripts in the VTA, but not I-SN, of cocaine
overdose victims including NMDAR1, GIuR2, GIuR5, and KA2 receptor mRNAs.
Corresponding Western blot analysis revealed VTA-selective upregulation of CREB, NR1,
GluR2, GIuR5, and KA2 protein levels in cocaine overdose victims. These results indicate
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that selective alterations of CREB and certain iGIUR subunits appear to be associated with
chronic cocaine use in humans in a region-specific manner. Extending these studies, we
recently examined the extent of altered iGIuR subunit expression in the NAc and putamen in
cocaine overdose victims (Hemby et al., 2005b). Results revealed statistically significant
increases in the NAc, but not in the putamen, of NR1 and GIuR2/3 with trends in GIuR1 and
GIuR5 in cocaine-overdose victims (COD). In order to determine that changes were related
to cocaine intake and not to other factors in the COD victims, the effects of cocaine
intravenous self-administration in rhesus monkeys for 18 months (unit dose of 0.1 mg/kg/
injection and daily drug intake of 0.5 mg/kg/session) were examined. Statistically significant
elevations were observed for NR1, GIuR1, GIuR2/3, and GIuR5 (P < 0.05) and a trend
toward increased NR1 phosphorylated at Serine 896 (p < 0.07) in the NAc but not putamen
of monkeys self-administering cocaine compared to controls (Hemby et al., 2005b). These
results extend previous results by demonstrating an upregulation of NR1, GIuR2/3, and
GIuR5 in the NAc and suggest these alterations are pathway specific and likely mediate in
part the persistent drug intake and craving in the human cocaine abuser.

Proteomics

Whereas several studies have assessed gene and subsequent protein expression as a function
of cocaine administration in humans and animal models, to date there are few studies using
high-throughput proteomic technologies to examine drug-induced global protein expression
patterns in brain regions (Freeman and Hemby, 2004; Freeman et al., 2005; Kim et al.,
2005). In order to begin to fill this void in the field of the neurobiology of cocaine addiction,
our lab has embarked on several studies in rhesus monkey cocaine self-administration
models and in human post-mortem tissue from COD victims. Initial efforts have focused on
changes in the NAc given the role of this brain region in the addictive processes of cocaine
and the growing gene expression databases. In a preliminary study, cytosolic fractions of
NAC proteins from human COD and controls (n = 5/group) were separated and quantified by
two-dimensional difference gel electrophoresis (2-DIGE) and identified by matrix-assisted
laser desorption/ionization time-of-flight (MALDI ToF/ToF) mass spectroscopy (see
Chapter 4 for detailed explanation of procedures). Greater than 1000 spots were detected
across the five pairs (COD and controls) of which 340 spots were excised, digested in-gel
with trypsin, and subsequently analyzed by MALDI ToF/ToF (see Supplemental Table I).
Fifty-two percent of the spots were positively identified including 11 upregulated proteins
including DJ1 (Parkinson’s disease 7 (PARKY; autosomal recessive, early onset)), ubiquitin
carboxyl-terminal esterase L1 (UCHL1; PARKS5), lamda crystallin, endothelial monocyte-
activating polypeptide 2 (EMAP-II) and others (Fig. 1). DJ1, a redox-sensitive chaperone
that protects neurons against oxidative stress and cell death, and UCHL1, a neuronal de-
ubiquitinating enzyme, are both associated with Parkinson Disease (Abou-Sleiman et al.,
2006). Combined with elevated a-synuclein levels in human COD victims (Qin et al., 2005),
these data support the suggestion by Deborah Mash and colleagues that chronic cocaine use
induce Parkinson-like pathology in striatal regions. Eighteen-positively identified proteins
were found to be downregulated in the NAc of COD victims including gelsolin, ATP5b,
dihydropyrimidinase-like 3 (DRP3/TUC-4) and dihydropyrimidinase-like 2 (DRP2) (Fig. 2).
Decreased expression of gelsolin and DRP3/TUC-4 and gelsolin was confirmed by

Prog Brain Res. Author manuscript; available in PMC 2014 June 07.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Hemby

Page 12

immunoblotting (Fig. 3) Gelsolin has been reported to exhibit antiapoptotic properties in
neurons (Harms et al., 2004) and fibroblasts (Ahn et al., 2003a, b) such that decreased
gelsolin expression may render NAc cells more susceptible to apopotosis and oxidative
stress due to cocaine exposure. DRP2 and 3 are generally associated with nerve terminal
activity, more specifically axonal restructuring and decreased expression may imply
decreased plasticity of NAc cells with chronic cocaine exposure. Efforts are underway to
assimilate genomic and proteomic databases in a more systematic manner. The application
of proteomics holds great promise to understanding the biology of psychiatric diseases,
including substance abuse disorders. Further investigation of the changes found and a more
comprehensive examination of the human proteome, which may provide the biological
understanding and identification of novel therapeutic targets for treatment of cocaine
dependence.

Conclusion

In conclusion, relevant gene expression profiles for cocaine abuse and other substance abuse
disorders are being generated expanding our knowledge of drug-induced changes in the
brain that may underlie persistent drug taking and relapse. Results from rodent, non-human
primate and human post-mortem studies indicate significant impairments in neuronal
function and plasticity in several brain regions. To date the majority of studies have utilized
rodents to model human cocaine intake, however growing evidence indicates the need to
refine rodent and non-human primate models to better recapitulate human drug intake and
associated neuropathologies. As in other psychiatric and neurological illnesses, researchers
should identify the molecular pathologies associated with cocaine addiction in humans and
attempt to recapitulate such biological alterations in animal models.

The neurobiological and molecular characteristics of cocaine addiction, although specific to
cocaine, may generalize to other drug dependencies. Understanding the coordinated
involvement of multiple proteins with chronic cocaine abuse provides insight into the
molecular basis of drug dependence and may offer novel targets for pharmacotherapeutic
intervention. Although significant advances have been made in the identification of
neurochemical and neurobiological substrates involved in the behavioral effects of abused
drugs, the relationship between these effects and resultant alterations in gene and protein
expression remains in its infancy. The relationship between altered gene and protein
expression and the addictive effects of specific drugs remains understudied. The application
of this information to the development of treatment strategies has not been fruitful for
several reasons. One explanation is that research in the areas of neurobehavioral
pharmacology and molecular biology has proceeded in relative isolation of each other. To
date, there have been few published studies combining models of self-administration with
genomic and proteomic approaches. Other possible explanations include (1) the
inappropriate use of experimental models, (2) reliance on non-neuronal systems or neuronal
tissue not directly involved in the reinforcing effects of the drug, and (3) the lack of
definable neural substrates at the cellular or biochemical level. The combination of
appropriate behavioral models of drug reinforcement, specific neurobiological systems and
state-of-the-art molecular techniques will provide the most pertinent data for understanding
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the molecular basis of drug reinforcement and for potentially establishing novel targets for
pharmacotherapeutic intervention.

A more detailed understanding of the molecular and biochemical cascades in specific
neuronal populations and the interactions between well-defined neuronal populations within
discrete brain regions could lead to a greater knowledge of the basic neurobiological
processes involved in drug reinforcement. Future efforts investigating the biological basis of
drug reinforcement should be directed at specific cellular targets in brain regions considered
to be involved in drug reinforcement. The integration of basic neuroscience and behavior
offers the most productive avenue for delineating the complexity of the neurobiological
underpinnings of drug reinforcement and the subsequent development of effective
pharmacotherapies to treat addiction.
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Fig. 1.

Prgliminary data of representative proteins exhibiting increased abundance in COD victims.
Signal intensities for specific gel spots from COD victims and control subjects were
compared. Included in the figure are the proteins quantified by the 2DIGE technique using
the normalization by Cy2-labeled pool sample and have statistical significance difference in
expression profiles between the two groups (*p<0.05, t-test). Examples of proteins are
provided with representative 3-D plots of individual COD and control spots.
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Fig. 2.
Preliminary data of representative proteins exhibiting decreased abundance in COD victims.

Signal intensities for specific gel spots from COD victims and control subjects were
compared. Included in the figure are the proteins quantified by the 2DIGE technique using
the normalization by Cy2-labeled pool sample and have statistical significant difference in
expression profiles between the two groups (*p<0.05, t-test). Examples of proteins are
provided with representative 3-D plots of individual COD and control spots.
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Fig. 3.

Western blot analysis of gelsolin and DRP3. Assessment of protein levels from the samples
used for 2DIGE revealed significant decreases in gelsolin and DRP3 in agreement with the
2DIGE analyis. Moreover, these changes were specific to the NAc and not observed in the
putamen. (*p<0.05, t-test). B tubulin was used as a loading control and no differences were
observed for this protein.
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