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Abstract

Accelerated bone loss leading to osteopenia, osteoporosis, and bone fracture is a major health

problem that is increasingly common in human immunodeficiency virus (HIV) infected patients.

The underlying pathogenesis is unclear but occurs in both treatment naïve and individuals

receiving antiretroviral therapies. We developed an HIV-1 transgenic rat that exhibits many key

features of HIV disease including HIV-1 induced changes in bone mineral density (BMD). A key

determinant in the rate of bone loss is the differentiation of osteoclasts, the cells responsible for

bone resorption. We found HIV-1 transgenic osteoclast precursors (OCP) express higher levels of

suppressor of cytokine signaling-1 (SOCS-1) and TNF receptor associated factor 6 (TRAF6) and

are resistant to interferon-gamma (IFN-γ) mediated suppression of osteoclast differentiation. Our

data suggest that dysregulated SOCS-1 expression by HIV-1 transgenic OCP promotes
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osteoclastogenesis leading to the accelerated bone loss observed in this animal model. We propose

that elevated SOCS-1 expression in OCP antagonizes the inhibitory effects of IFN-γ and enhances

receptor activator of NF-kB ligand (RANKL) signaling which drives osteoclast differentiation and

activation. Understanding the molecular mechanisms of HIV-associated BMD changes has the

potential to detect and treat bone metabolism disturbances early and improve the quality of life in

patients.
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Introduction

The introduction of antiretroviral drugs has dramatically improved both survival and quality

of life of HIV patients. However, improved survival has resulted in the emergence of long-

term complications associated with HIV-1 disease. In many respects HIV infection

recapitulates conditions of accelerated senescence (Deeks, 2009). Two manifestations of

natural senescence are skeletal degradation and decreases in immune competence. The two

may be closely related; recent studies suggest that immune cells regulate bone homeostasis

and cause changes in bone mineral density (BMD) during inflammatory conditions (Gao et

al., 2007; Li et al., 2007; Weitzmann and Pacifici, 2007). Recent studies of HIV-1 infected

patients show abnormalities in BMD and in bone turnover markers. The prevalence of bone

loss in HIV patients range from 22–50% for osteopenia and from 3–20% for osteoporosis

(Amiel et al., 2004; Carr et al., 2001; Madeddu et al., 2004; Tebas et al., 2000; Yin et al.,

2005). Of concern are recent studies that suggest fractures occur more commonly in HIV-

positive men and women, especially in older patients, contributing to HIV-associated

morbidity and mortality (Dolan et al., 2006; Ofotokun and Weitzmann; Prior et al., 2007;

Stone et al.; Triant et al., 2008; Womack et al., 2011; Young et al., 2011).

The etiology of HIV-1 bone loss is likely multifactorial. Known risk factors for accelerated

bone loss are common in HIV-1 infected patients such as low body weight, low vitamin D

levels, hypogonadism and alcohol abuse (McComsey et al.; Yin et al.). A meta-analysis of

several cross-sectional studies report that the odds ratio for osteoporosis in HIV patients is

3.7 compared to age-matched controls (Brown and Qaqish, 2007). In addition, HIV disease

and antiretroviral therapies are risk factors for accelerated bone loss. Cross-sectional studies

have shown a correlation between antiretroviral therapy itself and bone loss (Dolan et al.,

2006; Mondy et al., 2003; Nolan et al., 2001). However, longitudinal studies of patients on

antiretroviral therapy show BMD stabilizes over time (Bolland et al., 2007; Dolan et al.,

2006). Further, HIV-1 infection is associated with bone loss in both treated and treatment

naïve patients and the HIV-1 proteins gp120 and Vpr in vitro increase expression of receptor

activator of NF-kB ligand (RANKL), the key osteoclastogenic cytokine (Brown and Qaqish,

2007; Fakruddin and Laurence, 2003, 2005; Gibellini et al., 2007; Madeddu et al., 2004;

McComsey et al., 2010; Paton et al., 1997).
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The adult skeleton continuously undergoes bone remodeling to shape and repair damaged

and worn bone (Manolagas and Jilka, 1995). Osteoblasts and osteoclasts are the primary

cells responsible for bone formation and bone resorption, respectively. The breakdown of

bone by osteoclasts is a critical function in bone homeostasis but is also implicated in the

pathogenesis of various bone diseases including postmenopausal osteoporosis and

inflammatory conditions such as periodontitis (Teitelbaum, 2000). Osteoclasts are large

multinucleated hematopoietic cells of the myeloid lineage that develop from precursors

following stimulation with macrophage/monocyte-colony forming factor (M-CSF) and

RANKL (Boyle et al., 2003), which bind to their receptors c-Fms (also called CSF-1R) and

RANK, respectively. M-CSF supports survival and proliferation of myeloid progenitors and

promotes generation of osteoclast precursors (OCP) that express RANK (Arai et al., 1999).

RANKL, a member of the TNF superfamily of cytokines, provides the critical signal that

drives development of OCP and activation of mature osteoclasts (Arai et al., 1999; Kong et

al., 1999b; Lacey et al., 1998; Yasuda et al., 1998b). RANKL binding RANK induces

recruitment of the adaptor protein TNF receptor associated factor 6 (TRAF6) and activation

of the transcription factors nuclear factor κB (NF-κB), activation protein 1 (AP-1) and

nuclear factor of activated T cells and cytoplasmic 1 (NFATc1), which transactivate

osteoclastogenic genes (Takayanagi et al., 2002; Takayanagi et al., 2000; Wong et al.,

1998). RANKL is expressed by osteoclasts, chondrocytes, osteocytes, osteoblasts, stromal

cells, T cells, and B cells in either a membrane bound or soluble form (Kong et al., 1999b;

Lacey et al., 1998; Nakashima et al., 2011; Takayanagi et al., 2000; Vikulina et al., 2010;

Xiong et al., 2011). Expression is upregulated by vitamin D3, prostaglandin E2, parathyroid

hormone, TNF-α, IL-1, IL-6, IL-11, and IL-17 (Kong et al., 1999b; Kotake et al., 1999;

Nakashima and Takayanagi, 2008; Vikulina et al., 2010; Wada et al., 2006; Wong et al.,

1997).

Osteoclastogenesis is inhibited by IFN-γ and osteoprotegerin (OPG), a soluble decoy

receptor of RANKL that blocks osteoclast formation in vitro and bone resorption in vivo

(Simonet et al., 1997; Teitelbaum, 2000; Yasuda et al., 1998b). IFN-γ strongly suppresses

osteoclastogenesis in vitro, which may be attributable to multiple inhibitory mechanisms.

IFN-γ induces apoptosis, suppresses expression of RANK by OCP, down-regulates

cathepsin K expression, and blocks RANKL-RANK downstream signaling events (Gao et

al., 2007; Kamolmatyakul et al., 2001; Takahashi et al., 1986; Takayanagi et al., 2002;

Takayanagi et al., 2005; van't Hof and Ralston, 1997; Wong et al., 1998). IFN-γ inhibits

RANK signaling by accelerating the proteasome-mediated degradation of the key adaptor

molecule TRAF6 (Takayanagi et al., 2000). Upon binding to its receptor, IFN-γ activates the

Janus kinases Jak1 and Jak2 and phosphorylates the transcription factor signal transducer

and activator of transcription (STAT)-1, which results in the induction of IFN-responsive

gene transcription (Dalpke et al., 2003). IFN-γ and STAT-1 induce expression of SOCS-1, a

potent feedback inhibitor of IFN-γ signaling that also cross-inhibits signaling by type 1 IFN

receptors and the IL-4 receptor in many lineages of immune cells (Hu and Ivashkiv, 2009).

We have reported that HIV-1 transgenic (Tg) rats have both reduced type 1 cytokine

production (IFN-γ and IL-2) and type 1 cytokine responses and a concomitant increase in

IL-10 production, which are also observed in patients during progression to AIDS (Clerici
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and Shearer, 1993; Reid et al., 2004; Yadav et al., 2009; Yadav et al., 2006). We have

shown that IL-10 induces over-expression of SOCS-1 in HIV-1 Tg rat CD4+ T cells and

dendritic cells, thereby disrupting the IL-12- IFN-γ signaling axis (Yadav et al., 2009). We

showed that SOCS-1 is likewise elevated in CD4+ T cells from HIV-1 infected patients and

is correlated with defective IFN-γ signaling (Reid et al., 2004; Reid et al., 2001a; Yadav et

al., 2009; Yadav et al., 2006). It was recently reported that the HIV-1 Tg rat undergoes

severe osteoclastic bone resorption and shows an imbalanced ratio of RANKL to OPG in B

cells (Vikulina et al.). Here, we demonstrate that along with dysregulated induction of

SOCS-1 by OCP, the OCP are resistant to suppression of osteoclast differentiation by IFN-γ.

Therefore, we propose that elevated SOCS-1 expression by OCP abrogates IFN-γ mediated

control of osteoclastogenesis in the HIV-1 Tg rat and hypothesize that overproduction of

SOCS-1 during HIV-1 infection is an important mechanism by which osteoclastogenesis is

augmented, leading to an increase in bone loss. This study will help to understand the

pathogenesis of HIV-1 induced bone loss in infected patients.

Material and methods

HIV-1 Tg and non-Tg rats

The construction of the HIV-1 transgene and production of the Tg rats have been described

(Reid et al., 2001a). Mature (12–15 months) pathogen free Tg rats and age-matched Fisher

344/NHsd non-Tg rats were used in our analysis and were housed under pathogen free

conditions in micro-isolator cages on HEPA filtered ventilated racks. The University of

Maryland School of Medicine Animal Care and Use Committee approved the experimental

protocol.

OCP and splenic mononuclear cell isolation and flow cytometry

Osteoclast precursors were isolated from the bone marrow and RBC were removed by

osmotic lyses. Splenic mononuclear cells were isolated using Histopaque-1083 (Sigma-

Aldrich). OPC were stained with anti CD11b-FITC (Antigenex America) and isolated using

positive selection (Miltenyi Biotec) under conditions described by the manufacture. The

positive population was stained for RANK by staining with anti RANK-PE (Imgenex). Flow

cytometry was as described previously (Reid et al., 2004) and data were analyzed by FlowJo

software. RANK surface expression levels were quantified using QuantiBRITE PE beads

(BD Biosciences).

Biochemical indices of bone resorption

Serum C-terminal telopeptide of collagen, a marker of bone resorption, and serum

osteocalcin, a specific marker for bone formation, were measured in rats 12–14 months of

age using RATlaps and Rat-MID ELISAs respectively (Immunodiagnostic Systems).

Samples were measured in triplicate and averaged for each rat.

Real-time PCR

Relative levels of specific mRNA were quantified by real-time RT-PCR analysis using the

IQ5 Multicolor Realtime PCR Detection System (Bio-Rad Laboratories). Isolated OCP from

control and Tg rats were stimulated at 1.0 × 106 cells/ml at indicated times with IFN-γ or 5
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hours with 50 ng/ml sRANKL. Total cellular RNA was prepared using an RNeasy mini kit

(Qiagen). First-strand cDNA was synthesized using iScript cDNA Synthesis Kit (Bio-Rad)

and analyzed using IQ SYBR Green PCR kit (Bio-Rad Laboratories). Rat specific primer

sets for RANKL, OPG, SOCS-1, 18s, tartrate resistant acid phosphatase 5, and cathepsin K

were synthesized (Bio-polymer core, University of Maryland, Baltimore or

Realtimeprimers.com): RANKL forward primer: 5’- TTT GCT CAC CTC ACCATC AA;

reverse primer: 5’ – TCC GTT GCT TAA CGT CAT GT; OPG forward primer: 5’- TCC

GGA AAC AGA GAA GCA AC; reverse primer: 5’ – TGT CCA CCA GAA CACTCA

GC; SOCS-1 forward primer: 5’- AGC CAT CCT CGT CCT CGT C; reverse primer: 5’-

GCG GAA GGT GCG GAA GTG; 18s forward primer: 5’-GCC TTT CTT CAT TGT CCA

GA; reverse primer: 5’- AAA CTT TGG ACG CAG TCT TG; tartrate resistant acid

phosphatase 5 forward primer: 5’- CAA CTT CAT GGA CCC TTC TG; reverse primer: 5”-

ACC CAT TAG GGG ATA AGC AG and cathepsin K forward primer: 5’- CTT GGC TCG

GAA TAA GAA CA; reverse primer: 5’- GAG GCC ACA ACT CTC AGA AA. Samples

were run in triplicate and the yield of PCR product was normalized to 18S ribosomal RNA.

To control for DNA contamination, equal amounts of RNA were used without reverse

transcriptase.

In vitro osteoclastogenesis

Bone marrow cells were collected from the femurs and tibias of 12–15 month old rats. These

cells were suspended in a culture dish with αMEM containing 10% FBS for 24 hours at

37°C. Non-adherent cells were collected without contaminating RBC and washed in αMEM.

Cells were cultured in 24 well plates (1.0 × 106 cells/ml) in the presence of 20 ng/ml mouse

M-CSF (R&D Systems) for 3 days. Change media and culture adherent cells in 20 ng/ml M-

CSF and 100 ng/ml rat RANKL (Antigenix America) for an additional 5–7 days with or

without rat IFN-γ (BD Pharmingen). The cells were fixed and stained for tartrate-resistant

acid phosphatase 5 (TRAP) using a leukocyte acid phosphatase kit (Sigma-Aldrich)

according to manufacturer’s instructions. The number of TRAP-positive multinuclear cells

(>3 nuclei/cell) were determined by counting. RNA was also isolated from adherent cells as

described above.

Immunoblotting

Osteoclasts were cultured with or without IFN-γ (10 ng/ml) for 2 hours. Cells were lysed

with RIPA buffer (Sigma-Aldrich) containing 0.1mM PMSF, 1× EDTA-free protease

inhibitor cocktail (Calbiochem), 1× Phosphatase Inhibitor Cocktail 2 and 3 (Sigma-Aldrich).

Total protein concentration was determined by DC Protein Assay (Bio-Rad Laboratories),

and equal amounts of total protein were subjected to sodium dodecyl sulfate–polyacrylamide

gel electrophoresis analysis. The primary antibodies included anti-SOCS-1 (Cell Signaling

Technology), TRAF6 (Santa Cruz Biotechnology) and anti–β actin (Thermo Scientific).

Cell proliferation assay

Cell proliferation was determined by [3H]-thymidine uptake.
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Statistics

Statistical significance was determined using GraphPad InStat (GraphPad Software). Simple

comparisons were made using unpaired or paired 2 tailed Student’s t-test for parametric data

or Mann-Whitney test for unpaired non-parametric data. Multiple comparisons were made

using one-way ANOVA with Tukey Kramer post test. P<0.05 was considered statistically

significant. All data is presented as Mean ±SEM.

Results

HIV-1 Tg rats express increased serum markers of bone resorption

We previously reported that HIV-1 Tg rats have low number of T cells with Th1 effector/

memory phenotype, reduced production of IFN-γ and high levels of SOCS-1 expressed in

lymphoid and myeloid cells, which led us to hypothesize that IFN-γ signaling is

compromised in this animal model, interfering with suppression of osteoclastogenesis

(Hayashi et al., 2002; Ohishi et al., 2005; Takayanagi et al., 2000). Consistent with these

findings, osteoclastogenic abnormalities include an uncoupling of serum biochemical

indices of bone resorption and formation (C-terminal telopeptide of collagen (CTx) and

osteocalcin (OCN), respectively) and an abnormal ratio of RANKL to the decoy receptor

OPG, a key determinant of the rate of osteoclastogenesis and bone resorption (Haskelberg et

al., 2011; Yasuda et al., 1998a; Yasuda et al., 1998b). Therefore, we measured serum levels

of CTx, and OCN. Serum CTx (a bone resorption marker) was significantly increased in

HIV-1 Tg rats relative to age-matched non-Tg controls (13 ± 1.5 ng/ml and 8.2 ± 0.8 ng/ml,

respectively, t-test; p=0.018; n=5) (Figure 1A), while differences in serum OCN (a bone

formation marker) levels in HIV- Tg rats relative to age-matched non-Tg controls did not

reach significance (Figure 1B).

HIV-1 Tg rat PBMC express an increased ratio of RANKL to OPG

An increase in the ratio of RANKL to OPG accelerates the rate of osteoclastic bone

resorption. To further assess osteoclastic bone resorption we measured levels of RANKL

and OPG mRNA from HIV-1 Tg and non-Tg control PBMC using real time RT-PCR.

Higher levels of RANKL mRNA was measured in HIV-1 Tg rats compared to controls (4.4

± 0.09 and 1.1 ± 0.38, respectively; Mann-Whitney; p=0.02). In contrast, the relative

expression of OPG mRNA did not differ significantly. This increase in the ratio of RANKL

to OPG mRNA levels (Figure 2) suggests enhanced osteoclastogenesis as the basis for the

accelerated bone resorption identified in the HIV-1 Tg rat. Similar results were also

observed in mononuclear cells isolated from the spleen. HIV-1 Tg splenic mononuclear cells

express elevated levels of SOCS-1 (Mann-Whitney; p=0.018; n=3) and RANKL (Mann-

Whitney; p=0.0005; n=3) mRNA (Figure S1A and B, respectively) compared to control.

Similar levels of OPG mRNA (Figure S1C) were observed resulting in an increase in the

ratio of RANKL to OPG (Mann-Whitney; p=0.0005; n=3) (Figure S1D).

HIV-1 Tg rats express increased SOCS-1 mRNA and protein

We hypothesized that compromised IFN-γ signaling mediated by SOCS-1 prevents effective

suppression of osteoclast differentiation. Therefore, we analyzed SOCS-1 expression in
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HIV-1 Tg and control OCP. HIV-1 Tg and non-Tg control OCP were treated with IFN-γ for

2 hours. Figure 3A shows that HIV-1 Tg OCP had approximately 2.0 fold greater basal

levels of SOCS-1 mRNA relative to non-Tg controls and a highly significant 14.7 fold

increase (ANOVA; p= 0.008) following IFN-γ stimulation. Treatment with IFN-γ induced

higher SOCS-1 protein expression in HIV-1 Tg OCP compared to non-Tg control OCP

(Figure 3B). In the absence of IFN-γ treatment, HIV-1 Tg and non-Tg control OCP express

similar levels of the RANK receptor and no significant difference in proliferation was

observed (Supplemental Figure S2A–C).

HIV-1 Tg rats are resistant to IFN-γ mediated suppression of osteoclast differentiation

We tested whether the elevated SOCS-1 expression correlated with lack of suppression of

osteoclast differentiation following treatment with exogenous IFN-γ. As shown in Figure

4A, significantly more HIV-1 Tg OCP differentiated into tartrate-resistant acid phosphatase

5 (TRAP)+ multi-nucleated cells, in the presence of 500 and 1000 pg/ml IFN-γ (Mann-

Whitney; p=0.008 and 0.032, n=5, respectively) than non-Tg controls. Resistance to IFN-γ

suppression by HIV-1 Tg OCP was confirmed by measuring expression of mRNA for the

osteoclast-specific gene TRAP and the predominant protease in bone-resporption, cathepsin

K, by real time RT-PCR. As shown in Figure 4B, there was a significant 3.7 and 2.8 fold

increase of TRAP (t-test; p=0.048; n=4) and cathepsin K (t-test; p=0.048; n=3) mRNA

detected in developing osteoclasts from HIV-1 Tg rats relative to non-Tg controls following

treatment with 1000 pg/ml of IFN-γ, respectively. Our findings that SOCS-1 is elevated in

HIV-1 Tg OCP (Figure 3A and B) and that HIV-1 Tg OCP are resistant to IFN-γ

suppression of the RANKL induced bone-resorbing enzymes, TRAP and cathepsin K

(Figure 4A and B), suggest that increased SOCS-1 expression attenuates anti-

osteoclastogenesis mediated by IFN-γ. Therefore, we tested whether IFN-γ mediated

degradation of TRAF6, an adaptor protein critical in RANKL signaling, is disrupted in

HIV-1 Tg OCP. HIV-1 Tg and non-Tg control OCP were treated with RANKL and IFN-γ

for 24 hours. RANKL treated HIV-1 Tg OCP express higher levels of TRAF6 protein

compared to non-Tg control OCP as determined by Western blot (Figure 4C). Further,

RANKL treated HIV-1 Tg OCP express higher levels of TRAF6 following treatment with

500 pg/ml of IFN-γ compared to non-Tg controls (Figure 4C). These data suggest that

increased SOCS-1 expression by HIV-1 Tg OCP is associated with attenuated IFN-γ

inhibition of osteoclastogenesis.

RANKL induction of SOCS-1 in non-Tg control osteoclast precursors

IFN-γ inhibits osteoclastogenesis of OCP by suppressing the expression of c-fms and/or

RANK signaling through TRAF6. RANKL induces SOCS-1 in OCP (Hayashi et al., 2002);

therefore, we measured SOCS-1 mRNA levels in non-Tg control rat OCP following 5 hours

of treatment with 50 ng/ml of sRANKL. SOCS-1 mRNA increased 2.8 fold (paired t-test;

p=0.0159; n=5) relative to unstimulated controls (Figure 5). These data suggest that the

increased RANKL expression by HIV-1 Tg PBMC (Figure 2) plays a role in increased

SOCS-1 expression by HIV-1 Tg OCP and the reduced ability of INF-γ to attenuate

osteoclast differentiation (Figure 4).
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Discussion

In the past, few HIV infected patients lived long enough to experience the morbidity and

mortality of bone loss. Measurement of BMD as a routine test in elderly HIV-infected

patients has not previously been recommended. A detailed history and physical to assess

individual risk for osteopenia/osteoporosis is now recommended. Abnormal clinical

laboratory values obtained during the course of HIV treatment (i.e. an elevated alkaline

phosphatase or low testosterone) suggest the need to test for changes in BMD. No studies,

however, have thus far addressed the underlying mechanism(s) for abnormal BMD reported

in HIV-1 disease; consequently the pathogenesis remains poorly understood. In this study

we have identified a potential pathological mechanism of HIV-1 induced bone loss mediated

by SOCS-1 enhancement of osteoclastogenesis. The differentiation of osteoclasts is

dependent on signals from RANK, stimulated by its ligand RANKL (Kong et al., 1999a;

Vikulina et al.; Wong et al., 1997). Upregulation of RANKL by inflammatory cytokines

such as TNF-α contributes to osteoclastogenesis (Lam et al., 2000; Zhang et al., 2001).

TNF-α has not, however, been implicated in increased RANKL expression in HIV-1 Tg rats

(Vikulina et al.). The HIV-1 proteins Vpr and gp120 enhance expression of RANKL

(Fakruddin and Laurence, 2003, 2005). We have previously shown elevated serum levels of

gp120 in the HIV-1 Tg rat (Reid et al., 2001b); therefore increased RANKL expression may

be a consequence of the expression of this HIV-1 transgene protein. Relevantly, we have

demonstrated that the HIV Tg rat expresses elevated levels of SOCS-1 and that IFN-γ

treatment results in increased levels of TRAF6 and impaired suppression of

osteoclastogenesis. Along with reduced production of IFN-γ by CD4+ T cells (Reid et al.,

2004; Yadav et al., 2009) and increased RANKL expression, these results suggest that

SOCS-1 amplifies the osteoclastogenic activity of RANKL thereby enhancing bone loss in

the HIV-1 Tg rat. In this model, IL-10 induction of SOCS-1 by CD4+ T cells and dendritic

cells inhibits both LPS and IFN-γ signaling. Additionally, we reported that increased

SOCS-1 expression by HIV-1 infected patients altered IFN-γ signaling by CD4 T cells

(Yadav et al., 2009).

Here, consistent with previous findings, we demonstrate that similar to HIV-1 infected

patients, the HIV-1 Tg rat undergoes pathological bone resorption. From a mechanistic

viewpoint, we demonstrate that HIV-1 Tg rats have increased levels of the serum bone

resorption protein CTx and higher expression of RANKL mRNA resulting in an increased

ratio of RANKL to OPG in PBMC and mononuclear cells isolated from the spleen.

However, we did not observe a concurrent decrease in OPG mRNA, as previously reported

in bone marrow and total splenic cells (Vikulina et al., 2010). We now report that HIV-1 Tg

rat OCP express higher levels of SOCS-1 and TRAF6 which in conjunction with elevated

RANKL expression enhances osteoclastogeneis and resistance to suppression of osteoclast

differentiation by IFN-γ signaling. The molecular mechanism of suppression of RANK

signaling by IFN-γ has not been clarified; Takayanagi et al. have demonstrated that IFN-γ

induces the ubiquitination and degradation of TRAF6 by a STAT1-depedent mechanism in

murine cells (Takayanagi et al., 2000) while Ji et al. demonstrated inhibition of RANK

expression and osteoclastogenesis by TLR-4 and IFN-γ signaling synergy, likely through a

down-regulation of c-Fms expression (Ji et al., 2009). In conclusion, our data suggest a link
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between high levels of SOCS-1 by OCP and enhanced RANK signaling and resistance to

IFN-γ induced suppression of osteoclastogenesis. Understanding the mechanisms of HIV-1

induced bone loss and the role played by over-expression of SOCS-1 will be critical for

early detection of changes in BMD and in developing effective therapy. We speculate that

elevated SOCS-1 levels may be predictive for reduced BMD and an increased likelihood of

HIV-1 induced fragility fractures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Bone resorption in HIV-1 Tg rats. (A) C-terminal telopeptide (CTx) and (B) osteocalcin,

markers of bone resorption and bone formation respectively, were quantified in the serum of

non-Tg and HIV-1 Tg rats by ELISA. Samples were analyzed in triplicate.
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Figure 2.
Increased RANKL and OPG ratio in HIV-1 Tg rat. RANKL and OPG mRNA was

quantified using real time RT-PCR from PBMCs for HIV-1 Tg (n=4) and non-Tg (n=6) as

described in the Material and methods section and the ratio determined for relative

expression. Samples were analyzed in triplicate and data normalized to the 18s ribosomal

RNA.
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Figure 3.
SOCS-1 mRNA and protein expression are elevated in HIV-1 Tg rats. (A) OCP (1.0 ×

106/ml) from non-Tg and HIV-1 Tg rats were stimulated with for 2 hours with 10ng/ml of

IFN-γ and levels of SOCS-1 mRNA were determined by real-time quantitative RT-PCR.

Samples were analyzed in triplicate and data normalized to the expression of 18s ribosomal

RNA. (B) OCP from non-Tg (n=3) and HIV-1 Tg (n=3) rats were stimulated for 2 hours

with 10ng/ml of IFN-γ. SOCS-1 and β actin were detected by Western blotting.
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Figure 4.
SOCS-1 over-expression confers resistance to suppression of osteoclast differentiation by

IFN-γ. (A) OCP (1.0 × 106/ml in a 24 well plate) were cultured with 20 ng/ml of M-CSF and

100 ng/ml RANKL with various concentrations of IFN-γ for 7–8 days. Osteoclast numbers

(TRAP+ multinuclear cells (MNC)) were determined from duplicate samples. TRAP+ MNC

cells are represented as a percent of osteoclast produced without added IFN-γ. Total RNA

was isolated from developing osteoclast cultured for 5-days with IFN-γ (1000 pg/ml), and

RT-PCR performed for (B) TRAP and Cathepsin K. Shown are expression levels of TRAP

and Cathepsin K in HIV-1 Tg cells compared to non-Tg. Samples were analyzed in triplicate

and data normalized to the 18s ribosomal RNA. (C) Non-Tg and HIV-1 Tg OCP were

cultured in a 20 ng/ml of M-CSF and stimulated with 100 ng/ml RANKL and IFN-γ for 24

hours. TRAF6 and β actin were detected by Western blotting.
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Figure 5.
SOCS-1 mRNA induction by RANKL in non-Tg control OCP. OCP from non-Tg controls

stimulated with soluble (s) RANKL (50 ng/ml) for 5 h. Shown is the expression of SOCS-1

mRNA in control OCP. Levels of SOCS-1 mRNA were determined by real time RT-PCR as

described in Material and methods. Samples were analyzed in triplicate and data normalized

to the expression of 18s ribosomal RNA.
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