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Abstract

The tolerance of the semiallogeneic fetus by the maternal immune system is an important area of

research for understanding how the maternal and fetal systems interact during pregnancy to ensure

a successful outcome. Several lines of research reveal that the maternal immune system can

recognize and respond to fetal minor histocompatibility antigens during pregnancy. Reactions to

these antigens arise because of allelic differences between the mother and fetus, and have been

shown more broadly to play an important role in mediating transplantation outcomes. This review

outlines the discovery of minor histocompatibility antigens and their importance in solid organ and

hematopoietic stem cell transplantations, maternal T-cell responses to minor histocompatibility

antigens during pregnancy, expression of minor histocompatibility antigens in the human placenta,

and the potential involvement of minor histocompatibility antigens in the development and

manifestation of pregnancy complications.
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Introduction

Pregnancy provides researchers with a unique, naturally-occurring immunological model

wherein the maternal immune system tolerates the semiallogeneic fetus. In human

pregnancy, this tolerance is achieved both actively, via the expression of immuno-

modulatory molecules on the surface of the placenta, and passively, through the restricted

expression of classical MHC molecules on trophoblast cells1. Despite these adaptations, the

maternal immune system is not naïve to the fetus. Rather, there is a robust and growing body

of evidence indicating that, in both mice and humans, the maternal immune system actively

responds to fetal antigens2–6.

Immunogenicity of Minor Histocompatibility Antigens

Fetal antigens include both the major histocompatibility complex (MHC) and minor

histocompatibility antigens (mHAgs)3, 7. MHC molecules are responsible for the

presentation of foreign peptides to immune cells, and also are mediators of transplant
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rejection. Minor histocompatibility antigens are derived from functional proteins and can

elicit an immune response due to allelic differences between individuals7, typically single

nucleotide polymorphisms (SNPs), insertions, deletions or presence of the antigen on the Y-

chromosome (Tables I&II)14,20–22,73–113.

In order for mHAgs to be recognized by T-cells, the antigens must be presented to T-cells in

the context of specific MHC molecules, belonging to either Class I or II (Tables

I&II)14,20–22,73–113. MHC Class II molecules bind to CD4+ T-cells and are primarily located

on the surface of antigen presenting cells, most notably dendritic cells, macrophages and B

cells. MHC Class I molecules bind to CD8+ T-cells and are present on the surface of most

nucleated cells where they can present endogenous antigens and facilitate self vs. non-self

discrimination by the immune system. MHC Class I is also critical for the process of cross-

presentation whereby antigen presenting cells, typically dendritic cells, phagocytose

exogenous material and process it for presentation on the MHC Class I molecule on the

surface of the dendritic cell8–10. This allows for CD8+ T-cell recognition of antigens coming

from tissues that do not express MHC Class I, including placental trophoblast1. Thus,

placental debris containing fetal mHAgs could be released into the maternal blood stream,

phagocytosed and processed by maternal dendritic cells and presented to maternal CD8+ T-

cells, thus eliciting a maternal immune response to the fetus11. In addition to encountering

and binding to the appropriate MHC for a specific peptide, responding T-cells must

recognize the immunogenic peptide as foreign (i.e. non-self) and thus must come from an

individual lacking the immunogenic peptide.

Histocompatibility Antigen 1 (HA1) is a widely studied mHAg that has been found on

Hofbauer and trophoblast cells in the human placenta12, and has been shown to be important

for bone marrow transplantation outcomes13. The antigenic peptide that arises from HA1

results from a single nucleotide difference between the non-immunogenic peptide

(KECVLRDDLLEA) and the immunogenic peptide (KECVLHDDLLEA)14. The

immunogenic peptide can be presented in the context of at least four different Class I

MHCs, including HLA-A*0201 (Table II)14,20–22,84–113. As a result of the immunogenic

SNP, the binding affinity of the HA1H peptide to the HLA-A*0201 peptide binding groove

on antigen presenting cells (APCs) is increased15, thus leading to an immunogenic peptide

that can be recognized by HLA-A*0201 restricted T-cells.

Recognition of the HA1 antigen can occur in the pathological situations of graft-versus-host

disease and graft rejection, as well as in the physiological situation of pregnancy. In graft-

versus-host disease, donor HLA-A*0201-restircted T-cells can recognize the immunogenic

peptide in the antigen binding groove, thus eliciting an immune response targeting the

recipients’ tissues13, 16. Graft rejection occurs when recipient HLA-A*0201-restricted T-

cells respond to and target the immunogenic peptide on the graft itself17. In the case of

pregnancy, maternal HLA-A*0201 restricted T-cells can recognize fetal immunogenic HA1,

as evidenced by the presence of HA1-specific T-cells in maternal blood following

pregnancy18. The source of fetal HA1 could be either fetal cells that cross the placenta and

enter the maternal blood stream and organs (microchimerism), or cells and vesicles released

from the placenta. In each of the above situations, the T cells responding to the antigen are
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both HLA-A*0201 restricted, and are derived from an individual lacking the immunogenic

HA1H allele.

The probability of this interaction varies depending on the population frequency of both

mHAg alleles and the MHC(s) restricting the immunogenic peptide. In the case of HA1, the

population frequency of HA1H in a North American Caucasian population is approximately

44%19 and the likelihood that an individual will possess one of the four MHCs capable of

presenting HA1R (A*0201, A*0206, B*60 or B*40012)14, 20–22 is at least 48.1%23.

Consequently, the possibility that two individuals will be discordant for HA1 and that the

individual with the non-immunogenic form of HA1 will have the correct MHC to present

the immunogenic peptide is approximately 11.9%:

P(HA1H) × P(HA1R) × P(MHC) = 44% × 56% × 48.1% = 11.9%

Thus, histoincompatibility between individuals is far from a rare event: given the large

number of mHAgs discovered so far, it is very likely that for a given pregnancy, there will

be at least one if not many fetal mHAgs that could be recognized by the mother’s immune

system.

The Discovery of Minor Histocompatibility Antigens

The role of mHAgs in eliciting an immune response has been clearly demonstrated by

transplantation studies. mHAgs were first discovered due to their role in modulating graft

rejection and graft-versus-host disease in HLA-matched transplant recipients13, 24, 25. The

first mHAg was discovered by Goulmy et. al. following the rejection of transplanted HLA-

matched bone marrow cells from a male donor by a female recipient25. It was shown that

cytotoxic T-lymphocytes (CTLs) isolated from the recipient’s blood had the capacity to lyse

HLA-matched male cells, indicating that the target was located on the Y-chromosome26 and

belonged to the HY family of mHAgs. Shortly after this discovery, the same group of

investigators found that mHAgs could contribute to graft-versus-host disease, as donor

CTLs can target and lyse recipient cells expressing a Y-chromosome-encoded antigen24.

Since these original discoveries, fifty unique mHAgs derived from forty-three genes have

been found (Tables I & II)14,20–22,73–113. These mHAgs arise from SNPs, presence on the

Y-chromosome, deletions, insertions, frameshift mutations, nonsense mutations and splice

variants. mHAgs are encoded on the Y-chromosome (Table I)73–83 and on many autosomes

(Table II)14,20–22,84–113. Expression of some mHAgs is restricted to hematopoietic cells or a

select group of tissues, whereas other mHAgs are expressed ubiquitously. Given the

numerous potential HLA combinations as well as the vast number of SNPs present in the

population, it is likely that many more mHAgs exist that have not yet been identified.

One of the major constraints on research involving mHAg-specific CD8+ T-cells is their

relative scarcity in both peripheral blood and at their target sites. Research using multimeric

MHC reagents (MHC multimers) has estimated the prevalence of HY-specific T-cells in

peripheral blood following multiple pregnancies with male babies at 0.0001% to 0.03% of

the total CD8+ T-cell population5. MHC multimers are complexes comprised of 2–10 or

more linked peptide-MHC ligands that can bind T-cells through the T cell receptor in an
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antigen-specific manner27, 28. This allows for identification and quantification of T-cells

specific for a particular antigen. However, in order to identify and characterize mHAg-

specific T-cells, it is often necessary to expand the ex vivo population using cytokines and

antigen, thus potentially altering the functionality of these cells both as a consequence of

antigen/cytokine exposure and as a result of multimer-binding itself29–31. Therefore, caution

should be used when assessing the functional significance of these cells in vivo.

Minor Histocompatibility Antigens and Transplantation Outcomes

Immune responses to mHAgs in the context of transplantation can have both beneficial and

detrimental consequences for the patient. mHAgs appear to be the primary mediator of graft-

versus-host disease in HLA-matched transplantations13, 24–26, leading to the need for

increased immunosuppression as well as other negative health outcomes including

dermatitis, kidney failure and even death. However, mHAg specific donor T-cells can play

an important role in mediating graft-versus-leukemia effects or graft-versus-tumor

effects32, 33. These effects can significantly prolong the lives of patients who receive

transplantations to treat various types of cancers and can help ensure longer periods of

disease-free survival.

Recently researchers have proposed that modulation of T-cells specific for mHAgs may

provide a unique opportunity for augmenting graft-versus-leukemia and graft-versus-tumor

effects34, 35, thus providing a potential avenue for increasing disease-free survival while

subsequently reducing the need for immunosuppressive drugs. In this paradigm, donor T-

cells specific for a particular mHAg whose expression is restricted to leukemic/tumor cells

are isolated from the recipient’s blood following the initial transplant and expanded ex

vivo34, 35. These T-cells are then re-infused into the recipient following a disease relapse. A

preliminary clinical trial targeting the mHAg HA1 showed some success in treating disease

relapse, although a high percentage of the participants experienced serious side effects35.

Minor Histocompatibility-Specific T-cells in Pregnancy

The role of mHAgs in pregnancy was first considered due to a finding by a number of

researchers that parous female donors are more likely to elicit graft-versus-host disease in

transplant recipients than non-parous or male donors36–41. These researchers hypothesized

that this was due to the formation of mHAg-specific T-cells in the mother during or

immediately following pregnancy.

Studies in mice have found that CD4+ and CD8+ T-cells can develop in response to the

endogenous fetal antigen, HY42. Other mouse studies have demonstrated that the

presentation of fetal antigens to maternal T-cells can begin as early as copulation and that

paternal antigens can be found in the seminal fluid11, 43. In women, a number of studies

have found T-cells specific for at least three mHAgs, HA1, HA2 and HY, following

pregnancy5, 18, 44. These T-cells have been found up to twenty-two years following delivery

of the baby, suggesting that at least a small cohort of these cells can persist for long periods

of time18. It is thought that during normal pregnancy these cells are prevented from

attacking the placenta and fetus via numerous tolerogenic mechanisms, thus allowing for a

successful pregnancy. A disruption of this tolerance could have significant effects on clinical
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outcome, as is evidenced by the links between mHAg expression, recognition by the

maternal immune system and secondary recurrent miscarriage45–47.

A recent study demonstrated that HY-specific CD8+ T-cells are elicited in maternal blood

during human pregnancy with a male fetus6. These cells retained their proliferative capacity

as well as their ability to lyse target cells and produce IFN-. The authors proposed that this

indicates that fetus-specific T-cells are not completely deleted during pregnancy, as

previously suggested3, 48, 49. As to why these T-cells do not cause the rejection of the fetus

during normal pregnancies, there are at least three possibilities. The first is that the T-cells

are incompletely activated during pregnancy, and thus lack effector function in vivo. The

second hypothesis is that other cell types at the maternal-fetal interface, most notably

regulatory CD4+ T-cells, prevent rejection of the fetus by promoting a tolerogenic

environment as is indicated by the fact that regulatory T-cells are required for the success of

allogeneic pregnancies in a mouse model50, 51. The third hypothesis is that the fetal-specific

T-cells are unable to traffic to the maternal-fetal interface, and thus cannot mediate direct

rejection of the fetus. This hypothesis is supported by recent work that showed an inability

of maternal T-cells to traffic into the decidua during pregnancy as a result of epigenetic

modifications leading to the loss of expression of specific chemokine genes by the decidual

stromal cells52. Further to these mechanisms, the highly restricted expression of class I

MHC molecules by placental trophoblast1 most likely renders antigen-specific T-cells

wholly or largely unable to target the placenta directly.

Minor Histocompatibility Antigens are Expressed in the Placenta

There are at least two likely sources of fetal mHAgs during pregnancy: the placenta and fetal

cells trafficking from the fetus into the maternal blood supply (microchimerism)53–56. We

have shown that at least six fetal mHAgs are expressed in human placental lysate, fetal cord

blood and, most significantly, purified trophoblast cells. These findings provide strong

evidence that the human placenta is one likely source of maternal immune exposure to fetal

antigens during pregnancy (Table III)12. The close physical relationship between the

syncytiotrophoblast, which covers the outer surface of the placenta, and the maternal blood

supply, which surrounds the placenta, provides a likely avenue for maternal immune

exposure to fetally-derived mHAgs57, 58. In addition to this close physical proximity, the

syncytiotrophoblast undergoes a continual renewal process wherein the underlying

cytotrophoblast fuses to give rise to the multinucleated syncytiotrophoblast and the excess,

dead or damaged syncytiotrophoblast debris is released into the maternal blood space. This

results in a large volume of fetally-derived placental debris being released into the maternal

blood supply during pregnancy. In addition to the larger, shed debris, there is growing

evidence that microvesicles/nanoparticles and exosomes are actively secreted from the

surface of the placenta into the maternal blood space during pregnancy59–61. The total

volume of this deported material has been estimated at 1g/day for the term placenta. Most of

this placental material is easily cleared by the maternal system during normal pregnancy, but

large, multinucleated syncytiotrophoblast debris has been found in the lungs of women who

died of eclampsia62–65. Given the robust expression of fetal mHAgs in the

syncytiotrophoblast and the large amount of syncytiotrophoblast debris that is released into
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the maternal system, it seems highly likely that the placenta serves as a source of fetal

antigens during pregnancy.

Clinical Implications

Of particular interest is the role that the mHAgs expressed in syncytiotrophoblast debris may

play in the development or manifestation of numerous pregnancy complications. Recent

work by our lab has shown that expression of at least one mHAg, HA1, is upregulated in

preeclamptic placentas as compared to normotensive control placentas (Linscheid C and

Petroff MG, unpublished data). We hypothesize that this increase in HA1 expression may

contribute to disruption of the overall immunologic balance by increasing the antigenic load

encountered by the maternal immune system in the context of increased proinflammatory

cytokine release, a feature of preeclampsia and other pregnancy complications66.

Specifically, the increased release of placental debris that is characteristic of

preeclampsia62–65, 67–69, compounded by the upregulation of HA1 expression in the

deported syncytiotrophoblast, combined with an increase in inflammatory cytokines, most

notably TNF-α and IL-666, 70, could alter the phenotype of both the dendritic cells that are

presenting antigen to maternal T-cells as well as the T-cells themselves to promote anti-fetal

immune responses, either during the current pregnancy or during subsequent pregnancies.

Dysfunction of the maternal immune system has been implicated in a number of other

pregnancy complications, including secondary recurrent miscarriage. Epidemiologic

evidence suggests that the recognition of fetal mHAgs may play an important role in

secondary recurrent miscarriage, particularly if the preceding live birth was a male

baby45–47. Specifically, Christiansen et. al. have found that women who experience

secondary recurrent miscarriage are more likely than the general population to possess the

appropriate Class II MHC to present Y-chromosome-encoded mHAgs and that secondary

recurrent miscarriage is more likely to occur in women who have previously given birth to a

male baby45, 46, thus presenting the possibility that the development of secondary recurrent

miscarriage is related to the generation of a maternal immune response specific for Y-

chromosome-encoded antigens during the preceding, successful pregnancy. One theory

regarding this phenomenon is that pregnancy complications late in the first pregnancy may

disrupt the tolerogenic environment required for maintaining maternal immune tolerance

towards the fetus and that this disruption contributes to the failure of subsequent

pregnancies, especially those with a male fetus71. It is important to note that disruption of

the tolerogenic environment and maternal T-cell recognition of both autosomal and Y-

chromosome encoded fetal mHAgs may contribute to many cases of idiopathic infertility as

well as numerous pregnancy complications.

A recent paper by Rowe et. al. (2012) found that in mice there is a substantial expansion of

fetal-specific regulatory T-cells (T-regs) during primary and subsequent pregnancies72. The

authors also found that resorption rates were significantly decreased in second pregnancies,

due to a rapid expansion of a memory population of fetal-antigen specific T-regs that were

formed during the first pregnancy. The authors propose that this mechanism may help

explain why preeclampsia is more common in primiparous women as well as providing

some insights as to why preeclampsia risk increases with interpregnancy interval. The role
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of these fetus-specific T-regs in secondary recurrent miscarriage is unclear, but it seems

possible that a failed expansion of fetal-specific T-regs during the first pregnancy or a loss

of fetal-specific T-regs between the first and second pregnancies could contribute to the

manifestation of secondary recurrent miscarriage.

Conclusions and Future Directions

Pregnancy presents numerous challenges to the maternal immune system, which must

simultaneously tolerate the semiallogeneic fetus and protect both the mother and fetus from

potentially life-threatening infections. The mechanisms by which this is achieved are varied

and include the recognition of fetal antigens by maternal T-cells. There are a number of

studies to suggest that this process has important implications for both maternal and fetal

health. Developing a better understanding of the cellular interactions that mediate this

tolerance may contribute to both the development of more successful transplantation

protocols as well as the prevention and/or treatment of common pregnancy complications.

Future work should seek to determine the role of the maternal environment in modulating

fetus-specific T-cell responses. Specifically, understanding how increased inflammatory

cytokines and the production of reactive oxygen species, both of which occur in

preeclampsia, affect mHAg-specific T-cell responses to placental and fetal tissues could

provide important insights into the manifestation of the clinical symptoms of preeclampsia

and other pro-inflammatory pregnancy complications. In addition, work designed to better

understand the persistence and function of fetus-specific T-cells following parturition could

provide important insights into the role of mHAg-specific T-cells in determining transplant

success or failure. By better understanding the development and function of mHAg-specific

T-cells during and following pregnancy, we can generate insights important for

understanding immune tolerance in general and, more specifically, how maternal tolerance

of the fetus is achieved during normal pregnancy and what happens when this tolerance is

disrupted.
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