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Abstract

Background—Somatic complaints and altered interoceptive awareness are common features in

the clinical presentation of major depressive disorder (MDD). Recently, neurobiological evidence

has accumulated demonstrating that the insula is one of the primary cortical structures underlying

interoceptive awareness. Abnormal interoceptive representation within the insula may thus

contribute to the pathophysiology and symptomatology of MDD.

Methods—We compared fMRI blood oxygenation level-dependent (BOLD) responses between

twenty unmedicated adults with MDD and twenty healthy control participants during a task

requiring attention to visceral interoceptive sensations and also assessed the relationship of this

BOLD response to depression severity, as rated using the Hamilton Depression Rating Scale

(HDRS). Additionally, we examined between-group differences in insula resting-state functional

connectivity, and its relationship to HDRS ratings of depression severity.

Results—Relative to the healthy controls, unmedicated MDD subjects exhibited decreased

activity bilaterally in the dorsal mid-insula cortex (dmIC) during interoception, as well as within a

network of brain regions implicated previously in emotion and visceral control. Activity within the

insula during the interoceptive attention task was negatively correlated with both depression

severity and somatic symptom severity in depressed subjects. MDD also was associated with

© 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

Address correspondence to: Kyle Simmons, PhD, Laureate Institute for Brain Research, 6655 South Yale Ave. Tulsa, Oklahoma
74136 - 3326. wksimmons@laureateinstitute.org, phone: 918-502-5106; fax: 918-502-5135.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Financial Disclosures
WCD has consulted for Johnson & Johnson Pharmaceuticals, Inc. and RBM/ Myriad, Inc., and currently is an employee of Johnson &
Johnson, Inc. All other authors report no biomedical financial interests or potential conflicts of interest.

NIH Public Access
Author Manuscript
Biol Psychiatry. Author manuscript; available in PMC 2015 August 01.

Published in final edited form as:
Biol Psychiatry. 2014 August 1; 76(3): 258–266. doi:10.1016/j.biopsych.2013.11.027.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



greater resting-state functional connectivity between the dmIC and limbic brain regions implicated

previously in MDD, including the amygdala, subgenual prefrontal cortex, and orbitofrontal cortex.

Moreover, functional connectivity between these regions and the dmIC was positively correlated

with depression severity.

Conclusions—MDD and the somatic symptoms of depression are associated with abnormal

interoceptive representation within the insula.

Keywords

Interoception; major depressive disorder; insula; fMRI; functional connectivity; depression
severity

INTRODUCTION

Some of the most pervasive symptoms of major depressive disorder (MDD) involve somatic

disturbances and an altered sense of body awareness (1; 2). In particular, multiple behavioral

and psychophysiological studies have reported decreased heartbeat perception in individuals

with MDD (3–8). Despite these findings, the role of interoception in mood disorders remains

poorly understood. Influential theoretical accounts and accompanying empirical evidence

suggest that emotion and decision making are grounded in the perception of interoceptive

signals (9–11), which accords well with MDD patients’ clinical reports of emotional

dissociation (12). With the advent of theories stating that mood and anxiety disorders are

fundamentally disorders of interoception (13) there is clearly a need to understand the neural

bases of interoception, and how the function of interoception-related brain regions may be

related to depressive symptoms.

A limited number of previous interoception studies in MDD have employed behavioral

measures of heartbeat perception accuracy as the primary metric of interoceptive awareness,

with varied results (4; 5). Some studies reported decreased accuracy in depression, but these

findings were either based on data from sub-clinical populations (6), or from populations

with varied medication status (5; 7; 8) confounding the interpretation of their results in

regards to an effect of major depression. In contrast, both clinical and sub-clinical levels of

anxiety were associated with increased interoceptive accuracy (3; 14), a finding that appears

challenging to reconcile with the reports of decreased accuracy in depression, since

depressive and anxiety symptoms occur concomitantly in most patients with MDD. Findings

based on heartbeat perception accuracy are further complicated by the fact that healthy

subjects often do not show reliable heartbeat perception accuracy (3). Consequently, the

interpretation of interoceptive accuracy metrics is challenging. Importantly, the recent

finding that heartbeat evoked potential is reduced in depressed subjects (7) suggests that,

apart from differences in interoceptive accuracy, the neural basis underlying the

interoceptive signal itself may be disturbed in depression.

In healthy humans recent neuropsychological and functional neuroimaging studies have

established a role for the insula in interoceptive awareness (15–18). The insula receives

afferent projections from the vagus nerve via the nucleus of the solitary tract (NST) and the

parvocellular portion of the ventroposteromedial nucleus of the thalamus (VPMpc) that
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convey visceral information important for homeostatic regulation (19–21). Meta-analyses of

human neuroimaging studies which parcellated the insula among various functional

domains, have associated interoception with the activity of mid-insular cortex (22; 23), a

region that appears homeostatically sensitive (24). Likewise, hemodynamic activity

increases in mid-insular cortex in human subjects performing tasks involving visceral

interoceptive attention (15; 25; 26) or direct visceral stimulation (27; 28). Notably, the mid-

insula regions underlying interoception appear at least partially dissociable from dorsal and

ventral anterior insula regions involved in cognitive and emotional processing, respectively

(15), suggesting the hypothesis that multiple insula regions play distinct roles in the

symptoms expressed in MDD, with somatic abnormalities observed in MDD conceivably

resulting either from mood and anxiety-related pathophysiology within the insula (29–32),

or from abnormal visceral afferent input into this region (13).

The extensive structural and functional connectivity between the insula and other brain

structures also provides indirect evidence for its role in MDD. The insula has strong

functional connectivity to the medial prefrontal network of regions such as the subgenual

prefrontal cortex (sgPFC) and other ventromedial prefrontal cortex (vmPFC) regions that

play major roles in visceromotor regulation and exhibit increased metabolism and resting-

state functional connectivity in the depressed versus the non-depressed phases of MDD (15;

33–35). The insula also shares substantial anatomical connections with the amygdala and

orbitofrontal cortex (OFC)(36–38), regions which display molecular, histological, and

functional abnormalities in MDD (33; 39–41).

Given the reported interoceptive deficits in MDD and the insula’s role in interoception, it is

surprising that to date, no published study has directly investigated insula function during

interoception in depressed subjects. If the neural circuitry involving viscerosensory regions

of the insula underlies altered interoception in MDD, then we should observe the following:

1. During an interoceptive attention task, subjects with MDD will exhibit decreased

hemodynamic response within the mid-insula.

2. The magnitude of the hemodynamic response in the insula during interoceptive

attention will correlate with behavioral measures of depression severity and the

severity of depressed subjects’ self-reported somatic symptoms.

3. Given this region’s extensive limbic connectivity (35; 42), in MDD patients the

mid-insula will exhibit increased functional connectivity to other limbic or

paralimbic structures, particularly to the ventromedial PFC and other regions

implicated in depression, such as the amygdala and OFC.

4. The magnitude of functional connectivity to these regions will also relate to

depression severity.

METHODS AND MATERIALS

Participants

Forty right-handed, native English-speaking volunteers between the ages of 21 and 50 years

participated in the study: twenty subjects with MDD (13 female; mean[SD] age=36[9] years;
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range=21–50 years) and twenty healthy control subjects (12 female; mean[SD] age=33[7]

years; range=21–45 years). All subjects underwent clinical screening assessments including

a Structured Clinical Interview for Diagnosis (SCID) performed by Master’s-level clinicians

with experience in psychiatric diagnosis. In addition, for every subject, the SCID results

were compared to those of psychiatric interviews performed by a research psychiatrist, with

any discrepancies between the two assessments resolved prior to inclusion in the study. All

depressed subjects met DSM-IV criteria for MDD in a current major depressive episode.

Depression severity was assessed using the 25-item Hamilton Depression Rating Scale

(HDRS)(43). Anxiety severity was assessed using the Hamilton Anxiety Rating Scale

(HARS)(44).

Volunteers were excluded from participation if they had been exposed to psychotropic

medications or other drugs likely to affect cerebral function or blood flow within three

weeks (six weeks for fluoxetine), or had manifested a major neurological or medical

disorder, substance abuse, a past history of traumatic brain injury, or current pregnancy.

Additionally, healthy control subjects were excluded for having met criteria for any Axis I

psychiatric disorder on the SCID.

All subjects received compensation for their participation and provided written informed

consent as approved by the University of Oklahoma Institutional Review Board.

Experimental Design

A high-resolution anatomical MRI scan was obtained for each subject, followed by a 450-

second resting state BOLD-fMRI scan, during which the subject viewed a black fixation

mark against a white background. During this time, they were asked to keep their eyes open,

focus on the fixation mark, clear their mind, and not think of anything in particular.

After the resting-state scan, each subject completed three additional fMRI scans while

undergoing the Focused Awareness task. Within each 9-minute, 10-second scan they

alternated between two experimental conditions, the Interoceptive Attention condition and

the Exteroceptive Attention condition. During the interoception condition, the word

“HEART”, “STOMACH”, or “BLADDER” was presented for 10 seconds in black font

against a white background. During this time, subjects were instructed to focus attention on

the intensity of the sensations experienced from that organ, such as heartbeat or stomach and

bladder distension. Previous research has demonstrated that focal attention on a perceptual

modality amplifies activity in brain regions underlying that modality (45–47). The

interoceptive attention task used here capitalizes on this attentional spotlight effect by

instructing participants to focus on their naturally occurring interoceptive sensations. We

have previously demonstrated in healthy adults that this task is effective at mapping

interoceptive regions in the insula (15). As an exteroceptive attention control condition,

subjects fixated on the word ‘TARGET’ which randomly switched to the lowercase ‘target’

for 500 ms durations during the 10-second exteroceptive task trial. Subjects were instructed

to attend to the exteroceptive target and to count the number of times they saw the lowercase

word during each 10-second trial. Following one-half of the trials of each condition, the

subjects were shown for 5 seconds a number line with values from 1 to 7, and asked to

indicate via a magnetic resonance-compatible scroll wheel either the intensity of the
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sensations (with “1” indicating no sensation, and “7” indicating an extremely strong

sensation), or the number of targets perceived in the preceding trial. These ratings were

included to help ensure that subjects remained attentive to the task. After receiving verbal

instructions about how to perform the tasks, all subjects practiced the interoception and

exteroceptive tasks prior to performing the tasks in the scanner, were observed to make

stimulus intensity responses, and finally were asked to indicate whether they had any

remaining questions about the task demands.

For additional imaging task details, see Supplemental Methods.

Data Acquisition

Functional and structural MR images were collected using a General Electric Discovery

MR750 whole-body 3-Tesla MRI scanner, using a scalable 32-channel digital MRI receiver

capable of performing massively-parallel fMRI. A brain-dedicated receive-only 32-element

coil array (Nova Medical Inc), optimized for parallel imaging, was used for MRI signal

reception. A single-shot gradient-recalled echo-planar imaging (EPI) sequence with

Sensitivity Encoding (SENSE) depicting blood oxygenation level-dependent (BOLD)

contrast was used for functional scans (see Supplemental Methods for detailed scan

parameters). Simultaneous physiological pulse oximetry and respiration waveform

recordings were collected for each fMRI run. The pulse oximetry readings were used to

calculate heart rate during functional scans (see Supplemental Methods).

Data Preprocessing and Subject-level Statistical Analyses

Functional image preprocessing was performed using AFNI (http://afni.nimh.nih.gov/afni),

as detailed in the Supplemental Methods. Each subject’s data from the Focused Awareness

task was analyzed using a multiple linear regression model.

Group Analyses

A whole-brain voxel-wise analysis was conducted to examine group differences in heartbeat

interoceptive attention. The beta values derived from the contrast of heartbeat interoception

versus the exteroceptive control condition, which indicate the mean percent signal change

during interoceptive attention relative to exteroception, were extracted for each subject.

These values were then included in a two-sample random effects t-test. Additionally, the

HDRS scores of the depressed subjects were used to conduct a whole-brain voxel-wise

correlation analysis examining the relationship between heartbeat interoceptive attention and

depression severity. Both analyses were performed using the AFNI program 3dttest++, and

subsequently corrected for multiple comparisons at p<.05 (see Supplemental Methods for

details).

Region-of-Interest (ROI) Analyses

Using the dorsal mid-insula (dmIC) clusters identified in the voxel-wise analysis above

(Figure 1), the average beta coefficients for stomach and bladder interoception versus

exteroception were extracted within these ROIs, in order to examine group differences in

these modalities. The relationship between insular activation during interoceptive attention

and behavioral measures of depression and anxiety was also examined by calculating the
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correlation between the beta values for heartbeat attention versus exteroception within the

dmIC clusters and the depressed subjects’ HDRS and HARS scores, respectively. Following

this, post hoc analyses were conducted to further specify this relationship using the HDRS

subscales as defined by Cleary and Guy (1977) (48). As we were primarily interested in the

relationship of these variables and activity within these regions, these analyses were

performed in an external statistical analysis suite.

Functional connectivity analyses

Because our primary interests were group differences in interoception-related brain activity,

and earlier studies demonstrated homeostatic sensitivity and selectivity for interoceptive

attention in the dmIC (15; 24), this region was used as the seed for functional connectivity

analyses of the resting-state BOLD image data. The seed time-series from both dmIC ROIs

(Figure 1) was used to identify brain regions that showed group differences in functional

connectivity to the dmIC, as well as regions where dmIC resting-state functional

connectivity was associated with behavioral measures of depression or anxiety. These

analyses were performed using the AFNI program 3dttest++, and the resulting statistical

maps were corrected for multiple comparisons at p<.05 (see Supplemental Materials for

details).

RESULTS

The depression severity for the MDD group ranged from mild to severe (11 to 34), with a

mean HDRS score of 23.1 (SD=7.5; the demographic and clinical characteristics appear in

Table 1 and Supplemental Results.). All of the MDD subjects were currently unmedicated,

and none were currently undergoing psychotherapy. Eight of the MDD subjects were drug

naive, and among those who previously had taken medications, the mean time free of

psychotropic medications was 8.3 years (SD=7.3 years). Nine MDD subjects had secondary,

comorbid anxiety disorders (social phobia n=4, PTSD n=3, simple phobia n=1, panic

disorder n=1); the performance and behavioral measures of these subjects did not differ from

those without secondary comorbid anxiety diagnoses (see Supplemental Materials).

Imaging Results

Group differences in activity during interoceptive attention—Voxel-wise analysis

revealed that depressed subjects exhibited decreased hemodynamic response during

interoceptive attention to heartbeat sensations, specifically within the bilateral dmIC (Figure

1, Table 2). No other regions of the insula exhibited group differences in the hemodynamic

response to heartbeat attention. Outside of the insula, depressed subjects exhibited

significantly lower BOLD activity during heartbeat attention in multiple brain regions

implicated in emotional, sensory, and reward processing including: the right amygdala,

sgPFC (located in the putative prelimbic region corresponding to Brodmann Area 32pl)(38;

49), lateral OFC, posterior OFC (BA13a; located near the caudal part of the olfactory

sulcus) and right caudate nucleus (Figure 1, Table 2).

A subsequent ROI analysis within the dmIC clusters revealed that depressed subjects also

exhibited decreased BOLD activity for stomach and bladder attention bilaterally in the dmIC
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(Figure S1, Table S2; also see Figure S5 and Table S12 for results from voxelwise analyses

of group differences during stomach and bladder interoception).

The relationship between heartbeat interoceptive attention and behavioral
symptom severity—Using ROI analyses within the left dmIC cluster identified in the

heartbeat attention contrast (Figure 1), a negative correlation between BOLD activity during

heartbeat interoceptive attention and HDRS measures of depression severity was observed

within the MDD group (Left Insula: r=−.44; p=.05; Figure 2, Table S3). Importantly, this

appears to be largely attributable to the subjects’ somatic-depressive complaints, as only the

HDRS somatization subscale (48) exhibited a significant relationship with dmIC activity (r=

−.53, p<.02; Figure 2, Table S4). None of the other HDRS subscales significantly related to

dmIC activity (p>.5).

Additionally, voxelwise analyses outside the dMIC ROI revealed that depressed subjects

exhibited a significant negative correlation between BOLD activity during heartbeat

attention and HDRS measures of depression severity within left ventral anterior insular

cortex and left ventral and dorsal mid-insula (Figure S2, Table S5). Other regions exhibiting

a negative correlation between depression severity and heartbeat interoception activity

included the bilateral amygdala and left posterior OFC.

Functional Connectivity Results

Group differences in functional connectivity to the dmIC—Depressed subjects

exhibited significantly greater resting-state functional connectivity between the dmIC and

multiple brain regions involved in affective and sensory processing (Figure 3, Table 3).

Notably, bilateral dmIC exhibited significantly greater functional connectivity to the

amygdala and medial OFC in depressed versus healthy subjects.

Functional connectivity to the dmIC is associated with depression severity—
Within the MDD group depression severity, as measured by the HDRS, was positively

associated with functional connectivity between the dmIC and both the left amygdala and

the medial OFC (Figure S2, Table S5), regions that also exhibited increased dmIC functional

connectivity in MDD subjects versus control subjects (Figure 3, Table 3). Functional

connectivity between the dmIC and both posterior OFC and sgPFC, regions exhibiting

decreased activity during heartbeat attention, was also positively correlated to depression

severity. Additionally, dmIC connectivity with both anterior and posterior insula was greater

with increasing depression severity.

COMMENT

Prior findings have demonstrated that MDD is associated with interoceptive deficits

assessed behaviorally (4–7), and that the insula contributes to interoception in healthy

humans (15–17). These findings warranted the prediction that MDD patients would exhibit

abnormal insula hemodynamic activity during interoceptive attention, and that this activity

would be related to depression severity. Both hypotheses were confirmed in the present

study. Within the dorsal mid-insula, as well as a network of brain regions involved in

emotion and visceral control, unmedicated and currently depressed adults exhibited
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decreased activation during interoceptive attention, relative to healthy controls. This reduced

dmIC activity in depression was observed during attention to interoceptive signals broadly

(i.e., attention to heartbeat, stomach, and bladder sensations), potentially consistent with

evidence that behavioral measures of interoceptive sensitivity are correlated across

interoceptive modalities (50). The function of the dorsal mid-insula region identified here

has been previously identified as being homeostatically-sensitive (24) and selective for

interoception (15). Crucially, this region appears to constitute the human homologue of a

location identified in macaque monkeys as the terminus of a major vagal afferent pathway,

originating from the entrance of the vagus nerve into the solitary nuclear complex in the

medulla, through the VPMpc nucleus of the thalamus, and ending in the dorsal insula/frontal

operculum (19–21).

Although relatively more attention has been paid to the role of the anterior insula in mood

disorders, there is a growing body of evidence that the dmIC is also critically affected. For

example, recent studies have highlighted mood and anxiety-related abnormalities in dmIC

grey matter volume (29), GABA-benzodiazepine site binding potential (30), and regional

cerebral blood flow (31). Until the present study, however, the functional significance of

these findings had not been explored. Our data suggest that structural and functional

abnormalities in the dmIC present in depressed subjects may lead to altered information

processing of interoceptive signals, as indexed by the diminished hemodynamic response of

the insula during interoceptive attention.

Hemodynamic response during heartbeat interoception was significantly negatively

correlated with HDRS symptom severity in the dmIC, as was the relationship between

hemodynamic response and severity of somatic symptoms. Additionally, a relationship

between depression severity and BOLD activity during interoception was observed in the

amygdala, as well as in the ventral anterior insula and ventral mid-insula. The ventral

anterior region of the insula implicated here is rostrally contiguous with the caudal

orbitofrontal cortex and is the insula region most strongly associated with emotion (22; 49).

Additionally, ventral anterior insula metabolism may also serve as a predictive measure of

response to distinct treatment methods for depression (32).

Recently, Paulus and Stein have theorized that amplification of interoceptive signals within

the insula contributes to the pathogenesis of depression (13). By this account, the emotional

dysregulation and negative affect associated with MDD (2) result from amplified

interoceptive background noise that interferes with an individual’s ability to generate

accurate predictions about how external stimuli will affect one’s homeostatic state and

general well-being. We envision at least two scenarios by which increased basal noise

within the dmIC might contribute to the pathology of MDD. First, the finding in the present

study that resting-state functional connectivity between the amygdala and the dmIC is not

only increased in MDD, but is predictive of depression severity, suggests that interoceptive

deficits and amygdala pathophysiology in MDD may be functionally related. Pathologically

increased amygdala activity in MDD subjects (33; 51) might propagate to the insula, thereby

leading to maladaptive information processing in this region. The resulting reduced

interoceptive signal-to-noise ratio could thus interfere with depressed subjects’ ability to

reliably discriminate afferent homeostatic signals, perhaps also causing a form of emotional
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allodynia (52; 53) (i.e., where psychic pain or visceral discomfort is caused by a non-painful

stimulus), which conceivably may account for the idiopathic pain states that commonly

manifest in MDD (1). This is supported by recent evidence implicating the dmIC in the

interaction between chronic pain and depression (52; 54; 55), as well as the present study’s

finding of increased dmIC connectivity in depressed subjects to anterior and posterior insula

regions previously demonstrated to be involved in emotional and pain processing (56–58).

Alternately, peripheral pathology, perhaps due to heightened pain responses (1) or chronic

inflammation (59; 60), which directly affects dmIC function (61), could be propagated to the

amygdala, heightening its activity and resulting in the exaggerated emotional responses and

negative emotional processing bias observed in MDD (33; 51; 62). The precise origin of this

increased basal noise in the dmIC, whether peripheral or limbic, cannot be inferred from the

present data, due to the multiple reciprocal neural connections along the entire length of the

insula (36; 37). (See Supplemental Discussion for more discussion on interoception in

anxiety and depression). Ultimately, due to the difficulties inherent in interpreting group

differences in hemodynamic response, our data cannot elucidate the specific

pathophysiology underlying the abnormal BOLD activity observed during interoception in

MDD. Future studies using other imaging modalities that can provide more direct assays of

neural activity (e.g., electrophysiological or glucose metabolic activity) within the dmIC

during interoception may be helpful in resolving this question.

Consistent with previous findings in resting-state studies of MDD, depressed subjects

exhibited increased functional connectivity between default mode network regions such as

the sgPFC (35; 42; 63), as well as brain regions previously implicated in the

pathophysiology of depression, most notably the amygdala and OFC (33; 38). MDD is

associated with neuropathological and neuroimaging abnormalities within the sgPFC (33;

40; 41) and CBF and glucose metabolism in the sgPFC also correlate with depression

severity (33; 64). Based upon cytoarchitecture and connectivity, Öngür, Ferry, and Price

(2003) (49) suggest that BA32pl is the human homologue of rodent prelimbic cortex, a

region associated with the enhancement of fear responses mediated via the amygdala (49;

65) (this region is adjacent to but distinct from BA25, a region of sgPFC considered to be

the human homologue of infralimbic cortex (49), which also has been implicated in

depression (66; 67)). Given our observation that both the amygdala and the sgPFC (BA32pl)

exhibited functional connectivity to the dmIC that was positively correlated with depression

severity, the present study offers neurophysiological findings that appear compatible with

preclinical evidence that activity within this region increases emotional expression mediated

via the central nucleus of the amygdala (65).

Similarly, volumetric abnormalities as well as increased rCBF and metabolism in the OFC

have been reported in neuroimaging and post-mortem neuropathological studies of MDD

(33; 39; 68), and lesions of the OFC increase the risk for developing MDD (69). The

posterior orbitofrontal cortex (BA13a) constitutes one of the three areas identified by Öngür

& Price as forming critical junctions between the medial (visceromotor) and orbital

(sensory) prefrontal cortical networks (38; 49; 70). The other two junction areas between

these networks, BA45a and BA12o/47s, previously were shown to exhibit increased CBF

and metabolism in MDD (38; 71). The involvement of BA13a in decreased interoceptive

activity observed in depressed subjects in the present study, as well as the significant
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correlation between functional connectivity to the dmIC and depression severity, implicates

this region in the pathophysiology of MDD as well. The involvement of this area of

convergence between networks is noteworthy because the other PFC areas where

abnormalities were observed in depressed patients under interoception and under resting

connectivity with dmIC implicate both the medial prefrontal (sgPFC) and the orbital (OFC

regions 11l and 11m) networks (tables 2,3; figures 2,3)(38; 49; 70).

Conclusion

Major depressive disorder is associated with a reduced hemodynamic response during

interoception within the dmIC, a primary viscerosensory region of the insula, as well as in a

network of regions involved in emotional and visceral control, many of which have been

implicated previously in depression. Additionally, ventral anterior and ventral and dorsal

mid-insula hemodynamic activity during interoception correlates inversely with depression

severity. This reduction in task-related activity is accompanied by greater functional

connectivity between the dmIC and this network of regions under the resting condition, to an

extent that is positively correlated with depression severity. Consistent with the findings of

this study, the vagal nerve stimulation-induced BOLD response, specifically within right

dmIC, is positively correlated with HDRS scores in treatment-resistant depression (72).

Combined with its role in vagal afferent signaling and extensive limbic connectivity, these

findings suggest that changes in dmIC activity play a mechanistic role in the efficacy of

vagal nerve stimulation treatment for depression. Future studies are needed to determine if

the abnormal interoceptive activity we observed reflects a state or trait effect, by assessing

the hemodynamic correlates of interoception in individuals studied in the remitted condition

of MDD, and individuals who are at high familial risk for developing MDD. It will also be

important to explore the effect of antidepressant medications on group differences in

interoception, and the mechanisms by which pharmacological interventions may exert their

influence in this region of the cortex. The findings of the present study demonstrate that

abnormal activity and connectivity within primary viscerosensory regions of the insula play

an important role in the depressive symptoms experienced by individuals with MDD, and

may offer a promising therapeutic target for depression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Group differences in heartbeat interoception
Depressed subjects (MDD) exhibited decreased hemodynamic activity compared to healthy

subjects (HC) within multiple brain regions during attention to heartbeat sensations. Group

differences in heartbeat interoception were observed in bilateral dmIC, bilateral OFC, as

well as right amygdala. Importantly, the group differences in heartbeat interoception within

the insula were confined to regions of the dmIC that have been implicated in primary

viscerosensory representation within the insula (15). All results shown were corrected for

multiple comparisons at pcorrected < .05. dmIC – Dorsal Mid-Insula, Amyg. - Amygdala;

OFC - Orbitofrontal Cortex, sgPFC - Subgenual Prefrontal Cortex
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Figure 2. Dorsal mid-insula activation during heartbeat interoception is correlated with
depression severity and the severity of somatic symptoms
Within the left dmIC – which was identified in Figure 1– a significant negative correlation

was observed between depressed subjects’ hemodynamic response during heartbeat

interoceptive attention and scores on the Hamilton Depression Rating Scale (HDRS). A

significant negative correlation was also observed between hemodynamic response and the

HDRS somatization sub-scale (48) (See Supplemental Methods). Values on the X-axis

indicate scores on the HDRS, which was administered prior to the fMRI scan. Values on the

Y-axis are beta coefficients representing percent signal change during heartbeat

interoception within the left dmIC cluster from Figure 1. Circular ROIs in Left dmIC are for

illustrative purposes only.
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Figure 3. Group Differences in BOLD resting-state functional connectivity to the dorsal mid
insular cortex
The left and right dmIC regions – identified in Figure 1 – were used as seeds for a

comparison of resting state functional connectivity between healthy and depressed subjects.

Many of the circled regions, including the amygdala and orbitofrontal cortex, have

previously been implicated in the pathophysiology of MDD. In the present study, depressed

participants exhibited significantly stronger resting state functional connectivity between
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these regions and the dmIC. All results corrected for multiple comparisons at pcorrected < .

05. dmIC – Dorsal Mid-Insula, Amyg. - Amygdala; OFC - Orbitofrontal Cortex
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Table 1

Demographic and clinical characteristics of the study samples

Demographics

HC MDD t38 p

Sample size (n) 20 20

Age – yrs.(sd) 33(7) 36(9) −1.3 0.20

Gender 12F 13F

Body Mass Index (kg/m2) 27.4 27.8 −.5 .79

Resting Heart Rate (bpm) 66(10) 65(8) .5 .63

Task Heart Rate (bpm)c 68(8) 66(8) .8 .43

HDRS - mean(sd) 1.2(1.6) 23.1(7.5) −12.0 <.001

HARS - mean(sd) 1.2(1.9) 17.0(4.9) −13.6 <.001

Age of Onset - yrs.(sd) NA 19(10)

Illness Durationa - mos.(sd) NA 61(75)

Drug-Naïve (n/20) NA 8/20

Currently Unmedicated NA 20/20

Mean Duration Drug-freeb - mos.(sd) NA 99(87)

Comorbid Anxiety Disorder (n) 0 9

a
of current MDE

b
of non-drug-naïve subjects

c
Heart Rate calculated during interoception tasks did not differ from average heart rate during the Focused Awareness task.
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