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Abstract

The mechanisms that control the sizes of a body and its many parts remain among the great

puzzles in developmental biology. Why do animals grow to a species-specific body size, and how

is the relative growth of their body parts controlled to so they grow to the right size, and in the

correct proportion with body size, giving an animal its species-characteristic shape? Control of

size must involve mechanisms that somehow assess some aspect of size and are upstream of

mechanisms that regulate growth. These mechanisms are now beginning to be understood in the

insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires

control of the rate of growth and control of the cessation of growth. Growth is controlled by

genetic and environmental factors. Insulin and ecdysone, their receptors and intracellular signaling

pathways are the principal genetic regulators of growth. The secretion of these growth hormones,

in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by

environmental factors such as nutrition and by the physiological mechanisms that sense body size.

Although the general mechanisms of growth regulation appear to be widely shared, the

mechanisms that regulate final size can be quite diverse.
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A. Background

Body size and the sizes and shapes of body parts are among the most distinguishing

characteristics of a species. Yet, the mechanisms that control body size and the shapes and

sizes of body parts remain among the great unsolved puzzles in developmental biology.

During development, different structures (tissues, organs appendages) grow at different rates

and start and stop at different times, and cell death may also occur as in the formation of

digits. These processes cause the changes in size and shape we see during ontogeny.

Different species have characteristically different sizes and shapes, and it seems reasonable

to conclude that these arise due primarily to differences in the growth of their various parts

although cell death of specific parts may also be involved. Thus, the mechanisms by which

size and shape come about, and how those differ between species, are of natural interest to

the study of development and evolution.

It is obvious that size is the mathematical product of growth rate and duration of growth, so

to understand the control of size one needs to understand the mechanisms that control, not

just growth, but the rate of growth, and also the mechanisms that control the duration of

growth. Most work on the control of growth has been done with permanent cell culture lines.

Such lines typically consist of transformed or immortalized cells, that is, cells that behave

like cancer cells whose growth is independent of growth factors. Studies with such cells

have taught us much about the molecular mechanism of cell growth and cell division, but

they can tell us little about how the rates of cell growth are controlled in normal cells in

intact animals. In multicellular organisms, growth is not an autonomous property of cells.

When cells or tissues are taken from an animal and put into a culture medium, growth stops.

And that is independent of the nutrient quality of the culture medium. For normal cells to

grow in culture, they also need growth factors or hormones. In insects, ecdysone and insulin-

like molecules appear to act as the most general growth promoting signaling factors 1–6. To

understand how growth is regulated in vivo, we need to know how growth factors are

controlled and how they are distributed in time and space: some circulate generally, like

hormones, others act locally via paracrine and autocrine signaling, and not all tissues are

controlled the same way. In addition, there can be temporal and spatial variation in receptor

expression 7, 8, that can modulate when and how cells respond to a particular growth

stimulator.

Whereas the rate of growth is determined by the level of signaling a cell receives, the

duration of the growth period is determined by mechanisms that control the onset and/or

termination of growth signals. Timing mechanisms in development have been surprisingly

little studied, in spite of the fact that development times in most organisms are extremely

constant and sufficiently reliable that standard time tables for development have been

constructed for most model organisms.

The developmental mechanisms that control body size and the relative sizes of appendages,

and those that control timing events in development have been best studied in insects,

particularly in two species, the tobacco hornworm Manduca sexta and the fruit fly

Drosophila melanogaster. In this review we outline the studies that have elucidated these
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mechanisms, show how these are integrated into the developmental biology of the organism,

and discuss open questions and avenue for future research.

B. Control of Body Size

B.1. Background

Because of their chitinous exoskeleton, insects can grow only by periodic shedding of this

exoskeleton or cuticle in a process called molting. The apparent growth between molts seen

in soft-bodied larval insects such as caterpillars or beetle grubs is due to the unfolding of the

proteinaceous epicuticle that had been deposited in folds during the molt as the larva feeds

and grows 9. During this intermolt growth, the epidermis is continually depositing

endocuticle (chitin plus protein) to strengthen the exoskeleton that is necessary for muscular

locomotion. Normally the epidermis is polymorphic in that it sequentially makes the cuticle

of the larva, pupa, and adult with most cells reprogramming their gene expression profiles,

some cells dying at metamorphosis, and others arising anew. In the holometabolous insects

with complete metamorphosis such as beetles, butterflies, bees and flies, there are nests of

imaginal cells and imaginal discs for particular organs such as adult eyes and antennae that

only proliferate during larval life, then differentiate at metamorphosis 10.

Growth in insects as in the higher vertebrates (birds and mammals) only occurs in the

immature stages, so adult body size is determined by the size the larva has reached when it

stops feeding and begins metamorphosis. As a result, the control of adult body size is

intimately connected to the mechanism that controls metamorphosis. Parts of this

mechanism are now well understood and involve the interplay between two hormones, the

sesquiterpenoid juvenile hormone (JH) and the steroid molting hormone, ecdysone† 11–18.

Ecdysone is secreted periodically and induces molting, a process whereby the epidermis

produces a new cuticle, then digests all of the old cuticle except for the exocuticle and

epicuticle that are shed at the time of ecdysis. Juvenile hormone titers are high during larval

development, and molts that occur in the presence of JH move a larva to successively larger

larval instars.

The last larval instar is marked by a decline in JH titers; and in the absence of JH, ecdysone

now has quite a different effect. The first low pulse of ecdysone that occurs in the absence of

JH causes a larva to stop feeding and enter what is called the wandering stage, during which

it seeks a suitable place to pupate16, 19–22. This pulse also causes the polymorphic epidermis

to switch its genetic program so that it can no longer produce a nymphal or larval cuticle but

only an adult (hemimetabolous insects) or a pupal (holometabolous) cuticle when next

exposed to a molting surge of ecdysteroid 23–26. In response to this hormonal milieu, the

internal tissues such as the nervous system either die, remodel or begin proliferation

followed by differentiation as metamorphosis begins 27. A second larger pulse of ecdysone

then induces the molt to the pupa, or, in the higher Diptera, formation of the puparium from

the old larval cuticle inside of which the pupa forms. Thus, body size is controlled indirectly

by JH, because its disappearance marks the last larval instar during which growth will stop.

It is controlled more directly by ecdysone, because its secretion actually stops growth

permanently.
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At each larval molt, body size increases by about the same factor, which leads to an

exponential size increase from instar to instar, and this means that most of the body mass

accumulates during the last larval instar. Manduca, for instance, grows from about 1.2 grams

to about 12 grams during its last larval instar, so growth during this instar accounts for about

90% of final body mass28. In Drosophila, the last instar larva grows from 0.5 mg to about

1.8 mg, gaining about 70% of its final mass during that stage29 (note that both Manduca and

Drosophila lose weight after they stop feeding due to loss of gut content and metabolic

losses during metamorphosis). Because most of an animal’s mass is gained during the last

larval instar, studies on the control of body size have focused largely on the developmental

and physiological events that take place during the last larval instar. Two main processes

have been of interest: the control of growth by insulin and ecdysone signaling, and the

causes and consequences of the pulse of ecdysone secretion that terminates the growth

phase.

B.2. Control of growth

B.2.1. Genetic and environmental control of growth and size—There is

considerable genetic variation in body size both within and between insect populations.

Perhaps the best studied is the variation in body size that accompanies changes in latitude

and altitude. In general, within an insect species, populations from higher altitudes or

latitudes are larger than populations from lower altitudes or latitudes, even when both are

reared in the same environment 30–38. More recent studies have identified clines in the

frequency of numerous allozymes, DNA polymorphisms and chromosome inversions that

parallel the clines for body size 30, 39–44. However, the relationship between these genetic

markers and the developmental mechanisms that regulate body size remains largely

unknown (although see 45, 46).

In contrast, we are beginning to understand many of the pathways that contribute to

regulating growth rates and body size in response to environmental cues. A number of

conditions can alter growth rates including nutrition 47, 48, temperature 32, 38, 49–52,

infection 53–55, wounding 56–58, oxygen levels 59, larval crowding 60 and the gut flora 55, 61.

Temperature has been recently shown to affect body size by altering critical weight in

Drosophila62, an important endocrinological event that regulates the length of the growth

period (see Section B.3. for details). Nutrition regulates growth both directly via the cellular

concentrations of macronutrients such as amino acids63–65 and indirectly via endocrine

signaling. The metabolic pathways that culminate in growth are influenced by all these

factors 66.

B.2.2. The nutrition-sensitive pathways: insulin and target of rapamycin—
Studies of how nutrition regulates body size in the fruit fly, Drosophila melanogaster, have

uncovered two nutrition-sensitive pathways that regulate growth rates: the insulin and Target

of Rapamycin (TOR) pathways 67–74 (Fig. 1). The TOR and insulin pathways share a

number of key regulators, such as the serine/threonine protein kinase Protein Kinase B/Akt

and the transcription factor Forkhead Box O (FoxO) 75. Therefore, they are often referred to

as the insulin/TOR signaling cascade.
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The nutritional environment determines the amount of insulin-like peptide (ILPs) produced

by median neurosecretory cells (m-NSC) in the neuroendocrine centers in the brain of many

insects 70, 76. Although the number of different ILPs varies by species, these peptides

generally act to positively regulate growth 70, 77. In well-fed larvae of Drosophila, the

production of three ILPs, ILP2, ILP3 and ILP5, remains high and stimulates the insulin

signaling pathway in the cells of the body 70, thereby promoting cell growth and

proliferation. In response to starvation, the level ILP3 and ILP5 transcription decreases

while ILP2 is blocked at the level of secretion 63, 70, 78.

In Drosophila ILPs promote growth by binding to the single Insulin Receptor (InR) 69, and

activating a phosphorylation cascade through InR and the insulin receptor substrate Chico 79

(Fig. 1). Activation of Chico and InR results in the phosphorylation of phosphatidylinositide

3-kinase (Pi3K or Dp110) 80. Pi3K converts a membrane lipid, phosphatidylinositol 4,5-

bisphosphate (PiP2), to phosphatidylinositol 3,4,5-trisphosphate (PiP3) 67. The antagonist to

Pi3K is PTEN, which converts PiP3 to PiP2 under conditions of low insulin signaling 81–83.

Increased PiP3 causes the localization of Akt to the membrane where it acts on several

downstream targets to affect growth 84. One of the actions of Akt is to phosphorylate

FoxO 85, 86, a negative regulator of growth, thereby excluding it from the nucleus.

It is unclear whether m-NSCs which produce ILPs directly sense larval metabolic status to

control growth. In adults, the m-NSCs do not express a key component of the carbohydrate

sensing pathway, sulphonylurea receptor, and rely on the corpora cardiaca to sense blood

glucose and regulate ILP secretion87. Whether these cells sense amino acids is unknown.

What is known is that the insect storage tissue, the fat body, detects the intracellular

availability of amino acids via the TOR pathway 63, 78 (Fig. 1). The fat body then secretes a

yet unidentified factor (fat body derived signal or FDS) that can stimulate the m-NSC to

release ILPs to promote systemic growth. Also, proliferation in the brain neuroblasts is

reactivated at the end of the first larval instar by ILPs secreted by the glia in response to

FDS 88, 89. The fat body also detects the presence of dietary sugars and fats and releases

Unpaired 2 (Upd2), a protein similar to type I cytokines in mammals 90. Upd2 acts via the

Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway to

inactivate the GABAergic neurons that normally inhibit release of ILPs by the m-NSCs.

Hence the ILPs are released and stimulate systemic growth and fat storage. In this role Upd2

is acting similarly to mammalian leptin, and indeed human leptin can substitute for Upd2 in

this system 90.

There are at least two circulating factors dependent on nutritional state which regulate ILP

action in Drosophila, apparently by binding with specific ILPs. The first is Imp-L2 which

resembles Insulin Growth Factor Binding Protein (IGFBP) 7 of mammals, which is a tumor

suppressor 91. Imp-L2 is secreted by the fat body under conditions of starvation and binds

ILP-2 and effectively prevents its action. It is also expressed in the ILP cells and the corpora

cardiaca so may interact with ILPs at their source. In prepupae it is induced by ecdysone

during imaginal disc and histoblast morphogenesis 92. The second is Secreted Decoy of

Insulin Receptor (SDR) which is secreted by the CNS and midgut surface glia throughout

larval life and is not affected by starvation 93. SDR negatively regulates growth by binding

ILP3.
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B.2.3 Roles of ecdysone and juvenile hormone in regulating growth—Other

developmentally important hormones, like ecdysone and JH, affect larval growth in concert

with insulin/TOR signaling (Fig. 1). Both of these developmental hormones act

intracellularly. Ecdysone acts via a heterodimeric nuclear receptor comprised of the

ecdysone receptor (EcR) that binds usually the active form of ecdysteroid 20-

hydroxyecdysone (20E) synthesized from ecdysone in peripheral tissues and Ultraspiracle

(USP) that is the usual partner necessary for binding to the DNA response elements in the

promoters of ecdysone-regulated genes 8, 94. JH acts via a novel helix-loop-helix protein

Methoprene-tolerant (Met) by binding to its Pas B domain together with the EcR coactivator

Taiman [also called Steroid Receptor Coactivator (SRC)] (95; see 96 for review). In

Drosophila there is a second receptor due to the duplication of the ancestral gene germ cells

expressed (gce) 97, 98. Met and gce can heterodimerize, but only in the absence of JH 99.

Initially Met and gce were thought to act redundantly during development 100, 101, but recent

studies show that this is not true in all tissues 17.

Insulin/TOR signaling in the prothoracic gland, the tissue that produces ecdysone, positively

regulates ecdysone synthesis 1, 29, 102–104 (Figs. 1,2). Ecdysone, in turn, negatively regulates

the growth rate of the larval body 1, 105. The effect is mediated by EcR in the fat body via

repression of the cell growth regulator Myc: a reduction in EcR expression in the fat body

accelerates growth while this effect is lost with a coincidental reduction in the expression of

Myc 105. Autonomous changes in TOR-signaling in the fat body regulate the release of

dILPs from the IPCs in the brain78 as discussed in Section B.2.2, and it seems likely that this

same mechanism links ecdysone-signaling in the fat body with systemic changes in insulin-

signaling 105. Further, dDOR, whose expression in the fat body (and possibly elsewhere) is

negatively regulated by insulin-signaling and so is up-regulated when ecdysone levels are

high, is itself a co-activator of EcR 106. The result is a feed-forward loop whereby ecdysone

potentiates its own activity via insulin-signaling.

Furthermore, although ecdysone appears to negatively regulate the growth of some tissues,

such as the Drosophila larval fat body 1, 105, it appears to enhance the growth of other

tissues such as the wing imaginal discs in fruit flies and lepidopterans 4, 5, 107–109. Twenty-

hydroxyecdysone alone appears to be sufficient for inducing mitotic cell divisions in

explants of Manduca epidermis in tissue culture 110. Thus, ecdysone’s roles in growth

appear to be tissue-specific (see also sections C.2 and C.3.2 below).

Juvenile hormone also regulates growth in lepidopterans and fruit flies, but in opposing

manners. In Manduca JH suppresses the growth of the imaginal tissues in starved

caterpillars 111. Conversely, in Drosophila removal of the CA, the JH-producing gland,

slows growth and produces small pupae 112. This effect requires insulin/TOR signaling.

Removing the CA in FoxO mutant animals results in animals of normal size (CK Mirth, HY

Tang, S Makhon-Moore, S Salhadar, LM Riddiford, AW Shingleton, submitted). This

suggests that JH regulates insulin/TOR signaling to control growth rates.

B.2.4 Growth regulation by other environmental cues—We do not yet know if all

environmental stimuli that modify body size do so through the insulin/TOR, ecdysone or JH

signaling pathways. However, changes in growth due to wounding 54, 57, 108, 113, 114 or the
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presence of endosymbionts 54, 55, 61 in Drosophila both appear to act through these

pathways.

Larvae with injured or abnormally growing imaginal discs have slow growth across the

entire body 56–58, 115. This results partly from the production of ILP8 by the injured discs,

which suppresses growth in the surrounding tissues and inhibit ecdysone synthesis 113, 114.

Feeding ecdysone does not restore growth of the body as a whole, but does restore growth of

the uninjured imaginal discs 108. Whether ILP8 acts though the same signaling cascade as

the other ILPs is yet unknown. The bacteria that reside in larval guts of Drosophila can

buffer some of the lost growth due to poor nutrition. Two species of gut microbes,

Acetobacter pomorum and Lactobacillus plantarum, have been shown to accomplish this by

regulating insulin/TOR and ecdysone signaling in the larva 55, 61.

Other environmental factors such as temperature and oxygen level can have a profound

effect on growth and body size. In all insects, body size is inversely proportional to rearing

temperature: adults are smaller at higher temperatures, a phenomenon called the inverse

temperature size rule 116, 117. The mechanism by which this occurs is known for Manduca

and emerges from the inverse and non-linear relationship between the effects of temperature

on the growth rate and on the duration of the terminal growth phase 117. Oxygen level can

also affect body size in Manduca, and appears to do so by affecting the critical weight (see

section B.3.1 below) (Fig. 2). Larvae reared under reduced oxygen tension have a lower

critical weight and metamorphose at a smaller body size than larvae reared at normal oxygen

levels 118, 119. Oxygen limitation appears to provide a mechanism for sensing body size.

This is because, within an instar, the tracheal system (a set of air-filled tubes that deliver

oxygen directly to all cells in an insect’s body) does not grow even while body mass

increases exponentially. At some point the tracheal system becomes incapable of meeting

the ever increasing demand for oxygen. In Manduca this point corresponds to the critical

weight (see section B.3.1 below), when the endocrine processes that lead to the cessation of

growth and metamorphosis are triggered 118.

B.2.5 Growth in post-feeding stages—Even though most growth occurs during the

feeding stages in insect larvae, some additional growth occurs after feeding has stopped.

Indeed, in holometabolous insects, most of the growth of the imaginal discs occurs during

the prepupal and pupal stages, after the larva has stopped feeding and growing. In Manduca,

ecdysone coordinates the amount of growth of imaginal discs in relation to overall body size

in the post-feeding stages 109. In the silkworm Bombyx mori the pupal fat body produces an

IGF-like peptide (BIGFLP) in response to ecdysone that triggers adult development 120. In

Drosophila the fat body secretes a new ILP ILP6 in direct response to the pupariation peak

of ecdysone, which subsequently remains high during pupal-adult development 121, 122.

Both BIGFLP and ILP6 secretion allow tissues that grow mostly in the non-feeding stages to

scale correctly with the growth acquired in the feeding stages.

B.3. Mechanisms upstream of ecdysone secretion

Ecdysone synthesis and secretion by the prothoracic glands is primarily driven by a

neuropeptide, prothoracicotropic hormone (PTTH), synthesized by two pairs of
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neurosecretory cells in the lateral protocerebrum in both Manduca 123 and Drosophila 20

(see 124 for review) (Fig. 2). PTTH acts via Torso, a receptor tyrosine kinase, to stimulate

extracellular signal-regulated kinase (ERK) phosphorylation 125, which in turn activates the

prothoracic gland to secrete ecdysone.

B.3.1 Physiological triggers of PTTH secretion—The triggers for PTTH secretion

are diverse. The first to be discovered is the one found in the blood-sucking bug, Rhodnius

prolixus, in which abdominal stretch receptors activated by the blood meal were found to

initiate molting 126. In other hemipterans Oncopeltus and Dipetalogaster, swelling of the

abdomen also stimulates stretch receptors to send signals to the brain that trigger the

secretion of PTTH and subsequently ecdysone 126–128.

In larvae of Manduca, the molt is triggered when larvae reach the “critical weight”,

operationally defined as the weight above which the larva will metamorphose on time when

starved 21, 28, 118, 129–131. The critical weight is achieved in about the middle of the last

larval instar, when the larva is about half its final mass (Fig. 3). At the critical weight a

series of physiological and molecular events are set in motion that make the brain competent

to secrete PTTH. Among these are the decline in JH and the upregulation of JH-esterase

(JHE), the principal enzyme that catabolizes JH. In the last larval instar JH inhibits PTTH

secretion (see below), and removal of JH and its molecular effects is required for the brain to

become competent to secrete PTTH. If the photoperiodic gate for that secretion is open, the

brain secretes PTTH immediately; otherwise it waits until the opening of the next

photoperiodic gate 132. This photoperiodic gating of PTTH secretion occurs at all

molts 22, 132. In Drosophila the pigment dispersing factor (PDF)-containing neurons that are

involved in circadian rhythms synapse onto the PTTH-containing neurons, and pdf null

mutants have increased PTTH transcript with an altered periodicity 20. However, whether

molting is gated in Drosophila by photoperiod is not as clear29. More study is needed in this

area.

Once the larva enters the final instar, JH can prolong the duration of the feeding period by

suppressing the secretion of PTTH 11, 21, 133, 134 and by potentially rendering the prothoracic

gland insensitive to PTTH 135. The disappearance of JH allows PTTH release at the next

available photoperiodic gate 22, 132 and subsequently the release of ecdysone to cause the

cessation of feeding and the onset of wandering 19, 136 and the change of commitment of the

epidermis 23. Topical application of JH during this instar prolongs larval feeding, leading to

an increase in size although larvae that experience prolonged exposure to JH never

metamorphose normally 19, 137, 138. Starvation of Manduca at the onset of the final instar

caused the JH titer to increase and on refeeding after a prolonged starvation, some of the

larvae underwent a supernumerary molt 139. This regulatory role of JH occurs only in the

last larval instar of Manduca; in earlier instars JH is elevated at the time of the molt and

appears to play no role in the timing of ecdysone secretion and molting 11,16.

In contrast to Manduca and most other insects, JH cannot cause extra larval instars in

Drosophila melanogaster. Continuous feeding on JH mimics methoprene and pyriproxifen

had no effect on the length of either the first or the second instar, but prolonged the final

third instar 13, 140. Curiously these larvae did not become noticeably larger. At the higher
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doses, the larval mortality was higher, but those that pupariated developed with normal

timing to the pharate adult that was a mosaic of adult head, thorax and genitalia with a pupal

abdomen 140, 141. The reason for this apparent insensitivity of the final instar higher dipteran

endocrine system to JH is still a mystery.

Another simple but quite different mechanism has been described in the dung beetle,

Onthophagus taurus 142. In this species, starving a last-instar larva induces the metamorphic

molt in 48 hours, provided the larva has attained a minimum viable size. This response to

starvation is referred to as a ‘bail out’ mechanism that induces a molt when an animal’s

environment deteriorates. This response is adaptive because when a resource is exhausted,

metamorphosing to an adult, albeit one of suboptimal size, ensures at least some capacity for

reproduction.

B.3.2 Non-canonical regulators of ecdysone secretion

“Leaky” prothoracic glands: Although the brain and PTTH play central roles in the critical

weight mechanism for molting, the fact that insects can molt in the absence of their brain has

been known since the early classical experiments of Fukuda 143, and has been confirmed in

many species. In both Lepidoptera (Calpodes ethlius, Precis coenia, and Manduca) and

Diptera (Drosophila melanogaster), when the PTTH signal is eliminated, larvae still exhibit

a rise in ecdysone titers that triggers a molt, although it is delayed 20, 144, 145. The fact that

neck-ligated larvae eventually begin metamorphosis or pupate indicates either that the

prothoracic glands have a physiologically significant autonomous secretory activity that acts

as a positive feedback, or that there is an ecdysone-stimulating factor that does not come

from the brain. In Bombyx mori, ecdysone secretion by the prothoracic glands can also be

stimulated by insulin 146, so it is possible that extracephalic sources of insulin-like peptides

could be responsible for the delayed ecdysone secretion observed in neck-ligated larvae.

Ecdysteroidogenesis in the prothoracic glands is also controlled by other neurosecretory

factors as well as neurally as revealed by studies on the silkworm Bombyx mori 147. These

include two circulating neuropeptides that inhibit the prothoracic glands, prothoracicostatic

peptide and Bommomyosuppressin, at certain times during the molt. Also, there is direct

tropic innervation by FMRF-related peptide- and orcokinin-containing neurons that maintain

low levels of ecdysteroids during the feeding stage.

B.4. Mechanisms downstream of ecdysone

As briefly described above (section B.2.3), when α-ecdysone is secreted by the prothoracic

glands, growth stops and a molt occurs. α-Ecdysone is converted by the peripheral tissues to

the active molting hormone 20-hydroxyecdysone (20E) which acts on the epidermis to cause

apolysis from the overlying cuticle followed by the secretion of the new cuticle 16, 148, 149.

Both the rise and the decline of the ecdysteroid titer are critical to orchestrate and coordinate

the development throughout the animal. The early molecular events occurring during this

process were first elucidated by Ashburner and his colleagues studying the puffing patterns

of the polytene chromosomes of the salivary glands of Drosophila melanogaster at the onset

of metamorphosis 150. They found that 20E induced two early puffs, E74B and E75EF,

within 10–15 minutes of addition of the hormone in vitro, then a second series of puffs at
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about 3 hr. The second series did not appear in the presence of cycloheximide, a protein

synthesis inhibitor. Ashburner then proposed that the 20E bound to its receptor (EcR) which

subsequently bound directly to the DNA and induced the mRNAs that formed the two early

puffs. These mRNAs were thought to be transcription factors that then activated the “late”

genes that formed the later puffs. He also proposed that the early transcription factors would

feed back and turn off the synthesis of EcR. Beginning in the 1990’s, this theory was

validated by the cloning and characterization of the developmental expression of all the

genes encoded by the chromosome puffs induced by 20E 8, 94, 151. We now know that 20E

binds to EcR when it is heterodimerized with USP152, 153 and triggers a cascade of

transcription factors beginning with E74B and E75A which is subsequently orchestrated by

the changing ecdysteroid titer so that the proper sequential pattern of cellular events occurs

to produce the glue in the case of the salivary glands or the new cuticle by the epidermis8.

The same cascade of transcription factors is seen during both the larval and pupal molts in

Manduca 154. An example of how this cascade works relative to the formation of the new

cuticle can be seen in the study of the patterning of the MHR3 transcription factor and

subsequent cuticle deposition within a larval abdominal segment during the larval molt of

Manduca 138, 155.

In contrast to the molting action of high levels of 20E, low levels of 20E can cause

developmental changes, particularly in the final larval instar and during the onset of

metamorphosis. In Drosophila low levels of 20E that appear after the larva attains its critical

weight 156 cause derepression of patterning genes in the imaginal discs caused by the

presence of unliganded EcR/USP sitting on the ecdysone response element (EcRE) in the

promoter of these genes 107, 157. This rise in ecdysteroid also leads to the appearance of

Broad, an ecdysone-inducible transcription factor that is both necessary and sufficient to

specify the pupal state 141, 158 (Fig. 1). In the polymorphic abdominal epidermis of

Manduca, Broad appears in response to the prewandering small peak of ecdysteroid, but

only in the absence of JH 159. Its appearance is coincident with the onset of pupal

commitment in a particular pattern within the abdominal segment 138, 160.

In Manduca this commitment peak of ecdysteroid is composed of equal amounts of α-

ecdysone and 20E. Yet in vitro experiments could not discern any effect of α-ecdysone,

either alone or synergistically with 20E, on eliciting the change in commitment 23. α-

Ecdysone by itself cannot cause a molt, but it can initiate mitoses in the pupal optic lobe and

myogenic proliferation in the ventral diaphragm at the outset of adult development, both of

which shut off as the 20E levels rise and differentiation is triggered 161, 162. In the ventral

diaphragm, the addition of JH has no effect on proliferation but prevents the switch to

differentiation. Also, in the prepupal epidermis, low levels of 20E stimulate mitosis, whereas

high levels inhibit it 110 (Fig. 1).

In Drosophila there are three isoforms of EcR, distinguished by different N-terminal regions

and generated by alternative splicing or by alternative promoters 8, 94. At the onset of

metamorphosis EcR-A is high in the imaginal discs and the optic lobes as they proliferate in

preparation for pupal differentiation whereas the B1 isoform is high in the larval tissues that

are going to die and in larval abdominal neuroblasts that are proliferating 163, 164. Then

during the pupal period the optic lobe acquires EcR-B1 which attains its peak expression
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during the first part of adult development when the optic lobe begins to differentiate in

response to the adult peak of ecdysteroid 162, 164. JH given at the time of pupariation

prevented the later appearance of EcR-B1 and proper differentiation of the optic lobe 112. In

contrast, genetic allatectomy caused premature appearance of EcR-B1 at the time of

pupariation and premature differentiation of the ingrowing photoreceptors 112. The null

mutant of the JH receptor Met27 165 also shows the same premature expression of EcR-B1

and development of the optic lobe as the allatectomized animals but develops to the adult

which is blind apparently due to the anomalous morphogenesis of the lobula in the optic

lobe 112. By contrast, the loss of the 2nd JH receptor gce has no adverse effects of optic lobe

development showing that the two receptors are not acting redundantly in all developmental

processes 17.

B.5. Regulation of JH titers

Understanding the regulation of the JH titer is critical to our understanding of final body

size. The JH titer in the hemolymph is product of its synthesis, degradation and binding to

proteins that transport JH around the body and prevent its degradation. The mechanisms

underlying these processes remain unclear but the known regulators of JH biosynthesis

during the larval period are summarized below. For a detailed account of the major

regulators of JH titers, see 14, 166, 167.

B. 5.1. JH biosynthesis—JH biosynthesis occurs only in the CA and involves a series of

enzymatic reactions that convert acetyl-CoA into JH 14, 167, 168. In several steps, acetyl-CoA

is converted to isoprenoids, which condense to form farnesyl pyrophosphate that then is

converted to farnesoic acid. In hemimetabolous insects methyl farnesoate is formed with

subsequent epoxidation to give JH III that is secreted. In holometabolous insects, farnesoic

acid is converted to JH acid, which is in turn converted to JH by JH acid O-

methyltransferase (JHAMT). In Drosophila however methyl farnesoate (MF) is present in

the 3rd instar hemolymph as well as JH III and JH III bisepoxide 169. MF binds to USP with

high affinity and this interaction appears to be necessary for proper pupariation and

metamorphosis 169, 170. The importance of JH biosynthesis in regulating the JH titers can be

seen by the fact that when jhamt3 is silenced in Tribolium, larvae undergo precocious

metamorphosis and form miniature adults 171. Expression of this enzyme tracks the JH titers

closely and may therefore act as the rate-limiting step for JH biosynthesis 171, 172.

Regulation of JH biosynthesis is both neuroendocrine and neuronal. The roles of

allatotropins (stimulatory) and allatostatins (inhibitory) produced in brain neurosecretory

cells have been elucidated in adults, but their roles during the larval stage remain largely

unknown 166, 167. The adult Manduca allatotropin has no effect on the larval CA 173, but in

Bombyx the same peptide has been found to stimulate expression of short neuropeptide F

(sNPF) in the corpora cardiaca (CC) 174. However, sNPF suppresses JH production in the

late penultimate and early final instar CA 167. Drosophila has no gene that corresponds to

the Manduca allatotropin 175. In both the cockroach, Diploptera punctata, and Drosophila,

glutamatergic neurons acting via NMDA signaling appear to stimulate JH biosynthesis by

indirectly influencing jhamt expression 176, 177. In Drosophila, the binding of the NMDA

receptor leads to the activation of Decapentaplegic (Dpp) signaling in the CA 177. As a
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consequence, a target of Dpp signaling, Mothers against Dpp (MAD), activates the

expression of jhamt. Finally, there is evidence that dopamine might also regulate JH

biosynthesis in the CA of Manduca 178. By binding to different receptors, dopamine can

either have a stimulatory or an inhibitory effect on JH biosynthesis.

B.5.2. JH degradation—JH catabolism is regulated by two enzymes, JH esterase (JHE)

and JH epoxide hydrolase (JHEH) 179–181. JHE is made by the fat body and secreted into the

hemolymph and can scavenge JH even when it is bound to the JH binding protein (JHBP),

whereas JHEH acts in a tissue-specific manner 181. While JHE has been more extensively

studied, its role during the final instar remains somewhat unclear. As described above

(section B.3.1), in Manduca JHE activity increases dramatically in both the

hemolymph 182, 183 and in the tissues 184 after the critical weight and the JH titer falls to

undetectable allowing PTTH and ecdysone release to initiate metamorphosis. Inhibition of

JHE in the cabbage looper, Trichoplusia ni, can result in the formation of larger larvae as a

consequence of delayed JH degradation 182, 185. In contrast, the expression profiles of many

of the JHEHs track the JH titer in a manner that would be consistent if they were to act as

key JH degrading enzymes 186. Whether or not JHEH plays a key role in clearing the JH

from the hemolymph remains to be seen.

B.5.3. JH binding proteins—JH must be carried to the rest of the body by proteins that

tightly bind JH and protect it from degradation. In Manduca larvae a 29 kD protein called

the JH binding protein (JHBP) is made by the fat body and secreted into the hemolymph

where it binds almost all of the JH secreted by the CA 14, 166, 187. This protein protects JH

from the common esterases in the hemolymph but not from the JHE. A second group of

large, hemolymph proteins, lipophorins and hexamerins, may also help sequester JH. While

many studies have elucidated the roles of lipophorins in adults, their role in regulating JH

titers during the larval period remains poorly understood. The complex interplay of JH

biosynthesis, degradation and binding to JH binding proteins is likely to explain the overall

fluctuation of JH. If we are to understand how body size is regulated, further understanding

of these processes will be essential.

B.6. Mechanisms downstream of JH action

The characterization of the JH receptor involved in growth and larval molting as Met only

became clear in 2007 when Konopova and Jindra188 found that Met RNAi given to the early

instar larva of the flour moth Tribolium castaneum caused precocious metamorphosis.

Minakuchi et al. 189 then showed an identical phenotype in Tribolium after injection of

Krüppel homolog 1 (Kr-h1) RNAi. They also found that Kr-h1 was up-regulated by an

exogenous JH mimic and was downstream of JH-Met signaling and upstream of the

ecdysone-induced up-regulation of Broad at metamorphosis. In Drosophila loss of Kr-

h1leads to the precocious appearance of Broad during the molt to the final instar177. As

discussed above (section B.4), Broad is an ecdysone-induced transcription factor that is

necessary for pupal commitment and pupal cuticle production in both Drosophila and

Manduca 141, 160. No study has been done on Kr-h1 expression in Manduca. In Bombyx Kr-

h1 mRNA is present in early instar larval epidermis and declines to trace levels in the final

instar or in allatectomized larvae where it can be restored by application of JH190.
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Furthermore, studies in cell lines suggest that expression of Kr-h1 is directly regulated by

the JH-Met 2-Steroid receptor coactivator (SRC) complex190. Together all these studies

have suggested a model for JH action in regulation of larval molting and metamorphosis

whereby the presence of JH-Met-SRC complex in the larva prevents the up-regulation of

Broad by ecdysone during the larval molt and during small peaks of ecdysone in the early

final instar larva17 (Fig. 4).

C. Control of Relative Sizes of Body Parts

C.1. Background

All species of insects have the same general anatomy (head, thorax abdomen, 4 wings 6

legs, etc.), and species differ from each other by the relative sizes and shapes of these body

parts. Although these structures can differ dramatically between species (think of the

diversity of mouthparts, or the diversity of wing shapes), within a species their size and

shape varies little (although there are interesting exceptions, as in the case of beetle horns

and other sexually-selected traits 191) and must thus be under considerable developmental

control. But although body size is often thought of as being determined genetically 192, it is

actually subject to a considerable amount of plastic variation due to variation in nutrition,

temperature and other environmental factors. If a species’ body size varies, either due to

genetic or environmental variation, the sizes of the appendages covary with body size so that

their relative sizes remain fairly constant. Although it seems logical that such covariation

should occur (smaller bodies have smaller wings and smaller legs), the mechanism that

ensures proportional size of body parts at all body sizes is far from obvious. Parts that grow

simultaneously at different but constant rates will naturally maintain a constant proportion to

each other, but most body parts grow at varying rates (with exponential or, more commonly,

sigmoidal kinetics) and for different periods of time, yet somehow match their final size to

that of the body.

In hemimetabolous insects many body parts grow at the same time as the body and increase

in the same proportion at each larval molt, but some, such as the wings and genitalia,

increase disproportionally during the metamorphic molt when a larva becomes an adult. In

holometabolous insects appendages develop as imaginal disc, and these do most of their

growth after the larva has stopped feeding and growing. When a larva is undernourished and

stops feeding to begin metamorphosis at a smaller than normal body size, the wing discs

somehow have to alter their subsequent growth so their final size matches that smaller body

size.

Growth is controlled at two levels. It is controlled centrally via the production of growth

hormones and growth factors, and it is controlled locally at the cell level by regulating the

response to growth factors, and in some cases by autocrine production of growth factors.

The fact that body size varies with environmental factors and tissue and appendages adjust

their size to body, suggests that size regulation of body parts cannot be an intrinsic property

of cells. Size regulation of body parts, like that of the body as a whole, must be a systemic

property that involves a mechanism that can assess size and a mechanism that controls the

size at which growth stops.
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Although the covariation and scaling of appendages with body size is good, it is seldom

perfect and this deviation is captured by the concept of allometry. Some body parts grow

hypoallometrically (becoming relatively smaller with increasing body size) and others

hyperallometrically. Some body parts of social insects, and many sexually selected traits

such as beetle horns, have complex sigmoidal allometries and grow disproportionally large

with increasing body size 191, 193–196. Each body part has a characteristic species-specific

allometry, which suggests an underlying mechanism that systematically matches its growth

pattern to overall size.

C.2. Insulin & ecdysone control of imaginal disc growth

Just as insulin and ecdysone control the rate and duration of body growth in Drosophila

larvae and likely the larvae of all holometabolous insects, so too do they influence the rate

and duration of imaginal disc growth. Indeed, it is systemic changes in the titers of these

hormones that are central to coordinating growth among discs and between the discs and the

body as a whole, thereby resulting in a correctly proportioned adult.

Insulin signaling regulates the rate of imaginal disc growth. Perturbing insulin-signaling in

individual imaginal discs, either by generating clones mutant for Inr, Chico, Pi3K or Akt, or

by targeted expression of transgenes or dsRNAi, affects the final size of the disc without

affecting the size of any other structure 68, 79, 82, 84, 197, 198. Consequently, the response of

individual discs to circulating ILPs is regulated organ autonomously. The effect of insulin-

signaling on final size is primarily mediated through a reduction in the rate of cell growth

and proliferation 198, with a consequential reduction in cell size and cell number in the final

adult organs 79, 86, 199.

Ecdysone regulates the timing of imaginal disc differentiation and morphogenesis. The

changes in the ecdysone titer that follow attainment of critical size orchestrate the expression

of genes involved in pattern specification and differentiation. For example, the movement of

the morphogenetic furrow across the eye-antennal imaginal discs is regulated by

ecdysone 200, 201, as is the induction of Distalless expression within bract cells of the pupal

leg by EGFR signaling 202. Activation of the ecdysone signaling pathway in imaginal discs

organ-autonomously results in the premature expression of patterning genes 107, 203.

Consequently, accelerating the timing of ecdysone synthesis not only reduces final body

size 1, but also final organ size 29, in large part because premature ecdysone secretion

shortens the period of growth.

It is tempting to partition the roles that ecdysone- and insulin-signaling play in size control

as regulation of the duration and rate of imaginal disc growth respectively. However, in

order to generate a functioning adult organ, these two processes must be integrated at some

level. Unsurprisingly, therefore, there is increasing evidence of considerable crosstalk

between the insulin- and ecdysone-signaling pathways, both at a physiological and a

molecular level. As discussed above, ecdysteroidogenesis is both regulated by and regulates

insulin-signaling, with an increase in the ecdysone titer (through enhanced insulin-signaling

in the PG) reducing systemic insulin-signaling via the fat body and slowing body growth 1.

Further, the release of ILP 8 from damaged imaginal discs appears to inhibit the release of
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ecdysteroid, possibly by antagonizing insulin-signaling in the PG, or by inhibiting the

release of PTTH 113, 114.

These studies suggest that ecdysone is a negative growth regulator. However there is also

considerable evidence that ecdysone is necessary to promote imaginal disc growth organ-

autonomously 109, 200, 204–206. Indirect evidence suggests that this ecdysone-dependent

imaginal disc growth is insulin-independent. Starvation or suppression of insulin-signaling

reduces imaginal disc growth in larvae before attainment of critical size, when ecdysone

levels are low, but not after critical size, when ecdysone levels are higher 205, 207.

Additionally, activating ecdysone-signaling in the imaginal discs of starved larvae before

attainment of critical size also appears to promote growth 107.

Consequently, the role that ecdysone and insulin-signaling play in regulating imaginal disc

growth is a complex one. Elevated ecdysone levels ostensibly reduce disc growth by

suppressing systemic insulin-signaling. Yet at least some level of circulating ecdysone is

necessary for imaginal disc growth and differentiation, potentially promoting growth in an

insulin-independent manner. Why does ecdysone have these apparently contradictory roles

in regulating imaginal-disc growth?

The answer may be that the imaginal discs in Drosophila have two types of growth:

isomorphic growth that is nutrition- and insulin-dependent and morphogenetic growth that is

ecdysone-dependent. Isomorphic growth ensures that size of the imaginal discs match the

size of the body as a whole, which in turn reflects nutritional conditions. Morphogenetic

growth accompanies differentiation of the imaginal discs into their final adult structure.

Evidence for these two modes of growth come from Manduca 111. In this species critical

weight is marked by a decline in circulating JH, which de-represses the production of PTTH

and ultimately stimulates the synthesis and release of ecdysone and metamorphosis 21. Since

imaginal disc development is completed in larvae that are no longer feeding, any growth

associated with terminal morphogenesis must be independent of feeding 205. It appears that

Manduca use the absence of JH as a proximate cue to initiate morphogenetic growth 111.

Starving larvae at the outset of the final instar when JH levels are high stops this growth. In

contrast, starving allatectomized larvae does not stop disc formation and growth. Normally

in Manduca sucrose feeding at the onset of the final instar caused both the wing discs and

the imaginal primordia to become pupally committed as signaled by the expression of

Broad, a pupal-specifying transcription factor normally induced by ecdysone, whereas

protein feeding was necessary for the subsequent morphogenetic growth 111, 208, 209.

Importantly, insulin can substitute for this nutrient input in starved animals and cause the up-

regulation of Broad in the discs and primordia, apparently by a direct action on these tissues

to prevent the suppressive action of JH 209.

In Drosophila, where elimination of JH is not necessary for ecdysone synthesis and

metamorphosis, we suggest that it is the increase in the ecdysone titer itself that is the

proximate cue for morphogenetic growth. Under this hypothesis, during normal Drosophila

development up to critical weight, insulin-signaling drives isomorphic growth of the discs.

However, once a larva has attained critical weight, has stopped feeding and is preparing to

pupariate, a rising ecdysteroid titer may also initiate morphogenetic growth, both by
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suppressing systemic insulin-signaling1 and allowing nutrition- and insulin-independent

growth of the imaginal discs57, 107. At the same time, ecdysone-dependent autophagy of the

fat body will provide nutrients necessary for morphogenetic growth 210. The observation

that very high levels of ecdysone inhibit imaginal disc growth 4, 109 suggests that

morphogenetic growth continues until ecdysteroid levels rise above a growth-inhibitory

threshold later in development, determining the final size of the corresponding adult organ.

It is important to note, however, that isomorphic growth continues even after the attainment

of critical weight and the initiation of morphogenetic growth. Indeed, changes in nutrition

only affect final body and organ size once critical weight is achieved, while changes in

insulin-signaling continue to affect organ size up until the beginning of pupariation, well

after a larvae has stopped feeding211. This later period of isomorphic growth appears to be at

least partially regulated by the release of dILP6 by the fat body, in response to both

starvation and circulating ecdysteroids 212. One hypothesis is that dILP6 regulates the final

growth of the discs so that they are appropriate to the size of the body as a whole, by

reflecting the quantity of nutrients stored in the fat body.

C.3. Control of relative growth

Individuals of a species vary in size due to differences in their genetics, nutrition,

temperature and other environmental factors, and simply because of random noise in the

complex mechanisms that control size. Whatever the cause of the differences and variation

in body size, the sizes of appendages and other body parts must co-vary. The simplest way

in which this co-variation could occur is if there is no integrative control, but that all body

parts simply grow at their own characteristic linear or exponential rates, and differences in

size come about by differences in the duration of growth. If all body parts (and by

implication, the body as a whole) stop growing at the same time then their final sizes will

have a characteristic proportion to each other and the body as a whole. The only control

would be the mechanism that stops growth. Such a simple mechanism is unlikely to occur in

nature because different body parts start and stop their growth at different times in

development. In hemimetabolous insects growth of appendages is episodic and occurs only

at each molt. And in holometabolous insects most of the growth of appendages occurs

during metamorphosis, after the body as a whole has stopped growing.

C.3.1. Hemimetabolous insects—Except for the wings and external genitalia, growth

of appendages is gradual with body, although change in shape indicates growth is not

isometric. Appendages generally grow incrementally at each molt. Cell division occurs only

during a molt because cell division is stimulated by the secretion of ecdysone and occurs

soon after apolysis (separation of the epidermis from the cuticle). If all epidermal cells

divide and maintain their size and shape, then surface areas should double at each molt and

linear measures (e.g. the length of a leg segment or the width of a head capsule) should

increase 20.5 = 1.41-fold at each molt (if it is volume that doubles, the linear increment

would be 20.33 = 1.26-fold). This incremental increase is called Dyar’s Rule, which states

that the growth increment (size of a structure divided by its size in the previous instar) is

constant from instar to instar. A constant growth increment results in an exponential increase

in size from instar to instar. Note that this is not the same as exponential growth since instar

length is variable and growth is episodic, occurring only when a larva molts. In Manduca the
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head capsule width and body length both have a growth increment of about 1.75, and in

Oncopeltus fasciatus, leg length has a growth increment of about 1.5 213. The growth

increment is seldom exactly 1.26 but varies from about 1.21 to 2.1 depending on the species

and structure measured 214, 215. Deviation from the ideal increment could be due to the fact

that not all epidermal cells divide, or that some cells divide more than once. The latter is

likely to be the case in the excessive increase in size of wings during the metamorphic molt.

Another possibility is that all cells divide but not all grow to the same size after

metamorphosis, either because of a change in ploidy (which increases cell volume) or an

change in shape (e.g. from columnar to squamous, or vice versa), which simply changes the

surface area of the cell that deposits the cuticle. Which of these alternatives accounts for the

changes in size and shape at each molt has not yet been investigated.

The primary focus of studies on relative size in Hemimetabola has been on the molecular

mechanisms that underlie differences in relative sizes of appendages. The wings pads in

Oncopeltus, like the legs, have a growth increment of about 1.5 during larval molts, but in

the molt to the adult the increase is exceptionally large, with an increment of about 3 213.

The increased growth at metamorphosis is controlled by the disappearance of the

transcription factor Broad (Br) which in the hemimetabolous insects appears in the embryo

and is present throughout nymphal life 213, 216–218. When br is expressed during the

Oncopeltus nymphal molt, the larval size increment is maintained 213. When br expression

is knocked down by br RNAi in the early instars, isometric growth of the legs and antennae

is unaffected but the anisometric growth of the wing pads is reduced. At the end of larval

life, br expression ceases and the metamorphic molt with an excessive increase in wing disc

size ensues. Treatment of a last-instar larva with JH maintains br expression and inhibits the

excessive growth increment of the wing. By contrast, treatment with precocene, which

destroys the CA 219, 220, causes premature metamorphosis and an increased growth

increment of wing pad at the next molt. Similar findings were recently reported for the

German cockroach Blattella germanica 218.

In Oncopeltus, the tibia of the third thoracic leg is moderately larger than the others and in

Acheta domesticus all leg segments (femur, tibia and tarsus) of the third abdominal legs are

greatly enlarged to form the jumping legs. The Hox gene Ultrabithorax (Ubx) is expressed

in the enlarged segments of the legs of these species, and its expression coincides with the

time during which these segments become enlarged. Suppression of Ubx prevents

embryonic enlargement of these leg segments 221, 222. Thus, it appears that Ubx sets up the

initial differences in size of appendages and appendage segments, at least in the third

thoracic segment. In Locusta migratoria the length of the femur scales geometrically with

mass in successive larval instars 223, indicating that the initial size advantage is simply

maintained. However, the increase during the molt to the adult is disproportionally large 223,

much like that of the wings in Oncopeltus.

C.3.2. Holometabolous insects—In holometabolous insects the adult morphology does

not develop gradually as it does in hemimetabolous insects, but the sizes and proportions of

adult body parts emerge after larval life, during metamorphosis. Adult appendages develop

from epidermal tissues that are either set aside during embryonic or larval development as

imaginal discs, or from small regions of larval epidermis that remain undifferentiated until
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metamorphosis 10. For instance, the horns of scarab beetles develop by proliferation of small

regions of epidermis 224, 225, very much like the legs of adult Manduca that develop from

small patches of epidermal cells of the larval legs 111, 226, 227.

Horn development and allometry in scarab beetles have been extensively studied and

appears to be under multilevel control 225, 228–230. In dung beetles horn development and

horn size are conditional traits. Small and medium size males have small horns or no horns

at all, and large males have disproportionally large horns 231–235. The locations where the

horns will grow are marked by the expression of Distal-less and Homothorax 224, 225.

Knock-down of Distal-less inhibits the growth of both head and thoracic horns in large

males but not in small and medium males, whereas knockdown of Homothorax only inhibits

the growth of thoracic horns but in all size classes.

In rhinoceros beetles, knock-down of the insulin receptor with dsRNA after larvae stopped

feeding and entered metamorphosis caused a 2% reduction in wing size and a 16% reduction

in horn size in the adult; genital appendage size was not affected 230. Clearly tissues differ in

their sensitivity to insulin signaling and the degree of insulin signaling can control the

relative sizes of these body parts, as is also the case in Drosophila 198, 236.

Growth and allometry of wings in Manduca is also under multiple levels of control. In vitro

tissue culture has shown that growth of wing discs requires both insulin and ecdysone

signaling. Either factor alone stimulates only limited growth, but together they act

synergistically to stimulate growth at the same rate observed in vivo 4, 5. Variation in either

ecdysone or insulin could thus control the rate of wing growth. Insulin signaling is generally

thought to be responsive to nutrition, but in Manduca growth of the wing disc becomes

independent of nutrition about the middle of the last larval instar 205, when the larva passes

the critical weight and has achieved about half their final size. The wing (like all other

imaginal appendages) grows during the prepupal and pupal stages, after the body has

stopped growing.

Body size can vary plastically due to variation in nutrition, yet wings grow to exactly the

right proportion to the body, indicating that they do not have a genetically determined size.

In Manduca it appears that the body controls the growth of its wings via the secretion of

ecdysone. Control occurs during the prepupal stage when both the level of ecdysone (which

controls the rate of cell division), and the timing of ecdysone secretion (which controls the

duration of cell division in the wing) determine the amount of growth of the wing 109. Thus

the growth and size of the wings is controlled by the central nervous system, via the

secretion of the PTTH that stimulates ecdysone secretion. In effect, the CNS controls the

correct scaling of body parts with variation in overall body size. The match is not entirely

perfect. At very large body sizes, wings do not quite grow large enough because

development time does not scale precisely with body size. Although at small body sizes the

duration of ecdysone secretion is shorter during the prepupal stage, at large body sizes it is

not significantly longer than at normal body sizes 109, 237. In Drosophila, by contrast,

imaginal disc growth depends on insulin signaling and it is possible that circulating insulin

levels depend on body size. Together with the organ-autonomous sensitivity to insulin

signaling 198, 236, this could be the mechanism by which organs of different sizes scale with

Nijhout et al. Page 18

Wiley Interdiscip Rev Dev Biol. Author manuscript; available in PMC 2015 January 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



body size. The mechanisms by which body size controls the pattern and amount of

circulating ecdysone and insulin is still not understood.
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Figure 1. Insulin-nutrition response pathways that regulate growth
This is the general pathway discussed in the text. Nutrients stimulate the insulin, PTTH/

ecdysone and TOR pathways. Although the entire pathway is potentially present in all cells,

not all these reactions occur at the same time in development, and different tissues such as

fat body and imaginal discs may express different subsets of this complex signaling system.

JH can inhibit or direct ecdysone signaling depending on tissue and developmental stage.
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Figure 2. Inter-organ signaling pathways that regulate growth
Growth depends on nutrient input, but is mediated by TOR, insulin (ILP) and ecdysone

signaling in each tissue. Details of the intracellular signaling pathways are shown in Figure

1. The PTTH-ecdysone axis appears to be universal, as are the ILP-pathways and the amino

acid-TOR axis. Other interactions illustrated have been studied in only one or two species

and in relatively few tissues.
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Figure 3. Roles of genes, nutrition and photoperiod in regulating body size in Manduca
Body size depends on the signal that causes growth to stop. In insects this signal is the

secretion of ecdysone, whose secretion is regulated by PTTH. PTTH secretion is inhibited

by JH and gated by the photoperiod. The top panel illustrates a hypothetical scenario in

which genetic differences in the rate of JH breakdown affect the duration of the period

required for JH elimination after the larva passes the critical weight (red and blue bars). A

slower rate of JH decay results in a larger body size. The bottom panel illustrates the effect

of environmental variation on growth rate. Slower growth rate (without a change in the rate

of JH decay) can cause larvae to miss a photoperiodic gate and stop growing at the next one,

at a larger body size.
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Figure 4. Broad mediates the effects of ecdysone and JH on pupal gene expression during
metamorphosis
During larval molts JH inhibits Broad so larval genes remain active and pupal gene

expression is repressed. In the last larval stage of Manduca (but not in earlier instars, nor in

Drosophila) JH also inhibits PTTH secretion. When JH disappears in the last larval instar,

ecdysone-stimulated activation of Broad induces pupal commitment and represses

expression of larval genes.
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