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Abstract

Background—Phase-amplitude coupling (PAC) – the dependence of the amplitude of one

rhythm on the phase of another, lower-frequency rhythm – has recently been used to illuminate

cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC

is decomposing data to obtain rhythmic components of interest. Current methods of PAC

assessment employ narrowband Fourier-based filters, which assume that biological rhythms are

stationary, harmonic oscillations. However, biological signals frequently contain irregular and

nonstationary features, which may contaminate rhythms of interest and complicate comodulogram

interpretation, especially when frequency resolution is limited by short data segments.

New method—To better account for nonstationarities while maintaining sharp frequency

resolution in PAC measurement, even for short data segments, we introduce a new method of PAC

assessment which utilizes adaptive and more generally broadband decomposition techniques –

such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC

measurements, our method distributes the PAC associated with pairs of broadband oscillations

over frequency space according to the time-local frequencies of these oscillations.

Comparison with existing methods—We compare our novel adaptive approach to a

narrowband comodulogram approach on a variety of simulated signals of short duration, studying

systematically how different types of nonstationarities affect these methods, as well as on EEG

data.

Conclusions—Our results show: (1) narrowband filtering can lead to poor PAC frequency

resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach

© 2014 Elsevier B.V. All rights reserved.
* Corresponding author at: Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, MA 02115,
USA. Tel.: +1 520 203 3185; fax: +1 617 353 8100. benpolletta@gmail.com (B. Pittman-Polletta). ** Corresponding author at:
Brigham & Women's Hospital/Harvard Medical School, 221 Longwood Avenue, BLI 040, Boston, MA 02115, USA. Tel.: +1 617 525
8694; fax: +1 617 732 7337. khu@bics.bwh.harvard.edu (K. Hu)..

NIH Public Access
Author Manuscript
J Neurosci Methods. Author manuscript; available in PMC 2014 June 09.

Published in final edited form as:
J Neurosci Methods. 2014 April 15; 226: 15–32. doi:10.1016/j.jneumeth.2014.01.006.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than

traditional comodulograms.
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1. Introduction

Complex biological systems contain rhythmic components at multiple frequencies, and these

rhythms are rarely independent, exhibiting many forms of coupling including phase

synchronization and amplitude comodulation (Rosenblum et al., 1997; Tass et al., 1998;

Fries, 2005; Womelsdorf et al., 2007; Lo et al., 2008; Sauseng et al., 2008; Darvas et al.,

2009; Fell and Axmacher, 2011; Bartsch et al., 2012; Hu et al., 2012; Schutter and Knyazev,

2012). Recently, a great deal of attention has been paid to phase-amplitude coupling (PAC)

in neuronal signals, in which two rhythms co-exist and the amplitude of the higher

frequency rhythm itself oscillates in phase with the lower frequency rhythm (Lakatos et al.,

2005; Buszaki, 2006; Jensen and Colgin, 2007; Cohen et al., 2009; Canolty and Knight,

2010; Axmacher et al., 2010). For instance, there is extensive evidence of phase-amplitude

coupling between theta (~4–10 Hz) and gamma (~40–100 Hz) rhythms in

electroencephalogram (EEG) and local field potential (LFP) recordings (Bragin et al., 1995;

Canolty et al., 2006; Montgomery et al., 2008; Sirota et al., 2008; Tort et al., 2009;

Scheffzuk et al., 2011). This PAC is empirically linked both to neuronal circuit dynamics

and to cognitive processes, and is believed to reflect neural coding and information transfer

within the complex neural network of the brain (Jensen and Lisman, 1996; von Stein and

Sarnthein, 2000; Lakatos et al., 2005; Jensen and Colgin, 2007; Cohen et al., 2009; Canolty

and Knight, 2010; Axmacher et al., 2010). In addition, PAC phenomena have been observed

in other complex systems in geology and finance (Rennert and Wallace, 2009; He et al.,

2010). Thus, PAC and other types of cross-frequency coupling may serve as generic,

promising tools for investigating the multiscale interactions underlying complex systems

(He et al., 2010).

Reliable estimation of PAC requires not only identifying the existence of certain rhythms by

their average spectral power, but also determining the precise profiles of individual cycles of

these rhythms. Thus, neurophysiological time series present a number of challenges for PAC

assessment: their multiple component oscillations may be buried under complex and

nonstationary noise, may be present only intermittently, and may exhibit seemingly unstable

waveforms varying in amplitude and frequency. Thus, the frequency domain representations

of neural signals – like the underlying neural activity they measure – are broadband, even

when rhythms of interest are not, and decomposing data to extract these rhythms is far from

trivial. The Fourier transform can introduce non-physiological oscillations to account for

nonsinusoidal and nonstationary properties of these signals (Kramer et al., 2008; Lo et al.,

2009a), a difficulty that may be aggravated in short time series, for which frequency

resolution (as measured by the Rayleigh resolution – the difference between consecutive

frequencies represented in the Fourier transform) is severely limited.
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To address some of these issues, we introduce a novel PAC measurement method which

couples a broadband, adaptive decomposition method – the empirical mode decomposition

(EMD) (Huang et al., 1998) – with time-local frequency assessment. The EMD iteratively

applies a procedure called “sifting” to extract the fastest timescale fluctuations from a signal,

resulting in a series of successively lower-frequency oscillatory components called intrinsic

mode functions (IMFs). The original signal can be represented as the sum of these IMFs,

each of which is unique to the data. As the IMFs are derived in the time domain without the

assumption of constant frequency, amplitude, and functional form, each IMF may be

frequency- and/or amplitude-modulated.

Due to the broadband and data-derived nature of these IMFs, combining current methods

with the EMD or another adaptive decomposition would yield, at best, PAC measurements

with very broad frequency resolution (i.e., PAC measurements computed between

oscillations with energy over a wide range of frequencies), and at worst, PAC measurements

incomparable between data segments (i.e., PAC measurements computed between

oscillations with frequency content that is highly variable between data segments). Our

method, called Intrinsic Mode Phase-Amplitude Coupling (IMPAC), resolves this issue. It

calculates a measure of phase-amplitude coupling between each IMF and its higher-

frequency IMFs. Rather than assigning this measure to a single frequency pair, determined

by, for instance, the average frequency content of the phase-giving and amplitude-giving

IMFs, IMPAC redistributes the calculated coupling across the phase frequency-amplitude

frequency plane. This redistribution is done according to the proportion of time the two

IMFs spend at each phase frequency-amplitude frequency coordinate, as determined by the

cycle-by-cycle frequencies of the two IMFs.

While IMPAC is built around the EMD, similar approaches may be implemented on the

output of any adaptive or otherwise broadband decomposition method, such as wavelet

decomposition. As an illustration, we have applied the IMPAC approach to the output of a

serial, dyadic filter bank with an average frequency response similar to the EMD (Flandrin

et al., 2003, 2005; Wu and Huang, 2004) and many similarities to the wavelet transform, a

method we call the Dyadic Filter bank PAC method (DFPAC).

We compared the performance of IMPAC and DFPAC to two standard Fourier-based PAC

methods on both simulated signals and real EEG data. Our simulated signals contained PAC

at frequencies chosen to mimic theta and gamma rhythms in brain activity – the phase of a 6

Hz rhythm modulates the amplitude of a 65 Hz rhythm – as well as a number of data

processing challenges that are often present in neurophysiological data: measurement noise;

missing data; random trends or measurement drift; the presence of uncoupled, frequency-

and amplitude-modulated oscillations; and coupled oscillations with amplitude proportional

to frequency. The coupled rhythms were for the most part stationary and sinusoidal, but we

also examined frequency-modulated and asymmetric coupled oscillations. We simulated a

total of 150 s of signal for each challenge, divided into 3 s epochs. Each epoch was designed

to capture the same system – i.e., there is some stationarity across epochs – and we

measured the average performance of each measure on the 50 epochs. We also tested all

PAC measurement methods on mouse intracranial EEG recorded during REM sleep, a state
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in which brain signals have been shown to exhibit robust theta-gamma PAC (Scheffzuk et

al., 2011), as well as multiple nonstationarities and artifacts in combination.

Our results show that, perhaps counter intuitively, standard comodulograms can yield poor

frequency resolution of PAC, inaccurate PAC frequency assignment, and false negatives in

PAC assessment. The novel strategy of recovering PAC from broadband oscillations and

determining its frequency characteristics time-locally and post-decomposition attains better

PAC frequency resolution and is more resistant to the effects of nonstationari-ties than

standard comodulograms. We also obtain novel results regarding the effects of uncoupled

oscillations. While these uncoupled rhythms a priori should not affect PAC measurement,

we show that they distort both narrow- and broadband PAC measurements in characteristic

ways, suggesting differential use of these approaches to minimize the effects of constant-

frequency vs. frequency-modulated uncoupled oscillations.

2. Methods

2.1. PAC quantification

Several methods of exploring PAC have been employed in the literature. One popular

analysis is the comodulogram, in which a “coupling palette” is computed and used to

indicate, for wide ranges of phase-giving and amplitude-giving frequencies, the strength of

the modulation of amplitude by phase (Tort et al., 2008, 2009; Scheffzuk et al., 2011). The

advantage of the comodulogram is that it allows the experimentalist to see at a glance the

phase-and amplitude-giving frequencies that exhibit strong coupling; only ranges of possibly

coupled frequencies must be chosen before analysis.

There are five steps in computing the comodulogram: (1) decomposing the time series of

interest to isolate a high frequency amplitude-giving rhythm Sa at frequency fa and a low

frequency phase-giving rhythm Sp at frequency fp (Fig. 1A and B); (2) obtaining the

instantaneous phase Φp of Sp and the instantaneous amplitude Aa of Sa (Fig. 1B); (3)

quantifying the dependence of Aa on Φp (Fig. 1C); (4) determining the significance of this

dependence, usually using a test of surrogate data; and (5) repeating these measures for

multiple pairs (fp, fa) (Fig. 2A and B).

For the standard comodulograms, we followed most of the details in (He et al., 2010),

applying third-order Butterworth filters and the Hilbert transform to obtain the instantaneous

amplitude and phase of various oscillatory signal components, and using an inverse entropy

(IE) measure based on the Kullback-Liebler distance to quantify phase-amplitude

dependence between components (Tort et al., 2010). To explore how the frequency and time

resolution tradeoff affects PAC measurement, we implemented filters with two rolloff

characteristics – shallow (–60 dB per decade, BPAC1) and steep (<–350 dB per decade,

BPAC2) – for low-frequency passbands of width 0.4 Hz, centered every 0.4 Hz from 3.2 Hz

to 8.8 Hz, and high-frequency passbands of width 6 Hz, centered every 6 Hz from 23 Hz to

107 Hz. The width of these phase-giving passbands is close to the Rayleigh resolution of our

simulated data (1/600 = 0.33 Hz), but a set of analyses with 2 Hz phase-giving passbands

yields similar results to those described for both our simulations and our experimental data

(Appendix A). In calculating the null distribution of IE for each frequency pair, we used a
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new surrogate data method, described below. The resulting IE distribution was used to z-

score the observed IE, and these z-scores were then thresholded, so that those not exceeding

a significance level of p = 0.05 (Bonferroni-corrected over all tested pairs of phase-giving

and amplitude-giving components) were ignored.

IMPAC introduces modifications to the first and third steps, as well as two novel steps: (2a)

computation of cycle-by-cycle frequency time series Fp and Fa for both Sp and Sa; and (6)

computation of a high frequency resolution comodulogram using this cycle-by-cycle

frequency information. We discuss these modifications below.

2.1.1. Signal decomposition using ensemble EMD—The EMD decomposes a time

series into a small number of intrinsic mode functions, or IMFs (Huang et al., 1998), derived

in the time domain without the assumption of constant frequency, amplitude, and functional

form. Typically the number of IMFs is on the order of the base-2 logarithm of the signal

length, with slight variations depending on the complexity of the signal. These IMFs are

“oscillation-like” in the following way: the absolute difference between the number of zero-

crossings and the number of local extrema is no more than one; and the mean value of each

IMF is close to zero except for the last IMF that describes the global trend of the time series.

The latter notion is the one used to implement the EMD, through a process called “sifting”.

In sifting, the local maxima and minima of the time series are spline-interpolated to create

an “upper envelope” and a “lower envelope” time series, respectively. The upper and lower

envelopes are then averaged, and this nonstationary trend is subtracted from the data,

leaving behind the maxima and minima that constitute the fastest fluctuations in the signal.

This process is repeated until the average of the upper and lower envelopes is uniformly

smaller than a given tolerance. The result is the first IMF extracted from the signal. It

exhibits the component oscillations which are of highest frequency locally in time. This first

IMF can be subtracted from the time series to yield a residual. This residual can in turn be

sifted to yield a second IMF, containing component oscillations that are lower in frequency

than those exhibited in IMF 1, at least locally in time. The process continues iteratively until

the residual is monotonic and can no longer be sifted.

While the EMD is neither linear nor a frequency-domain decomposition, some intuition into

its behavior can be gained from asking what kinds of linear, frequency domain filters it is

most like. This has been assessed by applying the EMD to a large number of realizations of

colored noise, and averaging together the Fourier spectra of the resulting IMFs (Flandrin et

al., 2003, 2005; Wu and Huang, 2004). The resulting frequency responses of the first 10

IMFs suggest that, at least on colored noise signals, the EMD acts roughly like a serial,

dyadic, high-pass filter bank. What this means is that the first IMF contains approximately

the top half of the frequency content of the noise; the second IMF contains the next quarter

of the frequency content; the third IMF contains the next eighth, and so on. Thus, if the

EMD yields 10 IMFs, the last 7 of these will represent the lowest eighth of the signal's

frequency content.

One of the difficulties of the EMD is that it can be sensitive to small changes in the values of

a time series. For example, low pass filtering may alter the results of the EMD: if the EMD
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decomposes a signal into 10 IMFs, the first five of which have frequency content above 200

Hz, one might hope that applying the EMD after low-pass filtering the signal at 200 Hz

would recover the last five IMFs from the original decomposition, but this may not be the

case. A refinement of the EMD, known as ensemble empirical mode decomposition

(EEMD; Wu and Huang, 2009), can help to address this issue. In the EEMD, one performs

the empirical mode decomposition on an ensemble of signals, obtained from the original

signal by adding multiple realizations of white noise, and then averages these

decompositions together, resulting in more stable and cleaner decompositions. For each

signal of interest, we performed EEMD on an ensemble of 100 signals with added white

noise having variance 0.1. Thus, the standard deviation of the Gaussian distributed noise

present in the sum of all components of the EEMD decomposition is ~1% of the standard

deviation of the raw signal. In this study IMFs having fewer than 5 cycles were discarded.

We calculated the IE of the phase of IMF n on the amplitude of (higher frequency) IMFs n –

1, n – 2,. . ., 2, and 1.

2.1.2. Signal decomposition using a dyadic filter bank—To implement a dyadic

filter bank, we passed signals sequentially through a series of Butterworth bandpass filters.

The passbands of these filters divided the frequency domain of our data ([1/1 800, 300] Hz

for our simulations, [1/6 000, 300] Hz for our EEG data) into ten dyadic subintervals: these

were, successively, the top half, the next 1/4, the next 1/8, and so on, through a final 1/210 of

this frequency domain. The order of these filters was the smallest possible while ensuring no

more than 1 dB of attenuation within the central 90% of the passband, and at least 20 dB of

attenuation outside of a centered interval 1.1 times the width of the passband. Each

bandpassed component was removed from the signal before applying the next bandpass

filter, yielding independent components. While ten components were extracted, those with

fewer than 5 cycles were discarded.

2.1.3. Cycle-by-cycle frequency computation—For each oscillatory component, we

calculated a time series of cycle-by-cycle frequencies as follows. To determine the cycles in

the ith oscillatory component, we “unwound” the phase time series Φi(t), prioritizing

monotonicity by allowing the phase to decrease only in increments smaller than π/4. We

then defined the time points at which the unwound phase time series crossed integer

increments of 2π to be the transitions between cycles. Next, we calculated a frequency time

series Fi(t), with the frequency of the cycle starting at time point s and ending at time point u

defined to be f(s,u) = 600 (Φi(u) – Φi(s))/(u – s) Hz, where 600 Hz is the sampling frequency

of our signals. We set Fi(v) = f(s,u) for all v between s and u. Thus, our cycle-by-cycle

frequency time series is a secant approximation to the instantaneous frequency time series,

which is the derivative of the (unwound) instantaneous phase time series. While

instantaneous frequency may be affected by the waveform of an oscillation, so that sharp

peaks produce high instantaneous frequencies, the cycle-by-cycle frequency is insensitive to

these factors. On the other hand, unlike a smoothed instantaneous frequency time series, the

values of our cycle-by-cycle frequency time series change adaptively, on a timescale fit to

the varying cycle lengths of oscillations in the data.

Pittman-Polletta et al. Page 6

J Neurosci Methods. Author manuscript; available in PMC 2014 June 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.1.4. Cycle-shuffled surrogate data—In the time-domain spirit of EMD, and with an

eye toward testing the significance of IE detected in short time series with unique temporal

structures, we introduced a new method for generating surrogate data: after identifying

individual cycles in each oscillatory component, we shuffled the blocks of the amplitude and

phase time series corresponding to these cycles, guaranteeing a random permutation of these

blocks. Standard surrogate data techniques used in PAC analyses include the “cut-and-shift”

procedure – which involves cutting the phase or amplitude time series at a single point, and

circularly shifting the values in the time series, so that the “cut” point becomes the

beginning of the time series – and the “block-shuffle” procedure, for example as

implemented in (He et al., 2010) – in which the phase and amplitude time series are cut at

several (random or deterministic) locations, and the order of the resulting blocks of values is

permuted independently for the two time series. Our surrogate data method is most similar

to the “block shuffle” approach, but the locations of the cuts are dictated by the local

frequency of each phase- and amplitude-giving time series. Thus, the time series are cut into

blocks that are the size of a single oscillatory cycle, blocks that differ both in location and in

size between the phase- and amplitude-giving time series.

To determine an empirical distribution of IE for the ith amplitude-giving component and the

jth phase-giving component, we shuffled the cycles of Ai(t) and Φj(t) as follows. For each of

Ai(t) and Φj(t), all cycles were assigned an index (there were a different number of cycles in

each time series); the cycle indices were shuffled sufficiently many times (3 log2(n)/2 + 2)

to yield a nearly random permutation of cycle indices (Aldous and Diaconis, 1996); and the

cycles (each of which may have a different length) were concatenated according to the

randomly permuted cycle indices. In the resulting shuffled phase and amplitude time series

ϕi(t) and Ai(t), the temporal relationship between high frequency amplitudes and low

frequency phases is disrupted, but the phase and amplitude profiles of individual cycles

remain intact. The IE of ϕi(t) and Ai(t) thus reflects only the contributions of the temporal

structures of these phase and amplitude profiles, such as the standard deviation of

amplitudes, but not the contributions of simultaneously occurring phases and amplitudes,

such as phase-amplitude coupling. This process was repeated 100 times for each pair of

oscillatory components.

The mean and standard deviation of the resulting empirical distribution of IE were used to z-

score the observed IE for each pair of phase-giving and amplitude-giving IMFs. Those

measurements which did not exceed a significance level of p = 0.05 (Bonferroni-corrected

over all tested pairs of phase-giving and amplitude-giving components) were ignored.

2.1.5. Frequency resolved comodulograms—To obtain high frequency resolution

comodulograms in the IMPAC method, we assigned the IE associated with a pair of

components to multiple locations in the phase frequency-amplitude frequency plane,

according to the time series of the frequency coordinates (Fj(t), Fi(t)) of the two

components. Each frequency coordinate was assigned an amount of IE equal to the

significant IE calculated between Ai(t) and Φj(t), divided by the total number of time points

(Fig. 2C).
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For clearer visualization and comparison with our standard comodulograms, we averaged

this redistributed IE over the rectangular patches of phase frequency-amplitude frequency

space allotted to each pair of bandpassed oscillations. In other words, we averaged the IE

within 196 bins of phase frequency width 0.4 Hz and amplitude frequency width 6 Hz.

These bins were centered at phase frequencies spaced every 0.4 Hz between 3.2 and 8.8 Hz,

and at amplitude frequencies spaced every 6 Hz between 23 and 107 Hz. For each bin we

calculated the average IE value of all points (Fj(t), Fi(t)) lying in that bin (Fig. 2D). (Note

that performing this operation on the bandpassed components of BPAC1 and BPAC2 would

lead to the “overcounting” of phase-amplitude modulation in some bins, since the

bandpassed components are not independent.)

In summary, we compared four different PAC methods: one standard comodulogram

employing a shallow rolloff Butterworth filter (BPAC1); one standard comodulogram

employing a steep rolloff Butterworth filter (BPAC2); one frequency-resolved

comodulogram utilizing the EMD (IMPAC); and one frequency-resolved comodulogram

utilizing a dyadic filter bank (DFPAC). All code is available upon request.

2.2. Simulations

We modeled phase-amplitude coupling using simulated signals S(t) which are the sum of a

phase-giving oscillation Sp(t), having a center frequency of 6 Hz, and an amplitude-

modulated amplitude-giving oscillation Sa(t), having a center frequency of 65 Hz (Fig. 3).

For our additive challenges – noise, missing data, random trends, and uncoupled oscillations

– Sp(t) and Sa(t) are sinusoidal, with Sp(t) having constant amplitude and Sa(t) having an

amplitude envelope Aa(t) constructed from Sp(t):

(2.2.1)

To test the effects of asymmetric and nonstationary coupled oscillations, Sp(t) and Sa(t) were

modified in ways discussed briefly below.

When Sp(t) and Sa(t) are sinusoidal, trigonometric identities allow Sa(t) to be represented as

(2.2.2)

and all three of these oscillatory summands can be seen clearly in the Fourier transforms of

most of our simulated signals (Fig. 3). As discussed below, our results depend in part on

whether such constellations of peaks are assigned to the same or to different oscillatory

components; when fractions of any two summands are added together, constructive and

destructive interference lead to a beating phenomenon, i.e. rhythmic amplitude modulation.

While trigonometric identities do not apply to more complex forms of PAC, most signals

exhibiting amplitude modulation will be represented as a sum of sinusoidal components in

frequency space. To produce rhythmic amplitude modulation of an oscillation with a certain

center frequency, these components will be localized around frequencies offset from the
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center frequency by the frequency of the amplitude modulation, resulting in a profile similar

to the three peaks seen in the transforms of our simulated time series (Fig. B.1).

The severity of each challenge was varied at 5 or 10 levels, with 50 realizations simulated

for each challenge and each level. All signals were simulated at 600 Hz in three second

epochs. Except for the simulations used to study the effects of noise level and frequency

dependent amplitude, white noise having variance 0.5 was added to all simulations, for a

signal-to-noise ratio of 4. All code is available upon request.

2.2.1. Noise—To replicate the effects of measurement noise, white noise with values

drawn from a normal distribution – having variance ranging from 0.1 to 1 in steps of 0.1 –

was added to the standard signal (Fig. 3A and K).

2.2.2. Missing data—Missing data may occur with amplifier saturation in EEG and LFP

recordings. This phenomenon also often occurs in disciplines such as circadian biology,

when devices collecting data in the field and over long periods of time are periodically

rendered non-functional, intentionally or by accident. As PAC analyses take on a greater

role in other fields of physiology, and as devices deployed for measuring brain activity

become more portable, minimizing the effects of missing data may become a common

challenge in PAC analyses. To replicate the effects of missing data, we replaced a fraction of

randomly chosen segments of the standard signal with zeros (Fig. 3B and L). More

precisely, S(t) was divided into twenty 0.15-second segments, each 90 data points in length.

The data points in l of these segments (chosen uniformly at random) were replaced with

zeros, and l was varied from 1 to 5 in steps of size 1 (Fig. 3B and L).

2.2.3. Random trends—Nonstationary trends, due to voltage drift or fluctuations at slow

timescales, may occur EEG and LFP recordings. Removing such trends can be non-trivial,

and bandpass filtering may not always suffice (Wu et al., 2007; Lo et al., 2009b). To

replicate the effects of such nonstationary trends, we added slowly-varying continuous

random piecewise-linear trends to the standard signal (Fig. 3C and M). Trends contained a

number (the integer closest to m = 3.6l) of line segments, with endpoints chosen uniformly

in the interval [0,3] seconds. Each line segment's slope was chosen uniformly from the

interval [– l/60, l/60] Hz. The trend's value at time zero was chosen uniformly from the

interval [–2,2]. Thus, for l = 5, one possible random trend is a sawtooth wave of frequency 6

Hz, with amplitude 1. We varied l from 1 to 10 in steps of size 1.

2.2.4. Nonstationary uncoupled oscillations—To replicate the effects of other

physiological or measurement-induced oscillatory signals (such as alpha (10–12 Hz) or beta

(12–30 Hz) rhythms or line noise) we added uncoupled oscillations, exhibiting varying

levels of frequency and amplitude modulation, to the standard signal (Fig. 3D–F and N–P).

The center frequency fmid of the uncoupled, nonstationary oscillation was either 10 Hz, 25

Hz, or 45 Hz. All nonstationary oscillations were constructed by first creating: a continuous,

piecewise-linear phase vector, with slopes drawn uniformly from a given frequency interval;

and a piecewise-constant amplitude vector with values drawn uniformly from a given

amplitude interval. Discontinuities in the slope of the phase vector and the values of the

amplitude vector occurred at the same locations. The sine of this phase vector was then
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taken to produce a continuous, frequency-modulated oscillation, which was then multiplied

by the piecewise-constant amplitude vector to produce amplitude modulation. Since the

discontinuities in this amplitude vector occurred at the same time points as the zeros of the

frequency-modulated oscillation, there were no discontinuities in these simulated

oscillations. Frequencies were drawn uniformly from the interval [fmid(1 – l), fmid(1 + l)] Hz,

and amplitudes were drawn uniformly from the interval [1 – l, 1 + l], with l, the level of

nonstationarity, varying from 0.1 to 0.5 in steps of 0.1.

2.2.5. Low amplitude amplitude-giving oscillations—In recordings of brain

electrical activity, spectral power is often proportional to frequency, so that high frequency

oscillations have much lower amplitudes than low frequency oscillations. We simulated

signals with this property as follows. First, we simulated white noise-added standard signals,

with noise having a range of variances, as in Section 2.2.1. Each of these simulated signals

was then transformed so that the amplitudes of all Fourier components were proportional to

their frequency. More precisely, we took the Fourier transforms of these simulated signals,

and multiplied the Fourier component at frequency f by the factor

(2.2.3)

The normalization factor ensures that the total spectral power of the resulting signal remains

the same after the scaling. A sample simulated signal and an average Fourier transform are

shown in Fig. 3G and Q, respectively.

2.2.6. Asymmetric phase-giving oscillations—To replicate the effects of

nonsinusoidal low-frequency components (such as the sharply-peaked theta oscillations

measured in the rodent hippocampus (Belluscio et al., 2012)), we simulated a 6 Hz phase-

modulating oscillation having an asymmetric oscillatory waveform, spending more time in

rising phases than in falling phases in each cycle (Fig. 3H). We created a time series Φp(t) of

phases for the phase-giving oscillation Sp(t) by dividing each oscillatory period of 100 data

points into a rising and a falling phase, and linearly interpolating Φp between 0 and π over

the rising phase, and between π and 2π over the falling phase. Then, we set Sp(t) =

sin(Φp(t)), and constructed Aa(t) and S(t) from Sp(t) as in the standard signal. The proportion

of each cycle taken up by the rising phase was varied over 0.6, 0.7, 0.8, 0.9, and 0.95, so that

the rising phase comprised, respectively, 60, 70, 80, 90, and 95 data points (Fig. 3H and R).

(Note there are 50 data points in the rising phase and 50 data points in the falling phase of a

sinusoidal oscillatory cycle.)

2.2.7. Nonstationary coupled oscillations—To replicate the effects of frequency

modulation in coupled oscillations, we introduced cycle-by-cycle jitter (frequency and

amplitude variation) separately into the phase-modulating and amplitude-modulated signals,

resulting, respectively, in nonstationary phase-giving and nonstationary amplitude-giving

oscillations. Like nonstationary uncoupled oscillations, nonstationary coupled oscillations
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were constructed by taking the sine of a continuous, piecewise-linear phase vector, and

multiplying it by a piecewise-constant amplitude vector.

Each nonstationary phase-giving oscillation Sp(t) contained cycles having frequencies drawn

uniformly from the interval [6(1 – l), 6(1 + l)] Hz. We then used Sp(t) to create an amplitude

envelope Aa(t) = (Sp(t) – min(Sp(t))) × 0.75 + 0.25, and an amplitude-modulated signal Sa(t)

= Aa(t)sin(130πt), as in the standard signal. We varied l from 0.05 to 0.5 in steps of 0.05.

When l = 0.5, the phase-giving oscillation contains cycles at frequencies ranging from 3 to 9

Hz (Fig. 3I and S).

To create a nonstationary amplitude-modulated oscillation, we generated Sp(t) and Aa(t) as

in the standard signal. Then we generated a frequency-modulated signal FM(t) having center

frequency 65 Hz, with individual cycles having random frequencies drawn uniformly from

the interval [65(1 – l), 65(1 + l)] Hz. We then set Sa(t) = Aa(t)FM(t) and S(t) = Sp(t) + Sa(t).

We varied l from 0.05 to 0.5 in steps of 0.05. When l = 0.5, the amplitude-giving oscillations

contain cycles having frequencies from 32.5 to 97.5 Hz (Fig. 3J and T).

3. Experiment

A baseline electroencephalographic (EEG) recording for a study of mouse sleep circuitry

was made using bilateral screw electrodes placed above the frontal and parietal cortices.

EEG was acquired using a preamplifier (Pinnacle Technology Inc.) connected to a data

acquisition system (8200-K1-SE) and Sirenia Software (both from Pinnacle Technology

Inc.). During data acquisition, the sampling rate for data acquisition was set at 600 Hz and

preamplifier had a high pass filter set at 0.5 Hz. Digitized polygraphic data were analyzed

off-line in 10 s bins using Sleep Sign software (Kissei, Japan). The software is programmed

to autoscore each epoch using an algorithm that identified three behavioral states based on

EEG and EMG. Over-reading of the sleep recordings were done according to previously

published criteria (Neckelmann and Ursin, 1993; Kaur et al., 2013): the autoscored data

were checked at least twice visually for movement and any other artifact and to confirm or

correct automatic state classification; concurrent video images of the animal's behavior also

aided in this process. An hour's worth of artifact-free REM epochs (360 epochs total) was

selected and was analyzed using all four methods. Amplitude frequency bins were spaced

every 5 Hz from 20 to 110 Hz, and phase frequency bins spaced every 0.5 Hz from 4 to 12

Hz.

4. Results

Our primary interest was the frequency resolution of the various methods, which we

assessed in two ways. First, we qualitatively examined the average comodulogram over 50

realizations of the highest level of each challenge. Second, we visualized the preferred

phase-giving and amplitude-giving frequencies by plotting histograms of the bins exhibiting

the highest IE for each level of each challenge. These histograms are displayed in black and

white heat maps, in which the rows correspond to frequency bins for either phase-giving or

amplitude-giving oscillations, while the columns correspond to the levels of a given

challenge. The brightness of each bin indicates the number of realizations whose maximum
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IE value occurred in the given bin. (If the maximum IE value occurred in multiple bins, then

the average of those bins was assigned to be the bin with maximum IE – something which

occurred only rarely.) These results are shown in Figs. 5–9 and 11–14. We focus our

exposition on the challenges which most dramatically affect our three methods.

4.1. Noise

The results for our noise-added simulations are shown in Fig. 5. To assist in the

interpretation of these results, Fig. 4 displays the outputs from each of our decomposition

techniques for a sample white noise-added signal. The decompositions resulting from

Fourier bandpassing are relatively straightforward. We can see, however, that there is a great

deal of overlap between filters with neighboring passbands as applied in BPAC1. We can

also see that the sharper frequency resolution of the filters applied in BPAC2 results in more

nearly sinusoidal bandpassed oscillations. In particular, the widths of our phase-giving

passbands are close to the Rayleigh resolution of our data (see Appendix A), and so each

bandpassed oscillation is the weighted sum of a small number of Fourier components.

The EMD for this sample simulated signal has 7 modes (on the order of log2(1800) ≃ 10.8),

each of which is frequency modulated. Mode 2 has cycle-by-cycle frequencies of 79.4 ±

27.6 Hz (mean ± s.d.) and mode 5 has cycle-by-cycle frequencies of 5.98 ± 0.2 Hz. The

results from the dyadic filter bank are similar to those obtained using the EMD. However,

our dyadic filter bank nearly always produces 10 oscillations, having a fixed frequency

content. The amplitude-modulated 65 Hz signal appears in the 3rd oscillation, and the 6 Hz

signal appears in the 6th oscillation.

For BPAC1, the significant frequency overlap between filters with neighboring passbands

(Fig. 4C), combined with the short duration of our simulated signals, resulted in poor

resolution of the phase and amplitude frequencies involved in PAC (Fig. 5A and E). For the

parameter regimes explored, increasing the level of noise decreased the leakage between

frequency bands and improved the performance of this method (Fig. 5E). This occurred

because in the presence of higher levels of broadband noise, the attenuated (but still present)

6 Hz peak accounted for a smaller proportion of the total power of each bandpassed

component. We observe similar phenomena – in which the changing proportion of spectral

leakage from different signal features has dramatic effects on the resulting bandpassed

signals – repeatedly. (Note that with continued lowering of the signal-to-noise ratio, the

method's performance will stop improving.)

The sharper-rolloff filters employed in BPAC2 resulted in more accurate assignment of PAC

frequency, but this method assigned the maximum PAC to incorrect amplitude frequencies –

59 and 71 Hz, as opposed to 65 Hz (Fig. 5B and F). This is due to the frequency-domain

representation of Sa(t) as a sum of three sinusoids – a peak oscillation at 65 Hz and two

lower amplitude oscillations at 59 and 71 Hz. The steep rolloff filters of BPAC2 separate

these oscillations into a nearly constant-amplitude 65 Hz bandpassed component, and

amplitude-modulated 59 and 71 Hz components (Fig. 4D). For optimally sharp filters, this

resulted in a false negative result, i.e. detection of zero PAC (results not shown).
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IMPAC and DFPAC both extracted single amplitude-modulated and phase-modulating

components (Fig. 4E and F), resulting in good frequency resolution of PAC measurement.

They also showed good resistance to noise: their resolution at the highest noise level (a

signal to noise ratio of 2) was comparable to the amplitude resolution of BPAC2, and the

phase resolution of BPAC1 (Fig. 5G and H); DFPAC showed even better resolution. Both

broadband methods also yielded smaller average IE measurements within each bin, which

may reflect (1) the parceling out of IE corresponding to a single pair of phase- and

amplitude-giving components over on the order of 100 phase- and amplitude-frequency bins

and/or (2) the overestimation of IE by narrowband frequency-domain filtering, as observed

in phase synchronization measures (Xu et al., 2006).

4.2. Missing data & random trends

Both of these artifacts introduced energy at low frequencies, energy that in turn introduced

spurious low-frequency oscillatory components in BPAC1 and BPAC2, resulting in small

but noticeable effects. The low frequency power of the random trend diminished the

influence of spectral leakage from the 6 Hz oscillation, which slightly improved the phase

frequency resolution of both methods, and led to some spurious coupling between 2–3 Hz

phase and 59 and 71 Hz amplitude in BPAC2 (not shown). The results for missing data are

shown in Fig. 6. For BPAC1, the bandpassed components furthest from the 6 Hz oscillation

reconstructed the gaps in the data most faithfully, resulting in spurious PAC at low (3.2–3.6

Hz) and high (8–8.8 Hz) phase frequencies (Figs. 6A,E and B.2A). Spurious coupling also

appeared at low phase frequencies in BPAC2 (Fig. 6B and F), but was less prominent, and

the main difference with the noise-only condition was an apparent improvement in phase

frequency resolution, which seems to be due to the occasional assignment of coupling to low

frequencies rather than to frequencies neighboring 6 Hz (Fig. B.2B). Neither artifact had a

noticeable effect on the IMPAC & DFPAC methods, due to the allocation of more

oscillatory components at lower frequencies (Fig. 6C, D, G and H).

4.3. Nonstationary uncoupled oscillations

Uncoupled oscillations produced different patterns of effects in the narrowband (BPAC1,

BPAC2) and broadband (IMPAC, DFPAC) methods (Fig. 7). When narrowband filters were

used, uncoupled oscillations resulted in spectral leakage which changed either or both phase-

and amplitude-giving frequencies, with a severity proportional to the bandwidth of the

uncoupled oscillations. In contrast, uncoupled oscillations affected only the amplitude

frequencies measured by the broadband methods (again due to the greater ability of the

EMD and dyadic filter bank to tease apart oscillations at low frequencies), through a kind of

contamination that was most severe for constant amplitude oscillations.

We show the results for the ~45 Hz uncoupled oscillations in Fig. 7. For BPAC1, spectral

leakage from the ~45 Hz oscillations reduced the relative power of the 65 Hz oscillation in

bandpassed oscillations for passbands below 77 Hz, raising the maximum reported PAC to

amplitude frequencies of 83–89 Hz (Fig. 7A and E). For BPAC2, leakage from the ~45-Hz

oscillation completely obscured the amplitude modulation otherwise observed in the 59 Hz

band and severely attenuated the modulation otherwise observed in the 71 Hz band, so that

at high levels of nonstationarity, the true PAC was dominated by spurious coupling at low
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phase-giving frequencies (Fig. 7B and F). In contrast, neither the EMD nor the dyadic filter

bank were able to completely separate the 65 and ~45 Hz oscillations. As a result IMPAC

and DFPAC were biased to low amplitude frequencies (Fig. 7C, D, G and H). Previous work

has quantified the conditions under which the EMD is able to resolve a mixture of two

sinusoidal oscillations, as opposed to treating them as a single, amplitude-modulated

component (Rilling and Flandrin, 2008) – a problem which is nontrivial regardless of

decomposition method (Wu et al., 2011). The contamination of the 65 Hz oscillation by the

~45 Hz oscillation decreased with increasing bandwidth of the ~45 Hz oscillation (Fig. 7F),

due to less concentrated contamination of any one broadband component (Fig. B.3).

The effects of the ~10 and ~25 Hz oscillations were similar, if less dramatic. Spectral

leakage shifted the maximum PAC in the narrowband methods to lower phase frequencies

and higher amplitude frequencies, while having little effect on broadband methods, as the

decompositions employed there more easily segregated the low-frequency components at 6,

~10, and ~25 Hz (results not shown).

4.4. Low amplitude amplitude-giving oscillations

BPAC1 results for these simulations were similar to those for our noise-added simulations

(Fig. 15A and E), showing the same noise-dependent bias in preferred amplitude-giving

frequency. However, the presence of high spectral power at low frequencies in these time

series led to spectral leakage and the estimation of PAC at higher frequencies. BPAC2 failed

to detect PAC at low signal-to-noise ratios (Fig. 8B and F); with high levels of noise, the

low-amplitude peaks at 59 and 71 Hz were so attenuated by the filters employed that no

trace of amplitude modulation remained in the bandpassed component oscillations. The

broadband methods showed, if anything, sharper frequency resolution of PAC for these

signals, and the differences in performance between IMPAC and DFPAC were diminished

(Fig. 8C, D, G and H).

4.5. Asymmetric phase-giving oscillations

The average Fourier transform of these simulated signals exhibited peaks not only at 6 Hz,

but also at harmonic frequencies – 12 Hz, 24 Hz, and so on (Fig. 3R) – and these harmonics

were present in all decompositions. (The perhaps surprising presence of these harmonics in

the EMD is due to the sharp change in the waveform and the splining procedures used in the

EMD, which acted as lowpass filters, preventing this time domain method from capturing

the sharp 6 Hz wave with complete fidelity.) As a result, and as previously reported (Kramer

et al., 2008), the introduction of asymmetric waveforms resulted in spurious coupling

between 6 Hz phase and the amplitudes of these harmonic frequencies. This is visible in the

coupling of 23 and 29 Hz amplitudes to 6 Hz phase (Fig. 9A–D). For BPAC1, this sharp

edge artifact completely dominated the comodulogram. For the other methods, the actual

coupling was greater in magnitude than the sharp edge artifact except for very severe

asymmetry.

These simulations also have some applicability to another common source of artifacts in

brain data, especially LFP – namely their contamination by the broadband signature of

neuronal spiking activity. While we have not explicitly simulated such spiking artifact, the
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spectral characteristics of spiking activity are similar to those of the sharp edge waveforms

we simulate. Thus, we suggest that while IMPAC and DFPAC may provide improved

resistance to low-amplitude spike noise (relative to standard comodulograms), it will be

susceptible to high-amplitude spike noise, due to the splining procedures employed by the

EMD.

4.6. Nonstationary coupled oscillations

For these simulations, the actual frequencies at which PAC was present and thus the “target

comodulogram” and “target histogram” were altered. To illustrate these targets, we used the

IMPAC post-processing steps to calculate the IE that would result from the raw phase-

giving and amplitude-giving oscillations (Fig. 10).

4.6.1. Nonstationary phase-giving oscillations—The BPAC1 results in this context

were almost identical to the results for constant frequency phase-giving oscillations (Figs.

5A and 10A), indicating that the poor phase frequency resolution of this method precluded

the detection of phase frequency modulation. BPAC2 segregated cycles of different

frequencies into different bandpassed components, and showed robust PAC only at the

central phase frequency of ~5.6 Hz (Fig. 11B), failing to detect the broadband nature of the

coupling except at the highest bandwidths. IMPAC and DFPAC were able to track the

frequency content of the phase-giving oscillation at all bandwidths.

4.6.2. Nonstationary amplitude-giving oscillations—The BPAC1 comodulogram

did not show much specificity in terms of preferred amplitude frequency, but the histogram

did show the desired broadening of the preferred amplitude frequency as nonstationarity

increased, probably due to random fluctuations in the center frequency of the nonstationary

amplitude-giving oscillation. Surprisingly, BPAC2 was severely affected by the

nonstationary amplitude-giving signal. The steep rolloff filters employed in this method

sheared the nonstationary ~65 Hz oscillation into multiple components which showed

inconsistent amplitude modulation. At the highest levels of nonstationarity, the

comodulation of 6 Hz phase and 65 Hz amplitude was dominated by spurious PAC at low

phase frequencies (Fig. 12F). IMPAC and DFPAC derived comodulograms and histograms

matching the actual coupling profile of the simulated signal, as the decompositions they

employed were able to extract the high frequency nonstationary oscillation as a single

component. Note that mode mixing – a phenomenon in which oscillations at a single

frequency occur across multiple IMFs, even simultaneously – was present in the EMD but

did not affect the comodulogram because we considered oscillations in each component

cycle by cycle.

4.7. EEG data

Sample signals, sample decompositions, and average comodulogram results are shown in

Figs. 13 and 14. The results strongly mirrored those obtained from our simulated data. While

the broadband noise character and the longer length of these data segments improved the

frequency resolution of PAC measurement with BPAC1, the PAC frequency resolution of

this method remained poor. BPAC2 yielded a false negative result, which our simulations

suggest may be due to a nonstationary amplitude-giving oscillation, an asymmetric phase-
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giving oscillation, frequency-dependent oscillations, the presence of nonstationary

uncoupled oscillations, or all four in combination. IMPAC and DFPAC, in contrast, showed

highly frequency-resolved coupling between 7 and 60 Hz. Only the results from the

broadband methods were in good agreement with the literature (Tort et al., 2008, 2009;

Scheffzuk et al., 2011).

5. Discussion

5.1. Conclusions

5.1.1. The advantages of broadband, adaptive filtering—We have shown that

standard comodulograms constructed with two common implementations of a commonly-

used filter – the third-order Butterworth – are susceptible to a number of possible artifactual

errors. Our results show that, for both simulations and real data, bandpass filtering either

was unable to deliver the frequency specificity that it promised, as in BPAC1, or did so at

the cost of distorting the broadband oscillatory components in the signal, as in BPAC2,

misplacing that modulation or removing it altogether. Surprisingly, given our simulation

results, shallow-rolloff Butterworth filters performed better on real data than steep-rolloff

Butterworth filters, which are the default implementation in Matlab. However, our results

make it clear that these shallow-rolloff Butterworth filters – some of whose shortcomings

have been acknowledged (He et al., 2010) – have serious disadvantages when applied to our

data segments, including a noise level dependent bias which assigns maximal modulation

index to spuriously low frequencies (Fig. 5E).

These results suggest that accurately capturing nonstationary, nonsinusoidal, amplitude- and

frequency-modulated (and thus broadband) rhythms like those present in physiological data

is greatly facilitated by the use of adaptive and otherwise broadband filters, but the

frequency resolution of these filters is by definition poor. The approach implemented in the

IMPAC and DFPAC methods takes it as a given that the parameters of a decomposition give

incomplete information about the frequency content of each oscillatory component. Rather,

PAC frequency information is retrieved locally in time after decomposition. This opens the

door to the use of adaptive and broadband decomposition methods, offers a significant

improvement in frequency resolution when compared to standard comodulograms, and

affords an improved ability to handle many kinds of nonstationarities and artifacts,

especially those with energy at low frequencies.

Narrowband and broadband are relative terms and we would not suggest that there are no

narrowband filter settings allowing for the accurate assessment of PAC with the standard

comodulogram – especially in signals, such as our simulations and our data, where the

frequency content of PAC is known. However, finding these filter settings may be

nontrivial, and require prior knowledge about the time series of interest. In highly

nonstationary signals such as real brain data, the proper filter settings may change even over

the time course of a single data epoch. We suggest, and our results demonstrate, that

applying a more broadband decomposition, and letting the time-domain structure of the

resulting oscillations speak for itself through cycle-by-cycle frequency, is an effective and

“minimally invasive” way to obtain high frequency resolution PAC measurements.
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5.1.2. Non-adaptive decompositions must be tuned—For this data, the frequency

resolution of DFPAC is comparable to or even better than that of IMPAC when the dyadic

filter bank is selected appropriately. However, if the frequency response of a non-adaptive

decomposition is not carefully tuned to oscillations of interest, the structure of these

oscillations will be degraded – for example by an improperly aligned filter bank, as different

components of broadband oscillations are separated.

To illustrate how a misalignment may lead to biases and errors in PAC measurement, we

implemented the DFPAC method with a filter bank that was maladapted to our simulated

signals. In this filter bank, the first band contained the top 1/(2.09) of the frequencies present

in the signal, the next band contained the frequencies between (300 – 1/800)/(2.09) and (300

– 1/800)/(2.092), and so on, with the tenth band containing frequencies between (300 –

1/800)/(2.099) and (300 – 1/800)/(2.0910) Hz. These bands were so aligned that the

boundary between the second and third bands occurred at ~62 Hz, thus interfering with the

65 Hz oscillatory component of our simulated signal, as shown for a sample signal

containing white noise with variance 1 (Fig. 15A). Since the maladapted filter bank thus

separated the oscillation at 65 Hz from that appearing at 59 Hz, the resulting comodulogram

for the 50 simulated signals at white noise level 1 showed lowered coupling, and a reported

preferred amplitude frequency of 59 Hz (Fig. 15B and F). In combination with other

challenges, such improper alignment had a more dramatic effect. Fig. 15C shows the

comodulogram computed from 50 simulated signals having a nonstationary phase-giving

oscillation. In addition to showing some of the expected spread in preferred phase

frequency, this comodulogram showed a dramatic spread in preferred amplitude frequency.

When the mismatch between the filter bank and the signal were compounded with an

asymmetric phase-giving oscillation, the effects were likewise severe (Fig. 15D and F), with

the comodulogram and histogram dominated by spurious coupling resulting from sharp

edges in the phase-giving oscillation. Thus, in studies where the frequency ranges of interest

are not known a priori, non-adaptive broadband decomposition methods should be applied

with caution.

5.1.3. Constant-frequency vs. frequency-modulated distractors—The different

responses of broadband and narrowband methods to constant-frequency and frequency-

modulated uncoupled oscillations suggest that these methods might be used differentially to

minimize the effects of line noise and physiological uncoupled oscillations. Our simulations

indicate that in the presence of amplitude- and frequency-modulated uncoupled oscillations,

such as brain rhythms or other physiological rhythms at frequencies near those of interest,

spectral leakage may lead to dramatic biases in the frequencies at which PAC is measured

with narrowband, Fourier-based comodulograms. Thus, these methods should be avoided in

this context. On the other hand, the presence of a constant-frequency, constant-amplitude

uncoupled oscillation such as line noise may strongly bias our broadband comodulogram

method.

5.1.4. Combining multiple filtering approaches—In general, when exploring PAC in

physiological or other nonstationary signals, the best approach probably combines a number

of decomposition methods. It makes sense to apply the EMD first, allowing its adaptive
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nature to find the frequency bands of interest. When the range of cycle-by-cycle frequencies

present in the data determines the bins used to compute the high frequency resolution

comodulogram, IMPAC produces an image of all the PAC present in a signal from a single

computational investment. In certain situations, finer determination of coupling frequencies

may be obtained using narrowband filters whose passband and rolloff characteristics are

carefully tailored to the coupling identified with other techniques. This holds especially

when there are a priori reasons for exploring a frequency at which a signal exhibits little

power above the broadband noise background. Adaptive decompositions are unlikely to

extract oscillations at these frequencies, so “forced” extraction using, for example,

narrowband filters, may be the only way to examine these frequencies. Overall, combining

the EMD – which can be a powerful tool for removing nonstationary noise and trends

(Flandrin et al., 2005) – with more traditional Fourier approaches takes advantage of the

benefits of both methods, and reduces the chance that artifactual coupling seen with either

method will be mistaken for real coupling.

5.2. Limitations

Both bandpass filtering and the EMD may be subject to edge artifacts. We did not consider

edge artifacts in our analysis, based on two beliefs: first, that many published PAC analyses

do not address possible edge artifacts; and second, that our data series, while short compared

to those other people use for PAC analyses, still contain enough cycles, even at low

frequencies, that edge artifacts do not contribute much to our results. To determine the role

edge artifacts may have played in our analyses, we performed additional analyses of our

noise-added simulations and our EEG data, in which we attempted to minimize edge

artifacts by reflecting each time series across its edges prior to filtering (Appendix C). The

comodulograms obtained from these analyses were very similar to our other results (Fig. C.

1A–D). We did, however, observe a few differences: the phase resolution of BPAC1, as

measured by the phase frequency of maximal IE, was significantly improved for low levels

of noise (Fig. C.1E); and the reflecting procedure had a dramatic negative effect on the

performance of BPAC2 at high noise levels (Fig. C.1F). Whether and how these and other

methods of dealing with edge artifacts affect all the methods examined here is an important

question for further analysis.

In addition, we have compared our methods’ performance on a relatively narrow range of

frequencies. Considering that many of the introduced challenges have energies in low

frequencies, we imagine that spurious coupling at low frequencies may be a more serious

problem in exploratory analyses which examine the entire available range of frequencies

present in a given signal, although we have mentioned good reasons that the EMD is

resilient to low-frequency artifacts.

5.3. Future directions

We have focused on the extent to which an adaptive approach to PAC measurement can

improve frequency resolution and resistance to nonstationary artifacts. For these purposes,

our decomposition methods, frequency estimation techniques, and IE reassignment schemes

were sufficient. However, a number of alternatives may be used to improve the basic

algorithm, at multiple steps. As mentioned, a variety of techniques might be applied to
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implement broadband filtering, adaptive or otherwise, each with its own pros and cons.

Specifically, a number of improvements to the EMD and EEMD algorithms, beyond the

relatively simple version we have used here, are available (Lo et al., 2008).

An improvement that will probably be less simple to implement, but which seems crucial

given the dynamic nature of PAC, is to take our investigations to their logical conclusion, by

not only assigning IE to phase- and amplitude-giving frequencies locally in time, but also

calculating IE locally in time. The difficulty here is that PAC is a statistical relationship

between amplitudes and phases, and its estimation a priori requires several cycles of the

phase-giving oscillation, limiting the possible temporal resolution of PAC estimates.

Answering how much certainty can be obtained, and with how little data, will require further

investigation of the statistical properties of various PAC indices.

Interestingly, PAC has emerged as a way to detect rhythmic phenomena which may be

invisible in power spectral or other assessments of rhythmicity (Scheffer-Teixeira et al.,

2012). Thus, in addition to playing an important role in a variety of neuro-physiological

phenomena, PAC may become a standard part of the time-frequency analysis toolkit.

General-purpose exploratory tools such as IMPAC will be critical for these future

applications.
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Appendix A. Effects of phase-giving bandwidth

To ascertain whether unusually narrow phase-giving bandwidths were artificially decreasing

the performance of our narrowband methods, we repeated the analyses of our noise-added

simulations and our EEG data using 2 Hz phase-giving bandwidths. The results of these

analyses, along with sample decompositions for each combination of data set and method,

are shown in Fig. B.1. Changing the phase-giving bandwidth does affect the decompositions

obtained from BPAC1 and BPAC2 (Fig. A.1). However, it does not affect BPAC1s

performance on our noise-added simulations (Fig. A.2A and E), and significantly decreases

the phase resolution of PAC measured by BPAC2 (Fig. A.2B and F). Changing the phase-

giving bandwidth does not affect either method's performance on our EEG data (Fig. A.2C

and D).

Appendix B. Supplementary figures

In Fig. B.1, we reproduce a signal with Gaussian, rather than sinusoidal, amplitude

modulation, and its Fourier transform. This signal is given by the equations
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B.1)

(Here, x̄ refers to the value x of modulo 1/6, the period of a 6 Hz oscillation.) The Fourier

transform of this signal is almost identical to that of our simulated (sinusoidally phase-

modulated) high frequency component.

In Fig. B.2, we show the distribution of all simulations for our noise-added and missing data

simulations, by preferred phase-giving frequency, for BPAC1 (Fig. B.2A) and BPAC2 (Fig.

B.2B).

In Fig. B.3, we show the mean cycle-by-cycle frequency content, by mode, of our

simulations containing 45 Hz nonstationary oscillations, for the lowest (Fig. B.3A) and

highest (Fig. B.3B) levels of nonstationarity. For more nonstationary uncoupled oscillations,

cycles around 45 Hz are less likely to dominate any single mode.

Appendix C. Effects of reflection method for reducing edge artifacts

To determine how edge artifacts might be affecting the performance of our narrowband

methods, we repeated the analyses of our noise-added simulations and our EEG data,

attempting to eliminate edge artifacts using the reflection method, as follows. Before

filtering, each time series was sandwiched between two 900 data point data segments: the

first consisted of data points 1 through 900 in reverse order, and the second consisted of data

points 901 through 1800, again in reverse order. After filtering, the first and last 900

datapoints of each bandpassed oscillation were removed.

The results of these analyses are shown in Fig. C.1. Using the reflection method did not

change the comodulograms obtained for either data set or either method (Fig. C.1A–D).

However, the phase resolution of BPAC1, as measured by the phase frequency of maximal

IE, was significantly improved for low levels of noise (Fig. C.1E); and the reflecting

procedure had a negative effect on the performance of BPAC2 at high noise levels (Fig. C.

1D).

Abbreviations

PAC phase-amplitude coupling

EEG electroencephalogram

LFP local field potential

EMD empirical mode decomposition

IMPAC intrinsic mode phase-amplitude coupling method

BPAC1 Butterworth filter phase-amplitude coupling method 1

BPAC2 Butterworth filter phase-amplitude coupling method 2
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EEMD ensemble empirical mode decomposition

DFPAC dyadic filter bank phase-amplitude coupling method
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HIGHLIGHTS

• Narrowband filtering can lead to poor frequency resolution, incorrect frequency

assignment, and false negatives in PAC assessment.

• Accurate PAC assessment can be obtained with adaptive and broadband

decompositions, but these decompositions give little frequency information.

• Coupling adaptive, broadband decompositions with time-local frequency

assessment allows for PAC assessment that is both accurate and highly

frequency resolved.
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Fig. 1.
Phase-amplitude dependence. The basic approach to measuring PAC, illustrated with a

simple signal exhibiting phase-amplitude coupling (A). The signal is filtered into two

frequency components of interest: an amplitude-giving signal Sa and a phase-giving signal

Sp, and their respective amplitude time series Aa and phase time series Φp are extracted (B).

The amplitudes Aa(t) are averaged in bins according to the phase Φp(t), resulting in a phase-

amplitude distribution (C). The difference of this phase-amplitude distribution from a

uniform (flat) distribution is quantified, and indicates the amount of phase-amplitude

coupling in the time series.
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Fig. 2.
The comodulogram. Filtering a signal into many frequency bands, computing the

distribution of amplitude by phase for each pair of signals, and quantifying the uniformity of

these distributions results in a comodulogram (A). To determine whether the resulting

modulation index is significant, surrogate data is used to estimate null distributions for each

pair of phase- and amplitude-giving signals, and these null distributions are used to

threshold the observed modulation indices (B). For IMPAC and DFPAC, we proceed to

redistribute the IE between each pair of signals in the phase frequency-amplitude frequency

plane (C), and average over each bin in this plane to obtain our final comodulogram (D).
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Fig. 3.
Simulated signals. Sample signals (A–J) and average Fourier spectra (K–T) for our

simulated data: noise with σ = 0.5 (A & K); 25% missing data (B & L); random trend at

level 1 (C & M); 5–15 Hz nonstationary uncoupled oscillation (D & N); 12.5–32.5 Hz

uncoupled oscillation (E & O); 22.5–67.5 Hz uncoupled oscillation (F & P); noise-added

signal transformed so amplitude is proportional to frequency (G & Q); asymmetric phase-

giving oscillation with 95 ms rise time (H & R); nonstationary phase-giving oscillation (I &

S); nonstationary amplitude-giving oscillation (J & T).
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Fig. 4.
Decompositions of noise-added signals. For comparison, in (A), we show a typical signal

with noise level 0.5, and in (B) we show the averaged Fourier transforms of all 50

realizations with noise level 0.5. In (C–F), we show the decompositions obtained for the

sample signal from: (C) a shallow rolloff Butterworth filter of order 3; (D) a steep rolloff

Butterworth filter of order 3; (E) a dyadic filter bank; and (F) empirical EMD.
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Fig. 5.
Noise-added signals. In (A–D), we show the average comodulogram obtained from each

method, for 50 realizations with white noise of variance σ = 0.5: (A) BPAC1; (B) BPAC2;

(C) DFPAC; and (D) IMPAC. In (E–H), we show histograms of the phase and amplitude

frequency bins at which the maximum PAC is observed, for all simulated values of , and the

methods in the same order.
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Fig. 6.
Missing data. In (A–D), we show the average comodulogram obtained from each method,

for 50 realizations with 25% missing data: (A) BPAC1; (B) BPAC2; (C) DFPAC; and (D)

IMPAC. In (E–H), we show histograms of the phase and amplitude frequency bins at which

the maximum PAC is observed, for all methods and all simulated percentages of missing

data, in the same order.
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Fig. 7.
Nonstationary uncoupled 45 Hz oscillations. In (A–D), we show the average comodulogram

for 50 realizations of a signal containing an uncoupled oscillation of center frequency 45 Hz

with bandwidth 45 Hz, obtained with: (A) BPAC1; (B) BPAC2; (C) DFPAC; and (D)

IMPAC. In (E–H), we show histograms of the phase and amplitude frequency bins at which

the maximum PAC is observed, for all bandwidths, and the methods in the same order.
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Fig. 8.
Low amplitude amplitude-giving oscillations. In (A–D), we show the average

comodulogram for 50 realizations of a standard signal with added white noise of variance

0.5, transformed so that the amplitude of each Fourier component is proportional to its

frequency, obtained with: (A) BPAC1; (B) BPAC2; (C) DFPAC; and (D) IMPAC. In (E–H),

we show histograms of the phase and amplitude frequency bins at which the maximum PAC

is observed, for all noise levels, and for all methods.

Pittman-Polletta et al. Page 32

J Neurosci Methods. Author manuscript; available in PMC 2014 June 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 9.
Asymmetric phase-giving oscillations. In (A–D), we show the average comodulogram for 50

realizations of a signal with a phase-giving oscillation having a 95 data point rising phase

and a 5 data point falling phase, obtained with: (A) BPAC1; (B) BPAC2; (C) DFPAC; and

(D) IMPAC. In (E-H), we show histograms of the phase and amplitude frequency bins at

which the maximum PAC is observed, at all levels of asymmetry, and for all methods. For

intermediate levels of asymmetry, the BPAC1 filter with center frequency 8.8 Hz captures

both the 6 Hz oscillation and its harmonics, resulting in a signal which replicates the

asymmetric 6 Hz oscillation, leading to robust coupling between 65 Hz and 8.8 Hz (D).
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Fig. 10.
Target results, nonstationary uncoupled oscillations. Target comodulograms (A, B) and

histograms (C, D) for signals containing a nonstationary phase-giving oscillation (A, C) or a

nonstationary amplitude-giving oscillation (B, D), obtained by applying the IMPAC post-

processing steps to the component oscillations, without noise and before they have been

summed.
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Fig. 11.
Nonstationary phase-giving oscillations. In (A–D), we show the average comodulogram for

50 realizations of a signal with a nonstationary phase-giving oscillation having center

frequency 6 Hz and bandwidth 6 Hz, obtained with: (A) BPAC1; (B) BPAC2; (C) DFPAC;

and (D) IMPAC. In (E–H), we show histograms of the phase and amplitude frequency bins

at which the maximum PAC is observed, for all bandwidths, and for all methods.

Pittman-Polletta et al. Page 35

J Neurosci Methods. Author manuscript; available in PMC 2014 June 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 12.
Nonstationary amplitude-giving oscillations. In (A–D), we show the average comodulogram

for 50 realizations of a signal with a nonstationary amplitude-giving oscillation having

center frequency 65 Hz and bandwidth 65 Hz, obtained with: (A) BPAC1; (B) BPAC2; (C)

DFPAC; and (D) IMPAC. In (E–H), we show histograms of the phase and amplitude

frequency bins at which the maximum PAC is observed, for all bandwidths, and for all

methods.
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Fig. 13.
Mouse EEG Data. (A) Sample segment of a single REM epoch. (B) Log of the mean Fourier

spectrum for all 360 REM epochs. (C–F) Decompositions of the sample signal segment

shown in (A), for each of our three methods: BPAC1 (C); BPAC2 (D); DFPAC (E); and

IMPAC (F).
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Fig. 14.
Mouse EEG data: PAC results. (A–D) Mean comodulograms obtained for the entire hour of

REM EEG data, for each of our four methods, in the order: BPAC1 (A); BPAC2 (B);

DFPAC (C); and IMPAC (D).
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Fig. 15.
Misalignment between filter bank and signal. (A) Decomposition resulting from applying a

near-dyadic filter bank to the sample signal containing white noise with variance 0.5

appearing in Fig. 3C. (B) Comodulogram resulting from applying this filter bank to 50

realizations of a signal having noise level 0.5. (C) Comodulogram resulting from applying

this filter bank to 50 realizations of a signal having a nonstationary phase-giving oscillation

with bandwidth 65 Hz. (D) Comodulogram resulting from applying this filter bank to 50

realizations of a signal having an asymmetric phase-giving oscillation with a 95 data point

rising phase. (E-G) Corresponding histograms for these challenges, obtained using a near-

dyadic filter bank.

Pittman-Polletta et al. Page 39

J Neurosci Methods. Author manuscript; available in PMC 2014 June 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. A.1.
Decompositions obtained with 2 Hz phase-giving bandwidth. Sample decompositions

obtained for simulations with added white noise having variance σ = 0.5 (A & B) and from

our EEG data (C & D), from BPAC1 (A & C) and BPAC2 (B & D).
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Fig. A.2.
Noise-added signals. In (A–D), we show the average comodulogram obtained from BPAC1

(A & C) and BPAC2 (B & D), for 50 realizations with white noise of variance σ = 0.5 (A &

B) and for an hour of REM EEG data (C & D). In (E & F), we show histograms of the phase

and amplitude frequency bins at which the maximum PAC is observed, for all simulated

values of σ, for BPAC1 and BPAC2 respectively.
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Fig. B.1.
Non-sinusoidal coupling. A non-sinusoidal amplitude envelope (A) and the resulting

amplitude-modulated 65 Hz oscillation (B), along with its Fourier transform (C).
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Fig. B.2.
Noise-added vs. missing data. The proportion of all simulated epochs reported to have

maximum PAC in each phase frequency bin is shown for BPAC1 (A) and BPAC2 (B) for

the missing data (dotted lines) and noise (solid lines) simulations, as line plots rather than

colorplots.
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Fig. B.3.
Effects of nonstationarity of uncoupled oscillations. Graphs of the proportion of cycles

having frequencies between 35 and 55 Hz (dotted lines) versus those having frequencies

between 55 and 75 Hz (solid lines) by IMF number, shown for uncoupled oscillations

having 9 Hz (A) and 45 Hz (B) bandwidth.
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Fig. C.1.
Effects of reflection method for reducing edge artifacts. In (A–D), we show the average

comodulogram obtained from BPAC1 (A & C) and BPAC2 (B & D), for 50 realizations

with white noise of variance σ = 0.5 (A & B) and for an hour of REM EEG data (C & D),

when the reflection method is used to reduce edge artifacts. In (E & F), we show histograms

of the phase and amplitude frequency bins at which the maximum PAC is observed, for all

simulated values of , for BPAC1 and BPAC2 respectively.
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