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Dengue Human Infection Model: Introduction
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Dengue is an expanding public health problem in trop-
ical and subtropical regions. An estimated 390 million
infections occur annually, of which 96 million are clin-
ically overt [1]. Transmission occurs between humans
and Aedes vector species in endemic, hyperendemic,
and/or epidemic patterns [2]. Multiple dengue virus
(DENV) types cocirculate in most endemic regions
with seasonal predominance of 1 or 2 DENV types in
any given area [3]. The increasing dengue burden is
driven by several factors including increased urbaniza-
tion, world population growth, increased international
trade and travel, and changes in human behavior that
increase mosquito breeding sites (eg, discarded tires
and plastic containers). Vector control has been largely
unsuccessful at reducing transmission. There are no
anti-DENV therapeutics to protect against or treat
dengue infection and disease. Although there are nu-
merous vaccine candidates in preclinical and clinical
development, none have been licensed for use.

Theworld needs a dengue vaccine but several develop-
ment challenges confront the field. First and foremost is
the requirement to develop a multivalent vaccine to ac-
count for the multiple DENV types (DENV 1–4) capable
of causing disease and death. Second are the complex im-
munologic processes that occur after wild-type infection.
These processes are not well understood, making it diffi-
cult to predict what a protective immune response may
be and to make vaccine development decisions [4, 5].
Third, no validated small animal or nonhuman primate
model of dengue disease comprehensively approximates
the human in vivo infection and disease experience [6,7].
For these reasons and others, no immune correlate of

protection has been defined. Because of this, vaccine de-
velopers are required to make inferences about a can-
didate’s potential for clinical benefit based on its ability
to protect a nonhuman primate from viremia after wild-
type challenge and by measuring immunogenicity (ie,
DENV type-specific neutralizing antibodies) in small
to moderate-sized phase 1 and 2 studies. Dengue vacci-
nologists require development tools, which more accu-
rately predict an immune profile’s ability to prevent or
significantly attenuate disease after natural infection
[8–10]. The limited success of the world’s first dengue
vaccine efficacy trial underscores this need [11].

For this reason, vaccine and drug developers, immu-
nologists, and entomologists are exploring the idea of a
dengue human infection model (DHIM). The concept
is to consistently produce, in healthy volunteers, an
uncomplicated illness with clinical, biochemical, and
immunologic findings consistent with dengue. The
concept of a DHIM is not novel. The literature describes
the development and use of DHIMs since the early
1900s [12–23]. Hundreds of volunteers have been ex-
perimentally infected with DENVs by means of various
methods (ie, needle, mosquito) and administration
strategies (ie, inoculation into subcutaneous space, mu-
cous membrane exposure). Numerous seminal scien-
tific discoveries and observations have been made
using experimental human dengue infection including
(but not limited to) the following: (1) identifying the
viral etiology of dengue; (2) identifying transmission
mechanisms; (3) defining viral incubation periods in
mosquitoes and humans; (4) defining the period of in-
fectivity in mosquito and humans; (5) describing the
clinical and clinical laboratory features of uncompli-
cated dengue illness; (6) identifying the existence of
multiple DENV types; (7) documenting the develop-
ment of homotypic immunity after infection; (8) docu-
menting the development of transient, heterotypic,
cross-protective, and disease-attenuating immunity
against other DENV types after infection with a single
type; (9) demonstrating the development of anti-DENV
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neutralizing antibodies after exposure; and (10) supporting the
development of early dengue vaccine candidates.

Recent dengue human infection studies have been used to ex-
plore serial ultrasonographic findings, characteristics of cellular
immune responses, and the clinical and clinical laboratory find-
ings after experimental infection of flavivirus-naive and previ-
ously vaccinated (experimental candidate) individuals [24–27].

In 2011, the Walter Reed Army Institute of Research
(WRAIR) and the National Institutes of Health cosponsored a
workshop designed to reintroduce the DHIM concept. The
workshop was attended by dengue vaccine and drug developers,
immunologists, entomologists, regulatory affairs personnel, and
developers and users of the controlled malaria human infection
model. This supplement reviews and documents the proceed-
ings of that meeting, as follows.

Ken Eckels and Arthur Lyons of the WRAIR discuss aspects
of the dengue human infection experiments executed by the
US Army between 1999 and 2001. Eckels reviews the manufac-
turing and production process of DENV strains, DENV human
infection strain candidate pedigree, and the attenuation process.
Regulatory requirements and the process of creating and submit-
ting investigational new drug applications to US Food and Drug
Administration are also touched on. Lyons provides an overview
of the clinical, biochemical, radiologic, virologic, and serologic
findings and observations made by the WRAIR group during
2 human infection experiments (1999–2001). In experiment 1,
investigators explored potential DENV human infection strains
in flavivirus-naive individuals and selected DENV-1 and DENV-
3 strains for continued testing based on safety and reactogenicity
performance parameters. In experiment 2, investigators called
back previous recipients of experimental tetravalent live virus
dengue vaccines to receive challenge with either DENV-1 or
DENV-3. Volunteers with postvaccination neutralizing antibod-
ies against DENV-1 were assigned to be challenged with the
DENV-1 human infection strain, and previous vaccine recipients
who demonstrated a DENV-3 neutralizing antibody response
were assigned to challenge with the DENV-3 strain. Two flavivi-
rus naive controls were assigned to each group. Four articles de-
scribe the results of these experiments [24–27].

Timothy Endy from the State University of New York Up-
state Medical University, Syracuse, discusses proposed DHIM
performance parameters and reviews influenza human infec-
tion model performance and past dengue human infection
experiments. He also proposes clinical and biochemical param-
eters that a DHIM should achieve to adequately support drug
and vaccine development and basic science efforts.

Alan Rothman from the University of Rhode Island, Provi-
dence, reviews aspects of dengue immunology and its complex-
ities. He also discusses potential uses of a DHIM to explore
dengue immunology, with a focus on the exploration of im-
mune correlates of protection, and reviews the limitations of a
DHIM tool to explore basic immunology concepts.

James Whitehorn of the London School of Hygiene and
Tropical Medicine, United Kingdom, describes the concepts
presented at the meeting by Cameron Simmons, Oxford Uni-
versity Clinical Research Unit, Hospital for Tropical Diseases,
Ho Chi Minh City, Vietnam. Whitehorn also describes the
use of a DHIM to support anti-dengue drug development; re-
views the case for developing anti-dengue therapeutics, touch-
ing on current status; discusses the immunologic mechanism
for how a prophylactic or therapeutic may work, and reviews
DHIM limitations.

Christopher Mores, Louisiana State University, Baton Rouge,
expands on the concept presented at the meeting by Jason Rich-
ardson, WRAIR that a mosquito-delivered dengue human in-
fection strain could improve a DHIM. He discussed previous
experience with mosquito-based human infection models and
its immunologic implications and reviews the lessons learned
and challenges of using mosquitoes in the context of human in-
fection models and a DHIM specifically.

Michelle Spring, Armed Forces Research Institute of Medical
Science, Bangkok, Thailand reviews the Controlled Human Ma-
laria Infection Model (CHMI) as presented during the meeting
by Mark Polhemus, Veterans Administration Medical Center,
Syracuse, New York. The CHMI is now considered one of the
most characterized and reproducible human challenge models,
and it is commonly used to conduct an initial assessment of the
efficacy of malaria vaccines before further evaluation in field
studies and/or pediatric populations. Spring reviews how vac-
cine efficacy demonstrated using the CHMImodel paralleled ef-
ficacy demonstrated in field studies, validating the utility of the
human challenge model as an initial vaccine evaluation tool.

The growing global health burden of dengue disease and the
ongoing challenges in developing vaccines and drugs against
this infection have underscored the need for better models to
elucidate the mechanism of dengue pathogenesis and evaluate
interventions before large field efficacy trials. If successful, a
DHIM could be used to study clinical and immunologic path-
ogenesis, explore virus-vector-host interactions, and inform
vaccine and drug developers as they make development deci-
sions. A DHIM could facilitate vaccine immunogenicity assay
development and the optimization, qualification, and validation
processes required for these assays to support regulatory strate-
gies and product licensing applications. It could also help define
a correlate and surrogate of protection, and once drug or vac-
cine safety and efficacy was proven in field testing in endemic
settings, it could assist the process of bridging these data to non-
endemic populations who may benefit from a therapeutic or
vaccine (eg, travelers and military personnel).
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