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Abstract

Overweight and obese not only increase the risk of cardiovascular disease and type-2 diabetes

mellitus, but are also now known risk factors for a variety of cancers. Weight control, via dietary

calorie restriction (DCR) and/or exercise, has been demonstrated to be beneficial for cancer

prevention in various experimental models, but the underlying mechanisms are still not well

defined. Recent studies conducted in a mouse skin carcinogenesis model show that weight loss

induced a significant reduction of the circulating levels of IGF-1 and other hormones, including

insulin and leptin, resulting in reduced IGF-1-dependent signaling pathways, i.e., Ras-MAP-

proliferation and Akt-PI3K-antiapoptosis. Selective targeting IGF-1 to Akt/mTOR and AMPK

pathways, via negative energy balance, might inactivate cell cycle progression and ultimately

suppress tumor development. This review highlights the current studies focused on the major role

of reducing IGF-1-activated signaling via weight control as a potential cancer preventive

mechanism.
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Introduction

Maintaining a healthy body weight emerges as a strategy to generally reduce cancers and

has also been suggested to reduce cancer risk. With the increasing prevalence of obesity in

both adults and children, it is important to identify the mechanism underlying cancer

prevention via weight control. Current studies have focused on how understanding the

molecular mechanisms of weight control, via dietary calorie restriction (DCR) and/or

physical exercise, in both mouse model and human studies, prevent cancer. These studies

will lead to future chemoprevention strategies for cancer.
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Overweight/obesity as a risk factor of cancer

It is well known that obesity has a substantial influence on the development of many chronic

diseases, including cancer. Numerous prospective and case-control studies that address the

effect of body weight on cancer risk, estimate that excess body weight and sedentary life

style account for about 39% of endometrial, 25% of kidney, 11% of colon, 9% of

postmenopausal breast cancer, and 5% of total cancer incidence.1 The prevalence of obesity

in the U.S. rose to approximately 25% and is projected to increase to more than 40% by

2030. In children and adolescents between the ages of 6 and 17 years, the prevalence of

obesity appears to be increasing even more rapidly than in adults in industrialized and

developing countries.2 It has been suggested that those who are 25% over normal weight

have a 33% greater cancer risk than those who maintain an ideal body weight.3 Therefore,

weight control to prevent obesity has been recommended as a strategy for reducing cancer

risk by the American Cancer Society (ACS) as early as 1996.

In obese patients and animals, insulin/leptin resistance, inflammation, and changes in

hormone and growth factor concentrations are found to be key pathogenic factors that lead

to many types of cancer, including breast, colon, pancreas, and endometrium. These

hormones, or growth factors, include insulin, leptin, and Insulin growth factor-1(IGF-1).

They directly or indirectly provide a mitogenic effect in many cell types, especially in pre-

neoplastic cells, by inducing proliferative and anti-apoptotic mechanisms.4–6 In vitro studies

demonstrate that insulin, through binding to the insulin receptor, increases neoplastic

proliferation at both physiological and pharmacological doses.7–9 Recently,

hyperinsulinemia associated with the IGF-1 signaling pathway has been widely studied, and

the condition strongly stimulates the development and growth of several tumors, especially

in breast cancer.10–12 Hyperinsulinemia is associated with increased circulating free sex

hormones, such as estrogen and androgen, via inhibiting the hepatic production of sex

hormone-binding globulin.13 Altered adipokine production is also associated with insulin

resistance. Adiponectin, one of the most abundant adipokines, is shown to be both anti-

angiogenic and anti-inflammatory, and is lower in circulation in both obese and cancer

patients.14–18

A high level of serum leptin in obese patients has been associated with increased cellular

proliferation and angiogenesis across a wide variety of cancer subtypes, including colon,

prostate and breast cancer.19–25 The role of leptin in vascular remodeling may be

independent of or coupled with vascular endothelial growth factor (VEGF) and fibroblast

growth factor (FGF).26 Additionally, leptin stimulates several types of pre-neoplastic and

neoplastic cells by mediating IGF-1R, resulting proliferation27–29 and/or anti-apoptosis.30–32

Levels of proinflammatory cytokines, including IL-6, TNF-α and IL-1β, are found to be

higher in obese mice and humans. Adipose tissue is a major source for these cytokines,

contributing up to 35% of circulating IL-6.33 Levels of these cytokines are also elevated in

cancer patients.34,35 Although it is still unclear how these cytokines play a combined role in

tumorigenesis, activation of NF-κB and STAT3 seem to be likely associated.36–41
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Weight control via DCR inhibits tumor development in rodents

DCR is the most efficient method of weight control. The first work to show that incidence of

tumors in mice positively correlated with food intake was published in 1944 by Tui and

colleagues.42 To date, DCR has been the most widely studied and most potent, broadly

acting dietary intervention for cancer prevention in various experimental models.43,44 DCR

is a dietary regimen that restricts calorie intake without malnutrition (usually by 20%–40%

relative to ad libitum-fed controls from lipids and carbohydrates, but same amount of

proteins, micronutrients and minerals, etc.). DCR-fed wildtype animals are typically

healthier, live longer, and more active than their ad libitum-fed counterparts45.

DCR inhibits various spontaneous tumor developments in experimental animals. In rodents,

a 20–40% below the usual ad libitum intake initiated early in life led to approximately 20–

60% reduction in tumor incidence, including tumors of mammary, liver, colon, skin,

pancreas, bladder, and leukemia.46,47 In p53-deficient mice, both juvenile- and adult-

initiated calorie restriction to 60% of ad libitum intake, significantly delayed tumor

development.48,49 In ApcMin mice, calorie intake restricted by 40% of the ad libitum-fed

mice reduced intestinal polyps by 57%.49,50 DCR is also well documented to suppress

carcinogen-induced carcinogenesis, like benzo(α)pyrene51 and 7,12-

dimethylbenz(α)anthracene (DMBA)52.

Weight control via exercise

Epidemiological studies report that physical activity can reduce the risk of many types of

cancers, especially cancer of the prostate, breast, endometrial, and lung.53 Evidence suggests

that 4–7 hours per week of moderate to vigorous physical activity is required for adequate

risk reduction.53 However, in the U.S., adults are not achieving the recommended amounts

of physical activity, according to ACS guidelines.54–59

Despite the large numbers of studies conducted, cancer prevention by physical activity in

animal models is not consistent. This is largely due to the lack of precise quantitative

characteristics of duration and intensity of exercise as well as the control of the dietary

calorie intake. Therefore, the impact of exercise on cancer development should be

considered in combination with an isocaloric diet.

Decreased IGF-1 signaling in cancer prevention

There are several hypotheses describing mechanisms by which weight control via DCR

and/or exercise may reduce tumor development. Some hypotheses include decreased

oncogene expression, improved DNA repair, enhanced scavenging of reactive oxygen

species, and altered levels of cancer-related hormones.60

Hormone alteration seems to be a critical factor for cancer prevention by weight control, due

to the significant role of hormones in regulating cellular growth. Previous researchers have

found that the levels of IGF-162–64, insulin61, and leptin61,65–67 decreased significantly in

rodents in response to DCR.
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IGF-1 is a major endocrine and paracrine regulator of cellular growth and metabolism.

Binding of IGF-1 to IGF-1R activates many signaling pathways, including Jun N-terminal

Kinases (JNK), p38 MAPK and PI3K via activation of receptor tyrosine kinases and/or the

Ras proto-oncogene, to mediate suppression of apoptosis and contribute proliferation and

cell growth.74–78 IGF-1R is overexpressed in many tumors.70,71 Abundant epidemiologic

evidence supports the hypothesis that IGF-1 is involved in several types of human

cancers.68,69 Adult HK1.IGF-1 mice that overexpressed IGF-1 spontaneously developed

papillomas faster than non-transgenic littermates.72,73 Adult HK1.IGF-1 mice showed

enhanced signaling through the Akt/mTOR pathways79, which suggested a critical role of

IGF-1 in activating Akt/mTOR pathway that regulates cell proliferation, survival and energy

metabolism. Activated mTOR signaling through the Akt/mTOR pathway in Akt

overexpressing mouse caused alterations in epidermal proliferation and differentiation.79

The mice are more sensitive to topical 12-O-tetradecanoylphorbol-13-acetate (TPA)

treatment. Activation of IGF-1R also indirectly acts with other cancer-related molecules,

such as p53, known to arrest cell growth and induce apoptosis with increased levels of p21

and reduced Bcl-2.80

Reduction in glucose and insulin levels, as well as IGF-1, has been well documented in

DCR-fed mice from different labs. Levels of circulating IGF-1 are influenced by dietary

energy intake, which may be due to changing growth hormone-regulated hepatic synthesis

of IGF-1.81 Restoration of IGF-1 in p53-deficient mice reversed DCR-induced cancer

protection, suggesting a requirement of reduced levels of IGF-I.16 While 20% DCR-fed

SENCAR mice showed a significant reduction of plasma IGF-1 levels, a remarkable

decrease of IGF-1-dependent Ras/MAPK and PI3K/Akt signaling was demonstrated in

TPA-stimulated skin tissues.82,83 Both down-expression of PCNA as a biomarker of

proliferation and up-expression of Caspase-3 as a biomarker of apoptosis were also

subsequently found in those mice.82,83

Diet-induced changes in Akt/mTOR signaling have been reported in various organ tissues

(i.e., liver, skin epidermis, and mammary fat pad). DCR-induced increase of AMP/ATP ratio

may inhibit AMPK signaling that regulates mTOR activity and thereby inhibits the targeted

protein production. These changes appear to be related to the reduction of circulating IGF-1

levels. In such study, 30% DCR regimen for 15–17 weeks is sufficient to lower circulating

IGF-1 concentrations and inactivate Akt and mTOR signaling in multiple epithelial tissues,

regardless of genetic background of the experimental mice.84 These results suggest that

DCR induced a decrease of IGF-1 should play a central role in response with negative

energy balance-altered depression of mTOR activity.85

In addition, an important study has revealed that DCR contributes to mammalian cell

survival by inducing Sirtuin 1 (SIRT1) deacetylase, which deacetylates the DNA repair

factor Ku70. Ku70 can prevent the proapoptotic factor Bax from mitochondrial entry,

therefore inhibiting stress induced apoptosis.86 This impact is probably mediated by insulin/

IGF-1 because treatment with insulin and/or IGF-1 can reduce SIRT1 deacetylase

expression.86
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In humans, 15 weeks of moderate exercise changes the levels of fasting insulin, glucose,

IGF-I, IGF-II, IGFBP-1, IGFBP-3, and IGF-I:IGFBP-3 molar ratio.87,88 However, a 12-

month exercise regimen did not change IGF-1 and IGFBG-3 levels in postmenopausal

women.89 Regular exercise alters the serum IGF-1 axis in vivo and reduces prostate

(LNCaP) tumor cell proliferation by enhancing the function of the p53 gene90,91 In

SENCAR mice, weight loss by 10-week physical activity with iso-caloric intake as

sedentary controls was able to inhibit PI3K signaling and increase caspase-3 activity.82

These effects were partially reversed by IGF-1 restoration.82 Microarray analysis comparing

TPA-induced gene expression profiles in DCR- or exercise-treated mouse skin tissues

revealed 411 genes affected by DCR versus only 67 affected by exercise with iso-caloric

intake, including PI3K and MAPK pathway genes.82–83 Similar results of mammary gland

gene expression are found in C57BL/6 mice with a 30% DCR versus exercise.92 The

increased expression of fatty acid elongase-1 in treadmill exercised mice with iso-caloric

intake suggests that exercise may affect the phospholipid profile.93 In addition, a lipidomics

study using electrospray ionization-tandem mass spectrometry demonstrated that 57

phospholipids were significantly changed among a total of 338 species detected, and 25

species were closely related to exercise by a stepwise discriminant analysis.93–94 These

combined results indicate that DCR and/or exercise may target IGF-1-dependent signaling

directly for a potential cancer prevention.

IGF-1 signaling as a potential target for cancer prevention

Effective prevention and treatment strategies are urgently needed for anti-tumorigenesis.

Considering the central role that IGF-1 played on cancer development, decreasing IGF-1

signaling either by chemical intervention or genetic interference has been intensively

studied. Liver IGF-1-deficient (LID) mice have been utilized to mimic the effect of DCR on

reducing circulating IGF-1.95 These mice had about 75% reduction in the level of circulating

IGF-1. Repressed IGF-1R, EGFR and Akt/mTOR were observed in the skin tissue of LID

mice after TPA treatment. LID mice initiated with DMBA and promoted with TPA,

developed fewer and slower growing of papillomas compared with untreated littermates.95

In another study that tested if DCR effect can be replicated by chemotherapy, mice

transplanted with Panc02 murine pancreatic cancer cell were treated with either DCR or

rapamycin for 20 weeks.96 Rapamycin treatment (2.5 mg/kg intraperitoneal every other day)

did not decrease body weight, IGF-1 or leptin level, unlike DCR, but inhibited glucose

responsiveness. Mice that received rapamycin had depressed mTOR signaling and had

significantly reduced tumor volume compared to untreated mice, although to a lesser extent

than DCR-fed mice. These results suggest that the downstream modulators of IGF-1

pathway can be a potential target for cancer prevention supplements.

Conclusion

Many epidemiological, clinical, and experimental studies have revealed a positive

relationship between weight control via DCR or physical activity, and the frequency of

various cancers. Reductions in the levels of circulating IGF-1 and other mitogenic

hormones/growth factors, including insulin and leptin induced by DCR or physical activity,

efficiently inactivate the downstream signaling pathways via IGF-1R as summarized in
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details in Figure 1. Future studies aimed at further elucidating the mechanisms underlying

the cancer prevention possibilities of weight control may finally lead to efficient

pharmacologic approaches that can be used alone or combined with weight control.
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Figure 1.
Schematic illustration of IGF-1- and/or leptin-induced signaling pathways that may be

targeted by weight control via dietary calorie restriction and exercise.
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