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Abstract

Dendritic spine abnormalities and the metabotropic glutamate receptor theory put the focus

squarely on synapses and protein synthesis as the cellular locus of Fragile X syndrome. Synapses

however, are only partly responsible for information processing in neuronal networks.

Neurotransmitter triggered excitatory postsynaptic potentials (EPSPs) are shaped and integrated

by dendritic voltage-gated ion channels. These EPSPs, and in some cases the resultant dendritic

spikes, are further modified by dendritic voltage-gated ion channels as they propagate to the soma.

If the resultant somatic depolarization is large enough, action potential(s) will be triggered and

propagate both orthodromically down the axon, where it may trigger neurotransmitter release, and

antidromically back into the dendritic tree, where it can activate and modify dendritic voltage-

gated and receptor activated ion channels. Several channelopathies, both soma-dendritic (L-type

calcium channels, Slack potassium channels, h-channels, A-type potassium channels) and axo-

somatic (BK channels and delayed rectifier potassium channels) were identified in the fmr1-/y

mouse model of Fragile X syndrome. Pathological function of these channels will strongly

influence the excitability of individual neurons as well as overall network function. In this chapter

we discuss the role of voltage-gated ion channels in neuronal processing and describe how

identified channelopathies in models of Fragile X syndrome may play a role in dendritic

pathophysiology.
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INTRODUCTION

Fragile X syndrome (FXS) affects 1 in 4,000 males and 1 in 6,000 females in the general

population. In addition to impairments of short-term memory, visuospatial skills, and
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speech, the occurrence of epilepsy in patients with FXS is significantly higher than in the

general population. Fragile X Mental Retardation Protein (FMRP) is highly expressed in

neuronal cell bodies and dendrites (Steward and Levy, 1982; Feng et al., 1997; Weiler et al.,

1997; Steward and Schuman, 2001) and binds to the mRNAs for many proteins critical for

neuronal information processing including several voltage-gated channels (Brown et al.,

2001; Darnell et al., 2001; Chen et al., 2003; Darnell et al., 2011) (Table 1). Voltage-gated

ion channels play essential roles in the synaptic transmission, dendritic integration, dendritic

spike generation, and action potential firing. Incorrect channel expression, function, and/or

loss of channel plasticity can have substantial effects on the control of neuronal function

(Beck and Yaari, 2008).

Functional Roles of Dendritic Voltage-Gated Ion Channels

The summation of synaptic inputs can, when of sufficient strength, lead to an action

potential initiated in the axo-somatic region of the neuron. In addition to propagating

orthodromically down the axon, the action potential can also back propagate into the

dendrites of neurons (Stuart et al., 1997). The efficacy of back propagation is influenced by

both the dendritic morphology and the complement of dendritic voltage-gated ion channels.

The density, distribution and biophysical properties of voltage-gated Na+ channels dictate

whether action potentials will actively backpropagate into the dendrites (Stuart and

Sakmann, 1994; Magee and Johnston, 1995; Spruston et al., 1995; Colbert and Johnston,

1996; Golding et al., 2001) or spread in a mostly passive manner (Stuart and Häusser, 1994).

While the presence of Na+ channels aids action potential active back propagation, voltage-

gated K+ channels in the dendritic membrane can reduce the amplitude of back propagating

action potentials (b-AP). In particular, voltage-gated A-type K+ channels (IKA) are critically

important for normal dendritic function and play a prominent role in regulating bAP

amplitude (Hoffman et al., 1997; Ramakers and Storm, 2002; Bernard and Johnston, 2003;

Johnston et al., 2003). In hippocampal CA1 pyramidal neurons, A-type K+ channels are

composed primarily of KV4.2 subunits (Chen et al., 2006) and the density of A-type K+

channels increases linearly with increasing distance from the soma (Hoffman et al., 1997).

Under normal conditions, the high dendritic density of A-type K+ channels in CA1

pyramidal neurons limits the amplitude of b-APs. Dendritic EPSPs of sufficient amplitude

can inactivate A-type K+ channels and thereby boost b-AP amplitude, if the b-AP and EPSP

occur closely in time and space (Magee and Johnston, 1997; Watanabe et al., 2002). By

setting up this temporal restriction, A-type K+ channels can control the timing requirements

for some forms of long-term synaptic plasticity.

The depolarization from b-APs will open dendritic voltage-gated Ca2+ channels (Jaffe et al.,

1992; Christie et al., 1995; Frick et al., 2003). In hippocampal pyramidal neurons, the

overall distribution of voltage-gated Ca2+ channels is uniform along the apical dendrite, but

the distribution of specific subtypes varies with location. The calcium signal from b-APs is

important for several forms of synaptic plasticity and may provide feedback information to

the dendrites, the site of synaptic input about axonal output (Frick and Johnston, 2005). In

some neurons a burst of back propagating action potentials can lead to a local regenerative

dendritic event mediated by voltage-gated Ca2+ channels (Larkum et al., 1999). The
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frequency at which these dendritic events is triggered, called the critical frequency, is set by

the membrane potential and influenced by the presence of h-channels (Berger et al., 2003).

H-channels (Ih) are somewhat unique voltage-gated channels in that they are opened by

hyperpolarization of the membrane potential (DiFrancesco, 1993; Pape, 1996). Although the

h-channel has a relatively small single channel conductance (Kole et al., 2006), the high

density in the dendrites enables h-channels to contribute significantly to the total membrane

conductance and thereby exert strong influence over neuronal function in the voltage range

near rest (Magee, 1998; Lörincz et al., 2002; Bittner et al., 2012).

In addition to a burst of b-APs, the synchronous activation of clustered synaptic inputs can

trigger a local dendritic spike mediated by voltage-gated Na+, Ca2+ or NMDA receptor

activated channels (Stuart et al., 1997; Schiller et al., 2000; Wang et al., 2000; Gulledge et

al., 2005; Larkum et al., 2007). These dendritic spikes play an important role in the

supralinear integration of synaptic inputs (Polsky et al., 2004; Gasparini and Magee, 2006).

The propagation efficacy of dendritic spikes is variable with some reliably invading the

soma (Martina et al., 2000; Larkum and Zhu, 2002) and others isolated in the dendrites

(Golding and Spruston, 1998; Losonczy and Magee, 2006; Losonczy et al., 2008). Dendritic

spikes may play an important role in conveying sensory information to cortical neurons,

because they occur in Layer 5 neurons in response to sensory input during whisker

exploration (Xu et al., 2012). Interestingly, the enriched dendritic expression of voltage-

gated K+ channels compartmentalizes dendritic spikes, and the resultant Ca2+ signal, within

individual branches of the elaborate dendritic tuft of layer 5 neurons (Harnett et al., 2013).

Plasticity of Dendritic Function

Although activity-dependent modifications of synaptic strength are believed to be the

cellular substrates of learning and memory (Bliss and Collingridge, 1993), changes in

intrinsic neuronal excitability can also occur in response to increased (or reduced) activity

(Turrigiano et al., 1994; Aizenman and Linden, 2000; Wang et al., 2003; Frick et al., 2004;

Fan et al., 2005; Magee and Johnston, 2005; Xu et al., 2005; Narayanan and Johnston, 2007;

Losonczy et al., 2008). This plasticity of intrinsic excitability involves the modulation of

voltage-gated ion channels (Desai et al., 1999; Golowasch et al., 1999; Frick et al., 2004;

Kim et al., 2007). The activity-dependent modulation of ion channels may serve to not only

counter changes in synaptic strength (Siegel et al., 1994; Turrigiano and Nelson, 2000;

Zhang and Linden, 2003), but also changes in intrinsic excitability due to the modulation of

ion channels elsewhere in the dendritic arbor.

Persistent changes in voltage-gated ion channels occur during and after periods of elevated

neuronal activity. In CA1 pyramidal neurons, theta-burst pairing LTP induction is

accompanied by a persistent increase in Ih throughout the dendrites of CA1 pyramidal

neurons (Fan et al., 2005; Narayanan and Johnston, 2007; Campanac et al., 2008).

Interestingly, the same LTP protocol produces a decrease in IKA, due to a left shift in the

voltage-dependence of inactivation and internalization of A-type K+ channels, that is

restricted to a specific dendritic region (Frick et al., 2004; Kim et al., 2007). The coordinated

global increase in Ih and localized decrease in IKA, in conjunction with input specific
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synaptic potentiation, would result in the tuning of individual CA1 pyramidal neurons to a

specific set of synaptic inputs.

Changes in voltage-gated ion channels are not limited to LTP induction paradigms in vitro.

Experience-dependent plasticity of voltage-gated ion channels also occurs in vivo. Acoustic

stimulation in rats increases the expression of the delayed rectifier K+ channel KV3.1b in

medial nucleus of the trapezoid body (Strumbos et al., 2010b). Rats reared in an enriched

environment showed enhanced propagation of dendritic spikes mediated by a localized

downregulation of A-type K+ channels (Makara et al., 2009). Deficits in dendritic plasticity

with or without associated changes in the function of voltage-gated channels will have

profound impacts on the ability of neurons to modify their integrative properties in the face

of changes in neuronal activity.

Pathology of voltage-gated ion channels in Fragile X syndrome

Fragile X Mental Retardation Protein (FMRP) can potentially regulate ion channel function

and/or expression in multiple ways. FMRP is an mRNA binding protein that can regulate

translation. Initially characterized as a translational repressor, binding of FMRP to target

mRNAs prevents protein translation by interacting with the translation template and stalling

of polyribosomes advancement (Li et al., 2001; Zalfa et al., 2003; Darnell et al., 2011). In

this case, the absence of FMRP would lead to excessive translation of target mRNAs and the

overexpression of ion channel proteins and/or their regulatory subunits (Strumbos et al.,

2010a; Lee et al., 2011). More recently, evidence suggests that FMRP can also promote the

translational of target mRNAs (Bechara et al., 2009; Fähling et al., 2009). While the

mechanism for the FMRP-dependent promotion of mRNA translation is not entirely known,

the absence of FMRP would reduce mRNA translation yielding lower expression of ion

channel proteins (Gross et al., 2011). In addition to its translational control functions, FMRP

plays a role in the activity-dependent transport of mRNA granules from the soma to axonal

and dendritic locations (Antar et al., 2004; Kanai et al., 2004; Dictenberg et al., 2008). The

absence of FMRP could possibly result in the trapping of ion channel mRNAs at the soma or

the mislocalization of target mRNAs and subsequent proteins. Lastly, FMRP can also bind

directly to target proteins. The absence of FMRP would alter the biophysical properties of

ion channels by directly binding to pore-forming subunits or by regulating the interaction

between pore-forming and auxiliary ion channel subunits (Brown et al., 2010; Deng et al.,

2013).

Investigations into the cellular underpinnings of Fragile X syndrome have greatly benefited

from the development of the Fragile X knockout mouse (The Dutch-Belgian Consortium,

1994). Previously, the focus of most investigations was on deficits in synaptic transmission

and plasticity in the fmr1-/y mouse given the number of FMRP targets implicated in those

processes (Comery et al., 1997; Nimchinsky et al., 2001; Huber et al., 2002; Hou et al.,

2006; Pfeiffer et al., 2010). However, the mRNA for many voltage-gated ion channel

proteins are also binding targets of FMRP (Table 1), and recently alterations in the

expression and/or function of several voltage-gated ion channels were reported in the

fmr1-/y mouse (Table 2).
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One of the first identified channels mRNAs regulated by FMRP was the delayed rectifier

potassium channel KV3.1 (Darnell et al., 2001; Strumbos et al., 2010a). KV3.1 channels play

a prominent role in neurons that have a very fast spike rate where this channel allows for

spike firing frequencies often in excess of 300 Hz with very little adaptation (Gan and

Kaczmarek, 1998; Rudy and McBain, 2001). One group of neurons where these channels

play important physiological roles is in the sound localization circuitry of the anterior

ventricular cochlear nucleus (AVCN) and the medial nucleus of the trapezoid body

(MNTB). In both the AVCN and MNTB, KV3.1 channels permit extremely high and faithful

rates (• 600 Hz) of synaptic transmission (Wang et al., 1998). In fmr1-/y mice, the normal

gradient of KV3.1 in the MNTB (highest at the medial aspect) is flattened (Strumbos et al.,

2010a). Furthermore, the normal increase in KV3.1 expression after acoustic stimulation

observed in wildtype mice is absent in fmr1-/y neurons. The net effect of the loss of FMRP

is the impaired encoding and processing of auditory information.

In cortical neurons, L-type calcium channels play an important role in the induction of

certain forms of long-term synaptic plasticity (Grover and Teyler, 1990; Bi and Poo, 1998;

Kapur et al., 1998). The threshold for spike timing-dependent plasticity in layer 2/3

pyramidal neurons of the prefrontal cortex is increased in fmr1-/y mice (Meredith et al.,

2007). This elevated threshold is due to the increased failure rate of spine calcium transients

during the spike timing protocol. In the frontal cortex of fmr1-/y mice, both the mRNA and

protein for L-type calcium channels are reduced (Chen et al., 2003). Application of the L-

type calcium channel blocker nimodipine reduced spine calcium transients in wildtype but

not fmr1-/y neurons suggesting that there is a lack of functional L-type calcium channels in

the dendritic spines of layer 2/3 pyramidal neurons in fmr1-/y mice (Meredith et al., 2007).

In apical dendrites of CA1 pyramidal neurons, the density of h-channels increases with

distance from soma (Magee, 1998). There is an enhancement of this distal dendritic

enrichment of Ih in CA1 neurons of the fmr1-/y mouse (Brager et al., 2012). This elevation

in Ih appears to be due to increased distal dendritic expression of the HCN1 subunit of h-

channels. The higher distal dendritic Ih significantly reduces temporal summation of

dendritic EPSPs thereby significantly affecting the integrative properties of CA1 pyramidal

neurons (Magee, 1999). Interestingly, the normal increase in Ih which occurs following

theta-burst pairing LTP induction (Fan et al., 2005; Narayanan and Johnston, 2007) was

absent in fmr1-/y neurons suggesting that although strong LTP of synaptic inputs is not

significantly affected (Lauterborn et al., 2007; Brager et al., 2012), plasticity of intrinsic

excitability may be altered in fmr1-/y mice.

Rapid stimulation of Schaffer collateral inputs to CA1 neurons results in several forms of

short-term synaptic plasticity (for review see (Zucker and Regehr, 2002). Fmr1-/y mice have

deficits in short-term synaptic plasticity associated with exaggerated presynaptic calcium

influx (Deng et al., 2011). The higher calcium influx was due in part to significantly broader

action potentials in CA3 neurons in fmr1-/y mice (Deng et al., 2013). The difference in

action potential broadening between wildtype and fmr1-/y mice was absent in the presence

of paxilline and iberiotoxin, blockers of large-conductance calcium-activated potassium

channels (BK channels). In cortical neurons, BK channels are found in the soma, dendrite,

and axon including the pre- and postsynaptic specializations (Misonou et al., 2006; Sailer et

Brager and Johnston Page 5

Brain Res Bull. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



al., 2006). Diversity of BK channel function is accomplished in part by the presence of two

identified auxiliary β subunits: β2 and β4. Deng et al. demonstrated that FMRP can bind

directly to the β4 subunit of BK channels (Deng et al., 2013). The absence of FMRP in

fmr1-/y neurons presumably affects the co-assembly of β4 subunits with the pore-forming

subunits of BK channels and lowers the calcium sensitivity (Brenner et al., 2000). The net

effect of this would be reduced IBK and more pronounced action potential broadening during

repetitive firing. The physiological consequence of action potential broadening is altered

neurotransmitter release and short-term synaptic plasticity at Schaeffer collateral synapses

onto CA1 pyramidal neurons.

The Slack (for sequence like a Ca2+-activated K+ channel) gene encodes a potassium

channel that shares similarity to BK channels including a large single channel conductance

but are activated by rises in intracellular Na+ instead of Ca2+ (Dryer, 1994). Because they

are activated by rises in intracellular Na+, Slack channels contribute to the

afterhyperpolarization that occurs after both individual and bursts of action potentials.

FMRP can activate Slack channels via direct protein-protein interaction with the C-terminus

(Brown et al., 2010). Although there is a small but significant increase in Slack

immunoreactivity and no difference in synaptosomal expression of Slack protein between

wildtype and fmr1-/y MNTB neurons, IK(Na) is substantially reduced due to the lack of

FMRP to bind to the Slack channel subunits (Brown et al., 2010). Given the identified role

of Slack channels regulating the timing of high frequency action potential firing (Yang et al.,

2007), the loss of Slack channel function in fmr1-/y mice may play a role in impaired signal

processing in MNTB neurons.

Two studies demonstrated that FMRP can bind to and regulate the translation of KV4.2

mRNA, the putative subunit of hippocampal A-type K+ channels (Gross et al., 2011; Lee et

al., 2011). However, these two studies came to opposite conclusions as whether there is

more (Lee et al., 2011) or less (Gross et al., 2011) expression of KV4.2 protein in fmr1-/y

neurons. One possible reason for the discrepancy between these two conclusions is that the

studies use different background strains of the knockout mice (Lee et al. used FVB129 mice

while Gross et al. used C57BL/6). It is known that background strain can affect expression

of the fmr1-/y phenotype (Paradee et al., 1999). A physiological investigation in CA1

pyramidal neurons found smaller maximum dendritic IKA and a left shifted voltage-

dependence of activation of A-type K+ channels (Routh et al., 2013). The physiological

consequences of the changes in IKA were reduced attenuation of b-APs, greater b-AP-

mediated calcium influx, and a reduced threshold for theta-burst pairing LTP induction.

While the physiological results in Routh et al. agree with the findings in Gross et al., it is

possible that hippocampal KV4.2 protein expression is actually greater in fmr1-/y mice but

that there are fewer functional channels. There are instances where immunohistochemistry

and physiology of A-type K+ channels do not always agree (Hoffman et al., 1997; Kerti et

al., 2012). Furthermore, Brown et al. (2010) demonstrated that MNTB neurons from the

fmr1-/y mouse have higher expression of Slack channel subunits but reduced maximal

IK(Na).
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SUMMARY

Voltage-gated ion channels play a critical role in regulating the excitability of all aspects of

neuronal function. Depending upon their neuronal compartment location, voltage-gated ion

channels can regulate synaptic transmission, local dendritic spikes, and back propagating

action potentials. Additionally, modulation of ion channel function plays a critical role in

allowing neurons to modify their input-output properties in response to varying patterns of

neuronal activity and neuromodulation. The function and expression of several voltage-

gated ion channels are altered in the fmr1-/y mouse model of Fragile X syndrome. In some

cases these changes were identified as due to altered protein expression (Strumbos et al.,

2010a; Gross et al., 2011; Lee et al., 2011) or protein-protein interactions (Brown et al.,

2010; Deng et al., 2013). In others, the reason the loss of FMRP resulted in the identified

channelopathy is not immediately clear (Meredith et al., 2007; Brager et al., 2012; Routh et

al., 2013).

Channelopathies in Fragile X syndrome profoundly affect dendritic integration, signaling

and neuronal output, thereby potentially causing deficits in information processing by

neuronal networks and contributing to cognitive impairment. Spontaneously occurring UP

states are prolonged in the fmr1-/y mouse suggesting that neocortical circuits are

hyperexcitable (Gibson et al., 2008; Hays et al., 2011; Gonçalves et al., 2013). While

changes in synaptic connectivity and strength play a role in producing hyperexcitable

networks, channelopathies would undoubtedly alter the intrinsic excitability of individual

neurons and have a strong influence on the neuronal network as a whole. It will be

interesting to see which of the already identified, as well as any newly discovered,

channelopathies in Fragile X syndrome are in response to changes in neuronal network

excitability as opposed to directly regulated by FMRP (i.e. mRNA translation or protein-

protein interactions). Given the large number of cellular substrates that control the

expression and function of voltage-gated channels, these molecules, in addition to the ion

channels themselves, represent potential new targets for the development of therapeutic

agents for Fragile X syndrome.
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Highlights

1. Channelopathies represent a novel area of investigation in the pathology of FXS

2. Voltage-gated ion channels are critical for normal and abnormal neuronal

function

3. Alterations in several voltage-gated ion channels were identified in the fmr1-/y

mouse

4. Voltage-gated ion channels represent a potential new set of therapeutic targets
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Table 1

Ion channel mRNAs identified as FMRP targets

Voltage-gated potassium channels

Name Gene Type Notes Reference

KV1.2 KCNA2 delayed rectifier d

KV2.1 KCNB1 delayed rectifier d

KV3.1 KCNC1 delayed rectifier a, confirmed in ref. e

KV3.3 KCNC3 A-type d

KV4.2 KCND2 A-type d, confirmed in ref. f
and g

KV10.1 KCNH1 delayed rectifier EAG-related d

KV12.2 KCNH3 fast (partial) inactivation EAG-related d

KV11.3 KCNH7 fast (partial) inactivation EAG-related d

KV7.2 KCNQ2 delayed rectifier M-current d

KV7.3 KCNQ3 delayed rectifier M-current d

Other potassium channels

Name Gene Type Notes Reference

KCa1.1 KNCMA1 calcium-activated BK, Maxi-K channel d

KCa4.1 KCNT1 sodium-activated Slack d

KIR3.3 KCNJ9 G-protein coupled inward rectifier GIRK3 c

Voltage-gated sodium channels

Name Gene Type Notes Reference

NaV1.1 SCN2A TTX-sensitive d

NaV1.6 SCN8A TTX-sensitive d

Voltage-gated calcium channels

Name Gene Type Notes Reference

CaV2.1 CACNA1A P/Q-type calcium channel High voltage-activated d

CaV2.2 CACNA1B N-type calcium channel High voltage-activated d

CaV2.3 CACNA1E R-type calcium channel Intermediate voltage-activated d

CaV3.1 CACNA1G T-type calcium channel Low voltage-activated d

CaV3.3 CACNA1I T-type calcium channel Low voltage-activated d

CaV1.3 CACNA1D L-type calcium channel High voltage-activated c

CANCB1 L-type calcium channel β1 subunit d

CACNB3 L-type calcium channel β3 subunit b

Other channels

Name Gene Type Notes Reference

HCN2 HCN2 h-channel non-specific cation channel b, d

CLCN3 CLCN3 chloride channel d

TRPC4 TRPC4 Transient receptor potential channel, subclass C non-specific cation channel d

TRPM3 TRPM3 Transient receptor potential channel, subclass M non-specific cation channel d

VDAC VDAC1 Voltage-dependent anion channel c
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ACCN ACCN1 Amiloride-sensitive cation channel d

References

a. Darnell et al., 2001

b. V. Brown et al., 2001

c. L. Chen et al., 2003

d. Darnell et al., 2011

e. Strumbos et al., 2010a

f. Gross et al., 2011

g. Lee et al., 2011

This table represents mRNAs for channel proteins that can bind to, and therefore be regulated by FMRP. The absence of an mRNA from this table
does not however mean that the particular channel is not regulated by FMRP. It may reflect a low abundance of that particular mRNA and therefore
not detected by the assay used in the indicated study.
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