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Abstract

The availability of enantiomerically enriched carbonyl-containing compounds is essential to the

synthesis of biologically active molecules. Since catalytic enantioselective conjugate addition

(ECA) reactions directly generate the latter valuable class of molecules, the design and

development of such protocols represents a compelling objective in modern chemistry. Herein, we

disclose the first solution to the problem of ECA of alkenyl groups to acyclic trisubstituted enones,

an advance achieved by adopting an easily modifiable and fully catalytic approach. The requisite

alkenylaluminum reagents are synthesized with exceptional site- and/or stereoselectivity by a Ni-

catalyzed hydroalumination process, and the necessary enones are prepared through a site- and

stereoselective zirconocene-catalyzed carboalumination/acylation reaction. The all-catalytic

procedure is complete within four hours, furnishing the desired products in up to 77% overall

yield and 99:1 enantiomeric ratio.
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The significance of enantiomerically enriched carbonyl-containing compounds to the

availability of biologically active molecules places considerable value on transformations

such as catalytic enantioselective conjugate addition (ECA).[1, 2] While progress has been

made in the development of efficient ECA protocols, notable shortcomings remain

unaddressed. Among the underdeveloped approaches are those that involve the less reactive

acyclic α,β-unsaturated carbonyl compounds and furnish products with all-carbon-

substituted quaternary stereogenic centers.[3, 4] Of the limited number of reported

instances,[5] only a few pertain to linear substrates, and most involve highly activated

electrophiles (e.g., nitroalkenes or Meldrum’s acid derivatives).[6,7] As far as we are aware,
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none of the existing approaches deal with the addition of alkenyl units, readily

functionalizable moieties that allow access to a variety of useful enantiomerically enriched

derivatives.[8] Here, we disclose the first examples of catalytic ECA of alkenyl metal

reagents to acyclic trisubstituted enones, generating products that contain all-carbon-

substituted quaternary stereogenic centers. The desired goal has been achieved by means of

a strategy that, in the majority of cases, involves catalytic site- and/or stereoselective

preparation of the starting materials.

The central role of an effective chiral promoter notwithstanding, the efficiency and

selectivity with which the substrates and reagents are accessed is critical in a catalytic

enantioselective process. We envisioned a multicomponent ECA protocol entailing catalytic

synthesis of the unsaturated carbonyl compounds as well as the nucleophilic alkenyl partners

prior to their union, which is in turn promoted by a third catalyst (Scheme 1). The all-

catalytic method would ideally exhibit maximum versatility by providing access to an array

of enones and nucleophilic entities, generated readily and selectively with inexpensive,

easily available, and robust reagents and catalysts. It would be preferable if efforts regarding

the isolation and purification of the catalytically generated starting materials were kept to a

minimum.

The multicomponent transformation in Scheme 2 is illustrative of the power of the approach.

The alkenylaluminum reagent was obtained in two hours by site- and stereoselective Ni-

catalyzed addition of aluminum hydride to phenylacetylene (93% β, >98% E).[9] The same

aryl alkyne served as the starting point for the site- and stereoselective Zr-catalyzed

aluminum methyl addition/acylation sequence,[10] furnishing the enone substrate after 45

min (2; >98% α, >98% E, 80% yield).[11] The union of the two catalytically generated

components was accomplished by subjection of the alkenylaluminum species and enone 2 to

2.5 mol% of the AgI-based N-heterocyclic carbene (NHC) complex 1a[12] and 5.0 mol% of

CuCl2·2H2O in tetrahydrofuran (thf) at 22 °C; there was complete conversion to the desired

product after 45 min (<2% addition of α-alkenylaluminum species). β-Alkenylketone 3a was

accordingly obtained in 64% overall yield and 98:2 e.r. by a process that requires a total of

less than four hours. The solution of the alkenylaluminum species was used directly,

whereas the enone was purified by silica gel chromatography; when the procedure was

carried out without purification of 2, ketone 3a was isolated in 41% overall yield (vs. 64%)

and with identical enantioselectivity (98:2 e.r.).

Aryl-, heteroaryl- and alkyl-substituted alkynes can be utilized. The facile modularity[13] of

the multicomponent approach permits easy access to a variety of products in high e.r.

Examples involving β-alkenylaluminum reagents are presented in Table 1; the desired

compounds are isolated in 24–60% overall yield. Products are obtained with e.r. values that

typically exceed 95:5. Enones prepared by the carboalumination/acylation of alkynes

bearing an electron-donating (e.g., entry 1, Table 1; 40%yield) or an electron-withdrawing

aryl unit (e.g., entry 2, 63% yield) are effective substrates. Zirconocene-catalyzed reactions

uniformly deliver >98% E selectivity. Heterocyclic alkenylaluminum reagents, represented

by 3g, formed in 96.5:3.5 e.r., and alkyl-substituted enones (Table 1, entries 7 and 8) were

converted to products in 90.5:9.5–97:3 e.r. and 31–44% overall yield. In some instances,

maximum selectivity calls for 1b as the catalyst precursor.
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Unlike the transformations with β-substituted cyclic enones,[8c] the use of a silyl-substituted

alkenylaluminum species is not necessary for obtaining high e.r. values with linear enones.

The need for the initial preparation of a silyl-substituted alkyne and subsequent proto-

desilylation is obviated. Attempts to effect NHC–Cu-catalyzed ECA with acyclic

trisubstituted enones and silyl-containing Al-based reagents led to <2% conversion.[8c] The

latter finding underscores the challenge of effecting the formation of products containing all-

carbon-substituted quaternary centers from acyclic substrates.

Issues vis-á-vis the diminished reactivity of sizeable nucleophilic entities raise the question

of whether acyclic trisubstituted enones would participate in efficient ECA processes

involving α-substituted alkenylaluminum reagents (derived from hydroaluminations

catalyzed by [Ni-(dppp)Cl2]).[9] Addition of aryl- or heteroaryl-substituted α-

alkenylaluminum compounds and aryl- or alkyl-substituted substrates furnish β-alkenyl

ketones in better yields and enantioselectivities than the analogous reactions of the less

encumbered β-alkenylmetal variants (Table 2; 29–77% overall yield and 92:8–99:1 e.r.).

Enantioselective synthesis of 5 in Scheme 3 illustrates that the catalytic process can be

performed with n-alkyl (vs. methyl) ketones; attempts to effect reaction with the bulkier

isopropyl ketone resulted in extensive decomposition after 4.0 h. Enynes easily undergo

carbometalation/acylation en route to 1,4-dienes such as 6 (78% yield and 96:4 e.r.; Scheme

3). Alkenyl-substituted α-alkenylaluminum species serve equally well, as manifested by the

enantioselective formation of 7 (92% yield, 98:2 e.r.). Synthesis of ketones 8 and 9 in high

e.r. shows that enones accessed by reaction with commercially available and inexpensive

Et3Al are suitable substrates.

There are instances where the zirconocene-catalyzed carbometalation is inefficient or the

terminal alkyne is prohibitively expensive;[14] examples are shown in Scheme 4. Such

substrates were prepared by Wittig-type olefinations. Ketones 10–15 were obtained readily

in 57–90% yield and 97:3–99:1 e.r. (Scheme 4a). The catalytic ECA with unsaturated keto

ester 16 shows that the reaction not only proceeds efficiently (68% yield) and with high

enantioselectivity (97:3 e.r.), C–C bond formation is fully site-selective (Scheme 4b); only

the product containing the more sterically demanding quaternary carbon stereogenic center β

to the ketone unit is formed exclusively (17/18>98:2), underscoring the lower reactivity of

enoates.

The sequence in Scheme 5, regarding the enantioselective synthesis of antimicrobial

enokipodin B,[15] demonstrates the utility of our method. Conversion of aryl-substituted

terminal alkyne 20 and phenylacetylene to 21 proceeds in 57% overall yield and 95:5 e.r.;

this is in spite of the carbometalation/acylation of highly electron-rich 20 proceeding in an

atypical 67:33 E/Z selectivity.[11] Control experiments indicate that the Z isomer affords the

same enantiomer but the ECA is comparatively less efficient.[16] The alkenyl group of

unsaturated ketone 21 has been utilized as a convenient precursor to an aldehyde, which was

subsequently reacted with the neighboring ketone to generate the desired

cyclopentenone.[15] The route in Scheme 5 compares favorably with a recent alternative that

generates 21 in 11 steps from commercially available materials[15] (vs. five steps from 19,

which can be purchased).
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We carried out DFT calculations to gain insight regarding the origins of the high

enantioselectivity. The catalytic cycle appears to involve initial conjugate addition of

(alkenyl)CuI complex followed by reductive elimination of the (alkenyl) CuIII alkyl

intermediate.[17] Transformation through a mechanism whereby the cuprate’s alkenyl unit is

directly transferred to the enone substrate in a redox-neutral process was found to be less

favored by roughly 7–9 kcal mol−1. Complex A (Scheme 6) represents the lowest energy

pathway, consistent with the identity of the major isomers; complex B, leading to the minor

enantiomers, is about 1.6 kcal mol−1 higher in energy. In the latter case, simultaneous

coordination of the substrate with the Lewis acidic aluminum bridge and Cu center dictates

that the enone binds in its energetically more demanding s-trans conformation (vs. s-cis in

A), engendering severe A(1,3) strain between the ketone and alkene substituents. In the

absence of an aluminum connector, the transition state for addition to the same face as the

complex is appreciably higher in energy. The above mechanistic issues underscore the

challenges associated with ECA of acyclic compounds where, unlike the more rigid cyclic

systems, reaction can proceed via several possible conformers.

In closing, we have introduced the first protocol for catalytic ECA reactions that form

products with quaternary all-carbon-substituted stereogenic centers and involve alkenyl-

based nucleophiles and acyclic enones. In most cases, reagents and substrates are obtained

by catalytic processes as well. The above attributes, the variety of functionalizations feasible

with alkenes and carbonyls, and the importance of enantiomerically enriched entities with a

quaternary carbon stereogenic center underscore the value of the approach presented in this

report.
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Scheme 1.
The general and fully catalytic strategy for the generation and enantioselective coupling of

two fragments by an enantioselective conjugate addition (ECA) reaction.
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Scheme 2.
Proof-of-principle: Effective combination of three catalytic processes, culminating in the

formation of a product containing an all-carbon-substituted quaternary stereogenic center in

high enantiomeric purity in less than a total of four hours.

McGrath and Hoveyda Page 8

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2014 June 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 3.
Products obtained from catalytic multicomponent enantioselective reactions with an enyne,

an n-alkyl ketone, and Et3Al. Enones generated with >98% E selectivity in all cases; yields

are overall for the entire three-component process. See the Supporting Information for

details.
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Scheme 4.
a) Products of NHC–Cu-catalyzed ECA reactions with α,β-unsaturated ketones not

efficiently or cost-effectively accessible through Zr-catalyzed carbometalation/acylation. b)

ECA reaction proceeds with site-selectivity. Yields refer to catalytic ECA; see the

Supporting Information for details.
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Scheme 5.
Application of the multicomponent catalytic enantioselective process to the synthesis of

enokipodin B. Conditions: a) 1.5 equiv ICl, Et2O/CHCl3 (2:1), 22 °C, 3.0 h; 75% yield; b)

1.2 mol% [Pd-(PPh3)2Cl2], 2.0 mol% CuI, 1.2 equiv HC≡CSi(Me)3, 22–85°C 4.0 h; c)

KOH, MeOH, thf, 22°C, 3.0 h; 94% overall yield (2 steps). See the Supporting Information

for details.
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Scheme 6.
DFT calculations indicate that the major enantiomer likely arises from the mode of addition

A (vs. B).
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