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Abstract

Assessment of network connectivity across multiple brain regions is critical to understanding the

mechanisms underlying various neurological disorders. Conventional methods for assessing

dynamic interactions include cross-correlation and coherence analysis. However, these methods

do not reveal the direction of information flow, which is important for studying the highly

directional neurological system. Granger causality (GC) analysis can characterize the directional

influences between two systems. We tested GC analysis for its capability to capture directional

interactions within both simulated and in-vivo neural networks. The simulated networks consisted

of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two

model networks. Our analysis successfully detected asymmetrical interactions between these

networks (p<10−10, t-test). Next, we characterized the relationship between the “electrical synaptic

strength” in the model networks and interactions estimated by GC analysis. We demonstrated the

novel application of GC to monitor interactions between thalamic and cortical neurons following

ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the

post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher

than those from the cortex to the thalamus (1.983±0.278 times higher, p=0.021). In addition, the

dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our

study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions
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after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative

applications in characterizing other inter-regional interactions in an injured brain.
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I. Introduction

Structural and functional plasticity is an important property of the brain that confers the

unique capability of adaptation to environment and injury [1]. This may be associated with a

dynamic nature of synaptic strengths or the `channel capacity' for communication between

neurons. From an information theoretic view, this means that the interaction dynamics

within or across specific regions can be assessed through mutual functional influences. In

fact, the assessment of dynamic neuronal interactions is an important tool in uncovering

neural mechanisms that underlie many neuro-pathologies such as epilepsy [2], Parkinson's

disease [3] and depression [4].

To understand the dynamics of functional connectivity between brain regions, simultaneous

access to the activity of hundreds of neurons along with suitable analysis methods are vitally

important. The former has been achieved to a large extent by recent advances in

microelectrode technologies [5]. However, analytical methods to reveal complex, directed

interactions among neurons or brain regions are still needed. Cross-correlation or coherence

methods have been conventionally chosen for such analysis of experimental data recorded

under several cognitive or clinical conditions [6–8]. Yet these methods cannot reveal the

directionality of mutual influences. Furthermore, these methods restrict the analysis to either

the time or the frequency domain. Granger causality (GC) analysis could be a powerful

alternative to characterize the directed, asymmetric coupling in the time-frequency domain

[9]. Previously, GC analysis has been used to reveal strong cortico-cortical interactions

during specific motor behaviors [10] and identify the primary local generator of alpha

oscillations [11]. In a study with WAG/Rij rats, GC analysis was used to successfully

identify the interdependence between the frontal cortex and the thalamus during spontaneous

absence seizures [12]. In addition, in our previous study, we characterized thalamocortical

interactions in response to temperature changes with GC analysis [13].

Studies of the dynamic influences between two regions of the brain elucidate each region's

role in specific pathologies. For example, the complex circuitry involved in the

thalamocortical interactions is critical in neurological disorders such as coma [14], [15]. It is

suggested that arousal from coma and subsequent recovery could be dependent on how well

these network components communicate [16], [17]. Muthuswamy et al. analyzed individual

signals recorded from the thalamus and the cortex, during arousal from coma [14], but did

not reveal the mutual thalamocortical influences. It is documented that the thalamocortical

network is inherently asymmetric, both structurally [18] and functionally [19]. Moreover,

the interactions may vary with frequency bands [20], [21]. Therefore, an analysis in the

combined time-frequency domain is important.
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Here, we demonstrate that GC analysis can successfully characterize the asymmetric

coupling between the thalamus and the cortex under the conditions of brain injury resulting

from global ischemia. The estimated interactions with GC analysis were referred to as GC

interactions. Of special interest here are the interactions between the ventral posterolateral

(VPL) nucleus in the thalamus and the somatosensory cortex because we're interested in

arousal from coma along the somatosensory pathway. VPL nucleus is part of the

somatosensory pathway and previous studies have found that the VPL nucleus is abundant

in neurons which are involved in the thalamocortical interactions [22]. Our objective is to 1)

Demonstrate the use of GC analysis to extract directional coupling among neuronal

networks, 2) Use a mathematical model, to characterize the relationship between GC

interactions and synaptic coupling strengths as the two are not identical [23], and 3)

Demonstrate that GC analysis can be used to monitor changes in thalamocortical function

during recovery from cardiac arrest (CA) induced global ischemic injury in a rat model.

II. Methods

A. Time and Frequency Domain Formulation of Granger Causality

For two simultaneously recorded signals x and y, if the variance of the prediction error in y

can be reduced by incorporating the past information from x, then it can be said that x is

“Granger causal” to y [24]. Using an autoregressive model, two discrete random processes,

x(t) and y(t) can be modeled either by two autoregressive processes as [9], [23],

(1)

or by two joint processes as,

(2)

Here, εx, εy, ,  denote the prediction errors and σx, σy, ,  denote the variance of the

prediction errors. If  then y is Granger causal to x; similarly, if  then x is

Granger causal to y. The causal influences from x to y and y to x are then defined as,

(3)

where the scalar g is the measure of GC interactions in time domain.

Equations (2) can be transformed to frequency domain as, [9], [23]
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(4)

The spectral matrix S(f) can then be calculated using following equation:

(5)

where Σ is the covariance matrix of residual error.

The driving strength from x to y and y to x in frequency domain can be defined as,

(6)

where G is the measure of GC interactions in frequency domain.

B. Application of GC Analysis to Simulated Networks

In order to validate that GC analysis is capable of detecting the asymmetry of coupling, we

simulated two asymmetrically coupled neural networks, each made up of N=5 Hindmarsh-

Rose neurons [25]. Both networks were globally coupled within themselves (every neuron

coupled with every other). The effective “local field potentials” (LFPs) were

computationally generated from the action potential output of each neural network using a

realistic model of the attenuation properties of the extracellular matrix [26]. The simulated

uncoupled LFPs dynamics were validated by spectrally matching with LFPs recorded in-

vivo. The two networks were then coupled asymmetrically in order to mimic asymmetric

thalamocortical interactions. Finally, the simulated LFPs from the two networks were

subjected to GC analysis to estimate the synaptic strengths. The two networks of globally

coupled HR neurons can be represented by,

(7)

where (x, y, z) are the variables for the first network and x' is the variable from the second

network. The coefficients cij represent coupling within each network and α' denotes the

coupling strength from the second network to the first network. When describing the second

network, the coupling strength is denoted by α.
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To simulate LFPs from the average membrane potentials of the HR networks, we used the

method developed in [26]. This method uses the experimental observation that LFPs exhibit

frequency dependent attenuation over distances. This results in the following equation for

LFPs in frequency domain,

(8)

where the distance r' from current source was 500 μm, σ(R)=1.56, ε(R)=10−10,

ε(r')=0.01σ(R), R=105 μm, λ=500 μm and σ(r') is defined as

where σ0 = 2. The inverse Fourier transform gives the LFPs in the time domain, the final

output of the model. Fig. 1 shows the entire model schematically.

The following parameters were adopted so that the simulated LFPs qualitatively matched the

in-vivo recordings: a = 1, b = 3, c = 3, d = 4.75, r = 0.015, s = 4, and χ = −1.8. I = [2.5 1.8

2.5 1.8 2.5] and I'= [2.5 2.5 2.5 2.5 2.5]. All coupling strengths within a network, cij, were

set to random values.

C. Application of GC Analysis to the Animal Model of Cardiac Arrest

GC analysis enables quantitative evaluation of dynamic interactions between two brain

signals. In our experiments with arousal from coma after brain injury, we are motivated by

the hypothesized interactions between thalamic and cortical structures in the brain [19], [27].

Experimental Protocol—We utilized GC analysis as a measure of thalamocortical

interactions in five subjects (Male, Wistar; Charles River, Wilmington, MA). Animals were

subjected to asphyxia-induced CA to induce moderate brain injury, and then resuscitated.

The rat model has been well established [28], [29]. Briefly, CA was initiated with cessation

of mechanical ventilation. Cardiopulmonary resuscitation (CPR) was performed by chest

compression until return of spontaneous circulation (ROSC). The protocol was approved by

the Institutional Animal Care and Use Committee of the Johns Hopkins University.

LFPs were recorded at 12.2 kHz using the TDT System 3 (Tucker-Davis Technologies,

Alachua, FL) for the periods of CA (withdrawal of mechanical ventilation), CPR and a 60

minutes acute recovery. Two pairs of two channel tungsten microelectrodes (FHC,

Bowdoin, ME) were used to simultaneously record LFPs from the right forelimb primary

somatosensory cortex (S1FL) and the ventral posterolateral (VPL) nucleus in the thalamus.

The recorded extracellular data were band-pass filtered (0.5–150 Hz) and the 60 Hz noise

was removed using a notch filter. Signals were then down sampled to 300 Hz. Further, we

examined every channel for contamination; segments with distinguishable artifacts, such as

CPR artifacts, were removed.
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Data Analysis—To stably estimate GC interactions and maintain necessary time

resolution, we used a moving time-window to segment the LFPs. We chose 1 min as the size

of time window and 20 s as the interval of moving steps, since our preliminary analysis

showed that the overall results were consistent with various lengths of window and moving

steps. We adopted a previously published toolbox for analysis of Granger causality [23]. The

order of the autoregression model was determined using the Akaike Information Criterion

(AIC) [30]. Here, the AIC dropped monotonically with increasing model order up to a value

of 12. However, when the model order was higher than 10, there was just a slight decrease

in AIC with the increase in the model order and no obvious change in overall results.

Therefore, a model of order 10 was selected.

We previously characterized a sub-band specific change in the information entropy of EEG

for five clinical bands and reported a sub-band specific dynamics of EEG entropy during

recovery from CA [29], [31]. To measure the frequency-domain dynamics of GC

interactions between the thalamus and the cortex for five clinical frequency bands (delta

(below 4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (30–150 Hz)),

the sub-band GC interactions, SG, is defined by taking the mean of the GC interactions

within a frequency band [32]; that is,

(9)

where fL and fH are the lowest and highest frequency within a specific band.

III. Results

A. Simulation Studies

We simulated a pair of asymmetrically coupled networks, each made of five HR neurons

that were all connected to each other (see Fig. 1). The coupling strength from one network to

another represented the synaptic connections across the two networks. The LFPs from each

of the component networks were generated using a theoretical model of extracellular

properties of frequency dependent attenuation [26]. Fig. 2(A) shows example trace of LFPs

recorded from the somatosensory cortex (forelimb area, S1FL) of an anesthetized rat along

with a model LFPs trace simulated using the coupled model networks over a period of one

second. The LFPs generated from the model had similar temporal and spectral profile to that

of the recorded LFPs from the rat (Fig. 2(B)). The amplitude of the recorded and simulated

signals ranged from −350 μV to 244 μV and −460 μV to 440 μV respectively. The power

spectra for both signals showed a single dominant peak at 3.6 Hz and 3.4 Hz for recorded

and simulated LFPs respectively.

To validate that GC analysis can detect the asymmetry in coupling, we used it to estimate

the causal influences between two simulated neural networks. Specifically, we created two

coupled neuronal networks (N and N'), each has an output of LFPs. The “electrical synaptic

strength” from network N to network N' is 0.1 and 1 for the reverse direction (Fig. 3(A)).

GC analysis was applied to 100 realizations with randomized initial conditions. As can be
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seen in Fig. 3(B), the estimated GC interactions from N to N' is 0.0321±0.0019, which was

significantly less than the GC interactions from N' to N (0.0953±0.0016; p<10−10, t-test).

Thus, GC analysis successfully reflected the asymmetric influences between the two model

networks. Also, the low variability indicated that GC analysis had high reproducibility.

It should be noted that GC analysis estimates the mutual functional influence between neural

networks, and not the underlying strength of synaptic connections that couples them

anatomically. This means that we need a characterization of GC interactions with respect to

a range of known values of coupling strengths. We implemented this using our simulated

network. To establish the relationship between physiological coupling strength and

estimated GC interactions, we simulated LFPs for various coupling strengths. Specifically,

we set the coupling strengths from network N to N' (α) to be 0.1, and set the coupling from

N' to N (α') to increase stepwise from 0 to 2.6. For each combination of coupling strengths,

we generated ten seconds of LFPs for five random initial conditions. We calculated the GC

interactions between the LFPs of each network for every initial condition and coupling. The

changes in GC interactions with α' is shown in Fig. 4. The GC interactions from N' to N

showed a linear relationship with α' before it saturated when α' was higher than 2. As

expected, the GC interactions from N to N' were less sensitive to the changes in α'. When α'

varied from 0.4 to 2, the linear regression fit the GC interactions from N' to N and N to N'

with the slopes of 0.1192 (r2=0.9866) and 0.0087 (r2=0.4886) respectively.

B. Animal Model of Cardiac Arrest

We obtained electrophysiological recording from rats that underwent an asphyxial CA

condition. GC analysis was applied to the simultaneously recorded LFPs from the S1FL and

the VPL nucleus in the thalamus to detect dynamic changes in thalamocortical interactions

following HI brain injury.

As can be seen in Fig. 5(A), the time-domain interactions in two directions (the thalamus to

the cortex and the cortex to the thalamus) were quite asymmetric after the onset of asphyxia.

The GC interactions from the thalamus to the cortex had larger values and fluctuations than

that from the cortex to the thalamus across the periods of CA and recovery. Table I

summarizes the average value of GC interactions from the onset of asphyxia to the end of

recording for each rat. The averaged GC interactions from the thalamus to the cortex

(0.039±0.027) were significantly higher (1.983±0.278 times higher, p=0.021) than that from

the cortex to the thalamus (0.018±0.010)). Furthermore, it is worth noting that the GC

interactions from the thalamus to the cortex reached the highest value immediately after

resuscitation.

To explore the features of dynamic interactions in the frequency domain, we employed a

frequency decomposition of GC analysis to analyze the causal interactions between the

thalamus and the cortex after CA. As can be seen in Fig. 5(B), similar asymmetric

interactions between the thalamus and the cortex were observed in the time-frequency

domain. Also, the results in the time-frequency domain suggested that the dynamics of

thalamocortical GC interactions were frequency dependent. Fig. 6 showed the different

dynamics of thalamocortical GC interactions for five clinical bands (delta (below 4 Hz),

theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (30–150 Hz)). Note that, for
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the delta band, the GC interactions in both directions were approximately equal. For the

theta, alpha and beta band, the GC interactions from the thalamus to the cortex showed

distinct separation from that from the cortex to the thalamus and starting from 30 min after

CA, the GC interactions from the thalamus to the cortex monotonically increased up to the

end of recording. In the gamma band, GC interactions diverged at the beginning, and slowly

converged during the recovery period.

IV. Discussion

Using two simulated, asymmetrically coupled neural networks, we have verified the ability

of GC analysis to extract directed coupling strength between neural populations, and

characterized the relationship between physiological coupling strength and the GC

interactions. Furthermore, we presented the application of GC analysis to the

characterization of dynamic neuronal interactions in the context of HI brain injury. For the

first time, we demonstrated GC analysis as a viable metric to monitor the dynamics of

thalamocortical function after a global ischemic nervous system injury. GC analysis tracked

dynamic thalamocortical interactions during CA-induced HI and during the recovery period.

GC analysis reflected the asymmetry of thalamocortical interactions in both the time and

time-frequency domain. Therefore, GC analysis on thalamocortical interactions provided

additional information about not only the strength but also the direction of influences, which

could not have been revealed by the conventional methods, such as cross-correlation and

coherence methods.

This technique could be widely applicable, for example, in monitoring pain circuits after

spinal cord injury [33] or the information flow between the periphery and the central

nervous system before and after injury. It should be noted that GC analysis does not in itself

characterize causality entirely. It merely tracks the information flow between the

subsystems. Implicit assumptions of GC analysis include, most importantly that the

underlying dynamics between the two subsystems are taking place on similar time-scales.

GC analysis may not be a good choice to characterize information flow between a discrete

stochastic subsystems coupled with a continuous oscillatory one. For example, if the

underlying system can be modeled as an n-dimensional kicked oscillator, GC analysis may

not be able to characterize the information flow. The thalamocortical system of spikes may

indeed be such a system and therefore we have focused only on the LFPs from both regions.

The two LFP signals are in fact oscillatory and hence well-suited for GC analysis as a

measure of interactions.

On the other hand, when applied to a biological network such as neural networks, it should

be noted that a functional causal connectivity metric such as GC interactions does not reveal

anatomical connections, nor does it directly measure synaptic strength. It provides an overall

assessment of dynamic influences of one subsystem over the other, based on an information

theoretic framework. In this context, it is important to note that GC analysis cannot

distinguish between two coupled subsystems that drive each other from two subsystems

coupled to a third common driver system. The characterization of GC interactions, with

respect to a range of known values of coupling strength in our study, showed that GC

interactions has a linear relationship with coupling strength within certain ranges and
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saturated for large values of coupling strength. Saturation in GC interactions as a function of

synaptic coupling strength was also found in Cadotte et al.'s study with spike train data [34].

As in many nonlinear coupled systems, for a given set of within-network parameters, the

two coupled systems reach a point of mutual synchrony (high-correlation) for a high

coupling strength. Any further increase in the coupling strength does not contribute further

to the mutual exchange of information between the two networks. This might be the reason

that GC interactions saturated for higher coupling strengths. In addition, it is worth pointing

out that unlike ideal simulated networks, invasive recordings of neural signals inevitably

contain different levels of noise, which might affect GC interactions between neural

networks. Our future study on GC interactions between simulated networks will include the

test of noise-robustness of GC analysis and parametric ranges for different neurons in the

participant networks.

Anatomically, the projections from the VPL mainly terminate in layer IV of the cortex,

while the feedback to the thalamus is primarily from layer VI [35–37]. Therefore, recordings

in different layers of the cortex might lead to variability in estimation of functional

interactions between the thalamus and the cortex. In our experiments, the depth of cortical

recordings was between layers IV to VI. To better assess the dynamics of interactions in the

thalamocortical circuit, cortical signals from the same layer need to be recorded in each

experiment. During the experiments, in order to minimize variability between animals, we

manually inspected the response latencies upon peripheral tactile stimulation with soft

touch.

We have previously developed EEG based biomarkers of coma-arousal after CA, which are

capable of quantifying the post-CA evolution of EEG, associated with arousal and

neurological outcomes [31], [38–41]. To better understand the relationship between the

estimated GC interactions and the arousal level of the brain, future work will focus on

comparing and contrasting the recovery of EEG as measured by a qEEG metric such as

entropy measures developed by us with the dynamics of GC interactions. Our previous study

by analyzing thalamic and cortical activity separately instead of using interactions analysis

suggested that the thalamic recovery precedes the cortical recovery during arousal following

CA [27]. In this study, we observed that the averaged GC interactions from the thalamus to

the cortex were significantly higher than that from the cortex to the thalamus. Those findings

might indicate the leading role of the thalamus in arousal from coma. In addition, in our

preliminary experiments of this study, we observed that GC interactions from the thalamus

to the cortex increased temporarily during immediate recovery phase, which is similar to our

previous findings by a modified directed transfer function method [42]. More experiments

are needed to gain mechanistic insights into the dynamics of thalamocortical interactions

after HI.

Our special interest in understanding thalamocortical dynamical coupling comes from a

hypothesis that the thalamus might play a leading role in arousal from coma after CA.

According to Poulet et al.'s study, the thalamus plays a key role in controlling cortical states

[43]. Previous studies have shown that the vulnerability to HI injury in the cortical and sub-

cortical structures is not uniform [14], [44–46]. Furthermore, thalamic nuclei, such as intra-

laminar and midline nuclei of the thalamus have long been regarded to affect cortical
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functioning and participate in the process of arousal [17]. Therefore we expect a measure

such as GC analysis to be able to monitor the changes in thalamocortical function in an

acute period after a global injury such as CA induced ischemia.
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Fig. 1.
A schematic for simulation of thalamocortical connectivity. Spike trains from two

asymmetrically coupled networks (N and N'), each with 5 globally coupled Hindmarsh-Rose

neurons were subjected to a realistic model of extracellular, frequency dependent attenuation

to simulate the “local field potentials” (LFPs) from each network. α and α' denotes the

coupling strength between the two networks. The simulated LFPs were then subjected to GC

analysis of connectivity.
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Fig. 2.
(A) Two example traces of LFPs. Left: LFPs recorded from the somatosensory cortex of an

anesthetized rat (S1FL), sampled at 300 Hz. Right: LFPs simulated using a model network

of five Hindmarsh-Rose neurons (see Fig. 1) subjected to frequency dependent attenuation

[26]. (B) Power spectra for the two LFP signals. The similarity between the two signals in

the time domain and the frequency domain resulted from a judicious choice of parameters in

the model network. The simulated signals were used to characterize the GC interactions as a

measure of coupling between two coupled model networks.
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Fig. 3.
(A) The schematic for the two asymmetrically coupled model networks. The “synaptic

strength” from network N to N' was α=0.1, and that from N' to N was α'=1. (B) The GC

interactions (Mean±SE) from N to N' (red) and that from N' to N (blue) for 100 random

samples of simulated LFPs. Note that the estimated GC interactions robustly and

reproducibly mimicked the asymmetry in the synaptic strengths, i.e. the GC interactions

from network N to N' was significantly less than that from N' to N as set in the model (*,

P<10−10, t test).
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Fig. 4.
The estimated GC interactions (Mean±SE) as functions of the “synaptic strength” α' in the

model coupled networks (see Fig. 1) for a fixed value of α=0.1 (Blue: GC interactions from

N' to N; Red: from N to N'). As expected, the estimated GC interactions from network N to

N' were less sensitive to changes in α'. While, the estimated GC interactions from N' to N

plateaued with increasing α' after an initial proportional increase.

Chen et al. Page 19

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2014 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5.
(A) The changes in GC interactions over time during to 1hr. after CA in an example rat. The

blue curve shows the GC interactions from the thalamus to the cortex (TH→CX) and the

red, from the cortex to the thalamus (CX→TH). Time t=0 indicates the onset of asphyxia.

(B) Corresponding GC interactions in both directions for the same representative rat are

plotted in the time-frequency domain, with the color index indicating the GC interactions.

(C) For N=5 rats, the GC interactions (Mean±SE) as a function of time during and 1hr. after

CA (Blue: TH→CX; Red: CX→TH) (D) Corresponding mean GC interactions in the time-

frequency domain. In the panels B and D, the logarithm of GC interactions was used for

plotting purposes to achieve better color contrast. Note that in both the domains, the GC

interactions indicated asymmetric interactions between the thalamus and the cortex after CA

along with higher GC interactions from the thalamus to the cortex. In addition, the dynamic

thalamocortical interactions estimated by GC analysis varied with frequency.
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Fig. 6.
Sub-band GC interactions from the thalamus to the cortex (TH→CX; Blue) and the cortex to

the thalamus (CX→TH; Red) of rats (N=5) in one hour after CA for five clinical bands:

delta (below 4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (30–150

Hz). The mean values (lines) and standard errors (shaded areas) were calculated. Note that

the dynamic feature of GC interactions between the thalamus and the cortex varied with the

frequency bands.
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TABLE I

Mean GC Interactions In Time-domain During Acute Post-CA Period For Each Experimental Rat

rat #1 rat #2 rat #3 rat #4 rat #5 Mean±SE P value

TH→CX 0.0239 0.0136 0.0214 0.0598 0.0748 0.0387±0.0121
0.021*

CX→TH 0.0136 0.0087 0.0135 0.0198 0.0355 0.0182±0.0050

TH, thalamus; CX, cortex; GC interactions in TH→CX was significantly higher than CX→TH ((1.983±0.278 times higher, p=0.021,

*
P<0.05)
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