Pegylated liposomal doxorubicin in the management of ovarian cancer

A systematic review and metaanalysis of randomized trials

Nicoletta Staropoli^{1,†}, Domenico Ciliberto^{1,†}, Cirino Botta¹, Lucia Fiorillo¹, Anna Grimaldi², Stefania Lama², Michele Caraglia^{2,*}, Angela Salvino¹, Pierfrancesco Tassone¹, and Pierosandro Tagliaferri^{1,*}

¹Medical Oncology Unit; Department of Experimental and Clinical Medicine; Magna Græcia University and T. Campanella Cancer Center; Catanzaro, Italy; ²Department of Biochemistry; Biophysics and General Pathology; Second University of Naples; Naples, Italy

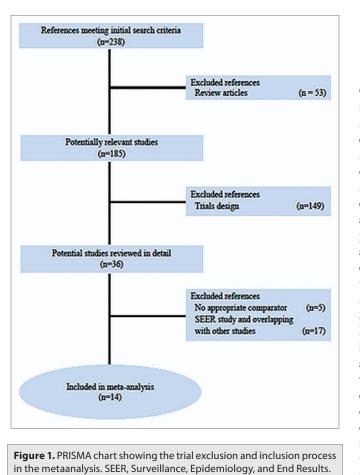
[†]These authors contributed equally to this work.

Keywords: ovarian cancer, systemic chemotherapy, pegylated liposomal doxorubicin, randomized clinical trials, metaanalysis

Abbreviations: CI, confidence intervals; OC, ovarian cancer; PLD, pegylated liposomal doxorubicin; OS, overall survival; PFS, progression free survival; RRs, response rate; HR, hazard ratio; ORs, odds ratio; RCTs, randomized clinical trials; TRs, toxicity rates; PFI, platinum-free interval; RECIST, response evaluation criteria in solid tumor; VEGF, vascular endothelial growth factor

Ovarian cancer is the leading cause of death among gynecological tumors. Carboplatin/paclitaxel represents the cornerstone of front-line treatment. Instead, there is no consensus for management of recurrent/progressive disease, in which pegylated liposomal doxorubicin (PLD) ± carboplatin is widely used. We performed a systematic review and metaanalysis to evaluate impact of PLD-based compared with no-PLD-based regimens in the ovarian cancer treatment. Data were extracted from randomized trials comparing PLD-based treatment to any other regimens in the January 2000–January 2013 time-frame. Study end-points were overall survival (OS), progression free survival (PFS), response rate (RR), CA125 response, and toxicity. Hazard ratios (HRs) of OS and PFS, with 95% CI, odds ratios (ORs) of RR and risk ratios of CA125 response and grade 3–4 toxicity, were extracted. Data were pooled using fixed and random effect models for selected endpoints.

Fourteen randomized trials for a total of 5760 patients were selected and included for the final analysis, which showed no OS differences for PLD-based compared with other regimens (pooled HR: 0.94; 95% Cl: 0.88–1.02; P = 0.132) and a significant PFS benefit of PLD-based schedule (HR: 0.91; 95% Cl: 0.86–0.96; P = 0.001), particularly in second-line (HR: 0.85; 95% Cl: 0.75–0.91) and in platinum-sensitive (HR: 0.83; 95% Cl: 0.74–0.94) subgroups. This work confirmed the peculiar tolerability profile of this drug, moreover no difference was observed for common hematological toxicities and for RR, CA125 response.


PLD-containing regimens do not improve OS when compared with any other schedule in all phases of disease. A marginal PFS advantage is observed only in platinum-sensitive setting and second-line treatment.

Introduction

Ovarian cancer (OC) is the leading cause of death in gynecological tumors.^{1,2} Presently, the gold standard frontline treatment is represented by carboplatin/paclitaxel and bevacizumab.³⁻⁷ Beyond the first line, the platinum-free interval (PFI), i.e., the time between the end of the last treatment course and the occurrence of relapse or progression, is widely considered a critical issue for selecting the chemotherapy regimen.^{8,9} International guidelines recommend a re-challenge with carboplatin-based combination, for patients who relapse after at least 12 mo from the last chemotherapy course (platinum-sensitive patients).¹⁰ In particular, carboplatin/pegylated liposomal doxorubicin (PLD) combination is considered in the clinical practice an alternative choice compared with carboplatin/paclitaxel in this specific setting.¹¹⁻¹⁴

Patients with a PFI of 6–12 mo are defined platinumpartially-sensitive and showed an intermediate likelihood of responding to a platinum-based regimen.¹⁴ In this subgroup it has been recently hypothesized, based on preclinical and clinical findings, a potential benefit derived from an "artificial" prolongation of the PFI by the use of a platinum-free regimen (such as trabectedine–PLD combination).¹⁵⁻¹⁷ These trials reported significant advantage in progression free survival (PFS) which did not translate in overall survival (OS) prolongation.^{18,19}

*Correspondence to: Michele Caraglia; Email: michele.caraglia@unina2.it; Pierosandro Tagliaferri; Email: tagliaferri@unicz.it Submitted: 02/07/2014; Revised: 03/09/2014; Accepted: 03/16/2014; Published Online: 03/21/2014 http://dx.doi.org/10.4161/cbt.28557

Patients with a platinum-refractory disease (with a PFI < 6 mo) are reported to gain little benefit from monotherapy with several drugs such as PLD, topotecan, etoposide, taxanes, gemcitabine, and oxaliplatin.²⁰⁻²⁶ However, none of them demonstrated to significantly improve OS. Therefore, no standard approach has been defined in this scenario.^{21,24,27-29}

PLD is a liposome-encapsulated formulation of doxorubicin, a cytotoxic anthracycline antibiotic obtained from *Streptomyces peucetius* var *caesius*. The mechanism of its antitumor action is still not fully understood but it is thought to block topoisomerase I and intercalate between adjacent base pairs of the double helix of DNA thus impairing the synthesis of DNA, RNA, and proteins.^{30,31}

Overall, PLD is considered one of the most effective therapeutic agents for the treatment of recurrent and progressive disease: it may be used in platinum-based regimens for platinum-sensitive patients, in combination with trabectedin in platinum-partiallysensitive disease and as single agent for platinum-refractory patients, even if no significant advantages over other drugs have been demonstrated in the latter setting.^{20,25}

From August 2011 until early 2013, PLD was out of production due to technical issues determining difficulties and doubts on use of this agent in daily clinical practice.³²

Recent retrospective studies have raised some concern on the real efficacy of PLD in OC treatment.^{1,33,34}

Results

Studies selection

Figure 1 reports the PRISMA chart related to Randomized Clinical Trials (RCTs) selection and search strategy. In the time frame covered by the systematic review (2000-2013), 238 studies were reported as full papers or meeting abstracts. Two hundred and two studies were initially excluded: 53 of these were reviews and 149 were excluded for trial design without a clearcut PLD-based design. Subsequently, we examined in detail the remaining 36 trials. Among them 17 included PLD comparison did not meet selection criteria and were excluded from the final analysis. Further, 5 trials were excluded for peculiar reasons, in particular: Monk et al. and Vergote et al. (2009) because control arm included PLD; Gordon et al. (2001) reported preliminary data subsequently published in 2004, in an article included in the final analysis; Markman et al. (2010) duplicate data reported in Alberts et al. (2008); HECTOR trial presented on ASCO 2012 because data were not evaluable at single agent level.^{18,35-38} Fourteen trials for a total of 5760 patients were selected and included in the final analysis.^{11,20,21,28,37,39-48} Two trials of Vergote and Rose were analyzed only for RR for missing data on survival endpoints. The trial of Kaye et al. and AURELIA trial, both designed for multiple arms comparison, were analyzed for single comparison considering an aggregate arm of different olaparib concentrations in the first study and comparing bevacizumabfree arms in the second study. At least one data-comparison in terms of survival, RR, Ca125 response and toxicity was reported in all selected RCTs, which were therefore eligible for the endpoint analysis (Tables 1 and 2).

Study characteristics

These trials included two front-line (involving 1682 patients), ten second-line (2788 patients, 1669 of which were platinumsensitive and 1119 platinum-refractory) and two third-line (1290 platinum-refractory patients) trials in which PLD-based treatment was compared with other treatment.

The quality assessment of selected studies was evaluated according to the Cochrane reviewers' handbook for 4 requirements: method of randomization, allocation concealment, blindness, and adequacy of follow-up. Nine trials were scored A (low risk of bias), four trials were scored B (intermediate risk of bias), and one trial was scored C (high risk of bias) (Table 3).^{49,50}

Quantitative data reports

Six trials were excluded from OS analysis because did not report retrievable data for this endpoint. PLD was not associated with improved survival in OC patients (pooled HR: 0.94; 95% CI: 0.88–1.02; P = 0.132) (Fig. 2A and C) and this result was confirmed in all subgroup analyses. The trial by Gordon et al. was the only RCT that reported a significant improvement in OS for PLD compared with topotecan. PFS data were not provided in 6 trials therefore these trials were excluded from PFS analysis. PLD-based treatment was found to be significantly associated with improved PFS (pooled HR: 0.91; 95% CI: 0.86–0.96; P =0.001) (Fig. 2B and D). However, the analyses of study subgroups demonstrate a significant PFS advantage only in second-line

Table 1. Survival data extracted from	analyzed clinical trials
---------------------------------------	--------------------------

Author	Year	No. ntr	Arms	Phase	OS	PFS	OS P (log
Author	fear	No. pts	Arms	Phase	(HR)	(HR)	rank test)
l line							
Pignata et al. ³⁹	2011	820	CPLD vs CP		0.82	0.95	0.58
Pignata et al."	2011	820	CPLD VS CP		(0.72–1.12)	(0.81–1.13)	0.58
Bookman et al. ⁴⁰	2009	862	CPLD vs CP		0.97	0.96	0.79
Bookman et al.	2009	802	CPLD VS CP		(0.83–1.13)	(0.93–1.09)	0.79
ll line							
Bafaloukos	2010	100	CPLD vs CP			1.15	
et al. ⁴⁴	2010	189	CPLD VS CP	II	-	(0.78–1.66)	-
	2011	07	PI Dura O			0.91	0.66
Kaye et al. ⁴¹	2011	97	PLD vs O	II	-	(0.6–1.39)	0.66
	2011	07	PI Dura O			0.86	0.66
Kaye et al. ⁴¹	2011	97	PLD vs O	II	-	(0.56–1.3)	0.66
Albert et al. ⁴³	2009	(1	CPLD vs C		0.46	0.54	0.03
Albert et al. ¹⁹	2008	61	CPLD VS C		(0.22–0.95)	(0.32–0.93)	0.03
CALYPSO ¹¹	2010	076			0.99	0.82	0.05
CALYPSO	2010	976	CPLD vs CP		(0.85–1.16)	(0.72–0.94)	0.05
Ferrandina et al. ²⁸	2008	153	PLD vs G	111	-	-	0.411
	2007	105	DI Dura C		1.02		0.07
Mutch et al. ²⁰	2007	195	PLD vs G	(0.71–1.42)		-	0.87
6 1 3 6	2004	474	DI D		0.82	0.79	0.05
Gordon et al. ³⁶	2004	474	PLD vs T		(0.68–1)	(0.67–0.94)	0.05
III line							
<u> </u>	2012	020	PLD vs		1.07	0.95	
Colombo et al. ⁴⁵	2012	829	Patupilone		(0.91–1.26)	(0.8–1.12)	

Abbreviations: OS, overall survival; PFS, progression free survival; HR, hazard ratio; CPLD, carboplatin and pegylated liposomal doxorubicin; CP, carboplatin and paclitaxel; PLD, pegylated liposomal doxorubicin; O, olaparib; C, carboplatin; G, gemcitabine; T, topotecan.

setting (pooled HR: 0.85; 95% CI: 0.75–0.91) and in platinumsensitive patients (pooled HR: 0.83; 95% CI: 0.74–0.94), while analysis of other study-subgroups did not demonstrate a statistically significant advantage for PLD.

Two trials did not report data in term of RR and were excluded from this analysis. The RR analysis revealed no advantage for PLD-based treatment (Fig. 3A and C) in all study-subgroups (OR for RR: 0.95; 95% CI: 0.65–1.39; P = 0.802). The analysis of Ca125 response confirmed the absence of any advantage derived from PLD-based treatment compared with control arm (Risk Ratio for Ca125 response: 1.21; 95% CI: 0.90–1.63) (Fig. 3B and D). Again, none of the study-subgroup analyses demonstrated a significant result. Common adverse events were similar in both arms. We analyzed specifically hematological toxicity: among toxicities, anemia and neutropenia were more frequent in PLD-free treatment groups; however these differences were not statistically significant. Thrombocytopenia was revealed more frequent in the PLD group (0.74, 95% CI: 0.35–1.60) but again statistical significance was not reached. Other toxicities were not comparable for different schedules and agents in control arm for different tolerability profile. As expected palmar-plantar erythrodysesthesia was more common in PLD arms while neurotoxicity and alopecia occurred more frequently in taxane treated patients (Table 4).

Risk of bias in individual studies

A Begg funnel plot showed no significant evidence for publication bias (Fig. 4).

Discussion

This metaanalysis of 14 RCTs (for a total of 5760 patients), comparing PLD to any other drug in OC treatment, demonstrated an advantage in terms of PFS for PLD-based regimen (pooled HR: 0.91; 95% CI: 0.86-0.96; P = 0.001). However, no significant advantages were found in terms of OS, RR or Ca125-response despite of subgroups. This work confirmed the peculiar tolerability profile of this drug; moreover no differences were

Author	Trial design	RR (%)	Hematologic to:		oxicity	
Addio	mardesign	MA (70)	TCP (%)	Anemia (%)	NTP (%)	
l line						
Pignata et al. ³⁹	CPLD	57	16	10	43	
Pignata et al."	СР	59	2	4	50	
Bookman et al.40	CPLD	-	38	-	69	
Bookman et al.	СР	-	22	-	59	
ll line						
	CPLD	-	16	8	35	
CALYPSO ¹¹	СР	-	6	5	45	
Defelouiles et al 44	CPLD	51	11	-	35	
Bafaloukos et al.44	СР	57	2	-	30	
A 11 1.42	CPLD	52	29	16	29	
Alberts et al.43	С	29	10	0	3	
	PLD	25	-	0	-	
Kaye et al.41	0	18	-	6	-	
	PLD	18	-	0	-	
Kaye et al.41	0	31	-	13	-	
	PLD	16	0	7	6	
Ferrandina et al. ²⁸	G	29	5	5	23	
0/0	PLD	17.8	-	-	-	
O' Byrne et al.48	Р	22.4	-	-	-	
M	PLD	8	5	2	18	
Mutch et al. ²⁰	G	6	6	3	38	
	PLD	20	1	28	12	
Gordon et al. ³⁶	Т	17	34	5	77	
D (147	PLD	10	-	-	-	
Rose et al.47	СС	32	-	-	-	
	PLD	7.9	-	-	-	
Aurelia ⁴⁶	Т	3.3	-	-	-	
	PLD	7.9	-	-	-	
Aurelia ⁴⁶	Р	12.6	-	-	-	
III line						
	PLD	11	7	5	14	
Vergote et al. ³⁵	Canfosfamide	4	5	11	8	
	PLD	7.9	-	3.7	10	
Colombo et al.45	Patupilone	15.5		4.5	3	

Abbreviations: OR, odds ratio; rr, risk ratio; CPLD, carboplatin and pegylated liposomal doxorubicin; CP, carboplatin and paclitaxel; PLD, pegylated liposomal doxorubicin; O, olaparib; C, carboplatin; G, gemcitabine; T, topotecan.

observed in our analysis if we consider only the most common hematological toxicities.

Two recent metaanalyses published by Cochrane Collaboration analyzed the efficacy of PLD in OC in first line of treatment and in disease recurrence respectively. In the first work the authors concluded that carboplatin–PLD is a reasonable alternative to carboplatin–paclitaxel for similar efficacy and a different profile of toxicity.⁵¹ The second Cochrane study and a metaanalysis conducted by Gibson et al. and published on the same period, demonstrated both that carboplatin-PLD combination is a reasonable alternative to carboplatin–paclitaxel for better tolerability while a monotherapy with PLD is a valid option also in a

Included studies	Method of randomization	Allocation concealment	Blindness	Withdrawal and dropout	Baseline	Quality level
Pignata et al. ³⁹	Centralized	Central office	No	Detailed criteria	Identical baseline	A
Bookman et al.40	Centralized	Not detailed	No	Detailed criteria	Identical baseline	В
CALYPSO ¹¹	Centralized	Central office	No	Detailed criteria	Identical baseline	A
Bafaloukos et al.44	Centralized	Central office	No	Detailed criteria	Identical baseline	A
Alberts et al.43	Centralized	Not detailed	No	Detailed criteria	Identical baseline	В
Kaye et al.41	Centralized	Central office	No	Not detailed	Identical baseline	В
Ferrandina et al. ²⁸	Centralized	Central office	Yes	Detailed criteria	Identical baseline	A
Mutch et al. ²⁰	Centralized	Not detailed	No	Detailed criteria	Identical baseline	В
Gordon et al. ³⁶	Centralized	Central office	No	Detailed criteria	Identical baseline	A
O'Byrne et al.48	Not reported	Not detailed	No	Not detailed	Identical baseline	С
AURELIAI46	Centralized	Central office	No	Detailed criteria	Identical baseline	A
Colombo et al.45	Centralized	Central office	No	Detailed criteria	Identical baseline	A
Vergote et al.35	Centralized	Central office	No	Detailed criteria	Identical baseline	A
Rose et al.47	Centralized	Not detailed	No	Not detailed	Identical baseline	В

Table 3. Quality assessment

platinum-refractory setting. However Gibson et al. did not evaluate the efficacy endpoints in the different clinical subgroups.⁵² Moreover, in these works, the authors pay particular attention to tolerability and such analysis leads them to conclude that, despite of similar efficacy, the choice of regimen could be based on individual patient preference on the basis of side effects.^{52,53} In particular Lawrie et al. recognized a role of PLD in refractoryplatinum subgroup without comparison with other single agents and without providing evidence in support of a rational timing of individual agent administration.⁵²

Furthermore Lawrie et al. included in final analysis also the trials containing PLD in control arm.

On the basis of these findings, which are of relevance taking into account that tolerability is an important endpoint in the palliative setting, we focused however our attention on the analysis of drug effectiveness in terms of survival endpoints, stratifying the trials for treatment line and platinum sensitivity, that are the most important parameters in decision making.

In our study, the most impressive results were obtained when we analyzed the activity is different PLD second-line treatment and platinum-sensitive patients. Focusing on the first-line treatment, our results confirmed that carboplatin–paclitaxel combination is the only evidence-based choice with recent implementation of bevacizumab addition. Indeed, the results of this pooled analysis with a non-significant HR 0.92 for OS and HR 0.96 for PFS in this setting evidenced non-superiority of PLD in combination with carboplatin as compared with carboplatin-paclitaxel. These findings partially support the common belief that carboplatin– PLD is an adequate alternative choice in the management of firstline OC patients. In fact none of the first-line trials was based on a non-inferiority design which could actually demonstrate noninferiority of carboplatin–PLD.

Moreover, the use of carboplatin–PLD in first line treatment needs to be investigated in new trials comparing this schedule to bevacizumab-containing regimen because at present, this anti-VEGF Ab is the only agent able to increase survival when added to standard carboplatin-paclitaxel front-line chemotherapy.^{6,7,54}

In second-line (first recurrence or progression), PLD-based treatment produced a significant improvement in term of PFS, which did not translate in longer OS. This PFS advantage was marginal in unselected patients, becoming more evident in platinum-sensitive disease.

Most of the trials evaluated patients non-selected for platinum-sensitivity status. Indeed, subgroup analyses reported a clear survival advantage in platinum-sensitive OC patients supporting PLD-based treatment as preferred choice in this particularly setting.

According to this view, Gordon et al. in 2004 reported a clinical advantage in terms of PFS for PLD compared with topotecan on the whole study population, which was however restricted to platinum-sensitive disease. The results of this trial led to the administration in the clinical practice of PLD to OC patients regardless of platinum-sensitivity status. This highlights the need of trial design considering the platinum-sensitivity status.²¹

Our results on the PFS end-point in platinum-sensitive subgroup showed an advantage for PLD- containing regimen. However, forest plots in Figure 2B and D shows the preeminent weight of Calypso trial in the imbalance in favor of PLD. That study is a non-inferiority trial designed to compare the

Figure 2A and B (See next page). Comparison of OS and PFS, according to treatment line (A and B respectively) or platinum sensitivity (C and D respectively), between patients treated with a PLD-containing regimen vs. any other PLD-free schedule. Abbreviation: OS, overall survival; PFS, progression free survival; HR, hazard ratio; CPLD, carboplatin and pegylated liposomal doxorubicin; CP, carboplatin and paclitaxel; PLD pegylated liposomal doxorubicin; O, olaparib; C, carboplatin; G, gemcitabine; T, topotecan.

TRIALS	YEAR	TREATMENT	HR (95% CI)	% Weight
			1	
II line 11				
CALYPSO	2010	CPLD vs CP	0.99 (0.85, 1.16)	22.79
nuteri	2007	PLD vs G	1.02 (0.71, 1.42)	4.59
Kaye (1) 41	2011	PLD vs O	0.66 (0.27, 1.55)	0.72
Kaye (2) 41	2011	PLD vs O	1.01 (0.44, 2.27)	0.82
Alberts 43	2008	CPLD vs C	0.46 (0.22, 0.95)	1.03
Gordon 36	2004	PLD vs T	0.82 (0.68, 1.00)	14.81
Subtotal (I-sq	uared = 2	4.1%, p = 0.253)	0.91 (0.82, 1.02)	44.76
lline				
Bookman ⁴⁰	2009	CPLD vs CP	0.97 (0.83, 1.13)	23.15
Pignata 39	2011	CPLD vs CP	0.82 (0.72, 1.12)	11.29
Subtotal (I-sq	uared = 3	3.0%, p = 0.222)	0.92 (0.81, 1.04)	34.43
III line	0010	010		AA 4-
Colombo 45	2012	PLD vs Patupilone	1.07 (0.91, 1.26)	20.81
Subtotal (I-sq	juared = .5	%, p = .)	1.07 (0.91, 1.26)	20.81
		groups: p = .240		
Overall (I-squ	lared = 26	3.9%, p = 0.205)	0.94 (0.88, 1.02)	100.00
TRIALS				%
110/120	YEAR	TREATMENT	HR (95% CI)	Weight
II line	YEAR	TREATMENT	HR (95% CI)	
II line	2010	CPLD vs CP	HR (95% CI)	
II line CALYPSO ¹¹				Weight
	2010	CPLD vs CP	0.82 (0.72, 0.94)	Weight 16.40
II line CALYPSO ¹¹ Kaye (1) 41	2010 2011 2011	CPLD vs CP PLD vs O	0.82 (0.72, 0.94) 0.91 (0.60, 1.39)	Weight 16.40 1.65
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴	2010 2011 2011	CPLD vs CP PLD vs O PLD vs O	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30)	Weight 16.40 1.65 1.64
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43	2010 2011 2011 2010	CPLD vs CP PLD vs O PLD vs O CPLD vs CP	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66)	Weight 16.40 1.65 1.64 2.04
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36	2010 2011 2011 2010 2008 2004	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93)	Weight 16.40 1.65 1.64 2.04 1.02
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36 Subtotal (I-squ Lline	2010 2011 2011 2010 2008 2004	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94)	Weight 16.40 1.65 1.64 2.04 1.02 10.17
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36	2010 2011 2011 2010 2008 2004	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94)	Weight 16.40 1.65 1.64 2.04 1.02 10.17
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36 Subtotal (I-sqi Lline Bookman ⁴⁰	2010 2011 2011 2010 2008 2004 uared = 15	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T 5.2%, p = 0.316)	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94) 0.82 (0.75, 0.91)	Weight 16.40 1.65 1.64 2.04 1.02 10.17 32.93
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36 Subtotal (I-squ Lline Bookman ⁴⁰ Pignata 39	2010 2011 2011 2008 2004 uared = 18 2009 2011	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T 5.2%, p = 0.316) CPLD vs CP	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94) 0.82 (0.75, 0.91) 0.96 (0.93, 1.09)	Weight 16.40 1.65 1.64 2.04 1.02 10.17 32.93 46.26
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36 Subtotal (I-sqi Lline Bookman ⁴⁰ Pignata 39 Subtotal (I-sqi	2010 2011 2011 2008 2004 uared = 18 2009 2011	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T 5.2%, p = 0.316) CPLD vs CP CPLD vs CP	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94) 0.82 (0.75, 0.91) 0.96 (0.93, 1.09) 0.95 (0.81, 1.13)	Weight 16.40 1.65 1.64 2.04 1.02 10.17 32.93 46.26 10.52
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36 Subtotal (I-squ Lline Bookman ⁴⁰ Pignata 39	2010 2011 2011 2008 2004 uared = 18 2009 2011	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T 5.2%, p = 0.316) CPLD vs CP CPLD vs CP	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94) 0.82 (0.75, 0.91) 0.96 (0.93, 1.09) 0.95 (0.81, 1.13) 0.96 (0.89, 1.03)	Weight 16.40 1.65 1.64 2.04 1.02 10.17 32.93 46.26 10.52 56.77
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36 Subtotal (I-sqi Lline Bookman ⁴⁰ Pignata 39 Subtotal (I-sqi III line	2010 2011 2011 2008 2004 2004 2009 2011 uared = 0. 2012	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T 5.2%, p = 0.316) CPLD vs CP CPLD vs CP CPLD vs CP 0%, p = 0.911)	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94) 0.82 (0.75, 0.91) 0.96 (0.93, 1.09) 0.95 (0.81, 1.13)	Weight 16.40 1.65 1.64 2.04 1.02 10.17 32.93 46.26 10.52
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Alberts 43 Gordon 36 Subtotal (I-sqi Pignata 39 Subtotal (I-sqi III line Colombo ⁴⁵ Subtotal (I-sqi	2010 2011 2011 2008 2004 uared = 19 2009 2011 uared = 0. 2012 uared = .%	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T 5.2%, p = 0.316) CPLD vs CP CPLD vs CP CPLD vs CP 0%, p = 0.911)	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94) 0.82 (0.75, 0.91) 0.96 (0.93, 1.09) 0.95 (0.81, 1.13) 0.96 (0.89, 1.03) 0.95 (0.80, 1.12)	Weight 16.40 1.55 1.64 2.04 1.02 10.17 32.93 46.26 10.52 56.77 10.30
II line CALYPSO ¹¹ Kaye (1) 41 Kaye (2) ⁴¹ Bafaloukos ⁴⁴ Aberts 43 Gordon 36 Subtotal (I-sqi line Baokman ⁴⁰ Pignata 39 Subtotal (I-sqi III line Colombo ⁴⁵ Subtotal (I-sqi Heterogeneity	2010 2011 2011 2008 2004 2009 2011 uared = 0. 2012 uared = .%	CPLD vs CP PLD vs O PLD vs O CPLD vs CP CPLD vs C PLD vs T 5.2%, $p = 0.316$) CPLD vs CP CPLD vs CP CPLD vs CP 0%, $p = 0.911$) PLD vs Patupilone s, p = .)	0.82 (0.72, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.79 (0.67, 0.94) 0.82 (0.75, 0.91) 0.96 (0.93, 1.09) 0.95 (0.81, 1.13) 0.96 (0.89, 1.03) 0.95 (0.80, 1.12)	Weight 16.40 1.55 1.64 2.04 1.02 10.17 32.93 46.26 10.52 56.77 10.30

TRIALS YEAR TH	REATMENT	HR (95% CI)	% Weig
sensitive			
CALYPSO ¹¹ 2010 CI	PLD vs CP	0.99 (0.85, 1.16)	22.79
Alberts 43 2008 CF	PLD vs C -	0.46 (0.22, 0.95)	1.03
Subtotal (I-squared = 75.	2%, p = 0.045)	0.96 (0.82, 1.12)	23.82
resistant and partially sen	sitive		
Kaye (1) 41 2011 PL	LD vs O	0.66 (0.27, 1.55)	0.72
Kaye (2) 41 2011 PL	LD vs O	1.01 (0.44, 2.27)	0.82
Subtotal (I-squared = 0.0	%, p = 0.487)	0.83 (0.45, 1.50)	
refractory/resistant			
Mutch 20 2007 PL	LD vs G	1.02 (0.71, 1.42)	4.59
Colombo ⁴⁵ 2012 PL	D vs Patupilone	1.07 (0.91, 1.26)	20.81
Subtotal (I-squared = 0.0	%, p = 0.806)	1.06 (0.92, 1.23)	25.39
all			
Bookman ⁴⁰ 2009 Cf	PLD vs CP	0.97 (0.83, 1.13)	23.15
Pignata ³⁹ 2011 Cl	PLD vs CP	0.82 (0.72, 1.12)	11.29
Gordon 36 2004 PL	LD vs T	0.82 (0.68, 1.00)	14.81
Subtotal (I-squared = 17.	2%, p = 0.299)	0.89 (0.80, 0.99)	49.25
Heterogeneity between gr	roups: p = 0.267		
Overall (I-squared = 26.9	%, p = 0.205)	0.94 (0.88, 1.02)	100.0
	.2 Fa	avors PLD-BASED treatment Favors control 5	
			%
	TREATMENT	HB /05% CIV	Walaht
2080/7722 8847/2001	TREATMENT	HR (95% CI)	Weight
sensitive			
sensitive CALYPSO ¹¹ 2010	CPLD vs CP	0.82 (0.72, 0.94)	16.40
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010	CPLD vs CP CPLD vs CP	0.82 (0.72, 0.94) 1.15 (0.78, 1.66)	16.40 2.04
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008	CPLD vs CP CPLD vs CP CPLD vs C	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93)	16.40 2.04 1.02
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010	CPLD vs CP CPLD vs CP CPLD vs C	0.82 (0.72, 0.94) 1.15 (0.78, 1.66)	16.40 2.04 1.02
sensitive CALYPSO ¹¹ 2010 Bataloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) Isitive	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94)	16.40 2.04 1.02 19.47
sensitive CALYPSO ¹¹ 2010 Bataloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068)	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94)	16.40 2.04 1.02
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen Kaye (1) ⁴¹ 2011	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) Isitive	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94)	16.40 2.04 1.02 19.47 1.65
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen Kaye (1) ⁴¹ 2011	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) sitive PLD vs O PLD vs O	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39)	16.40 2.04 1.02 19.47 1.65 1.64
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62. resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0 refractory/resistant	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) stitive PLD vs O PLD vs O PLD vs O	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30)	16.40 2.04 1.02 19.47 1.65 1.64
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62. resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0 refractory/resistant	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) sitive PLD vs O PLD vs O	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30)	16.40 2.04 1.02 19.47 1.65 1.64 3.30
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62. resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0 refractory/resistant	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) sistive PLD vs O PLD vs O 1%, p = 0.852) PLD vs Patupilone	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19)	16.40 2.04 1.02 19.47 1.65 1.64 3.30
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0) refractory/resistant Colombo ⁴⁵ 2012 Subtotal (I-squared = .%, all	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) sitive PLD vs O PLD vs O 1%, p = 0.852) PLD vs Patupilone , p = .)	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12)	16.40 2.04 1.02 19.47 1.65 1.64 3.30 10.30
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0) refractory/resistant Colombo ⁴⁵ 2012 Subtotal (I-squared = .%, all	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) sistive PLD vs O PLD vs O 1%, p = 0.852) PLD vs Patupilone	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12)	16.40 2.04 1.02 19.47 1.65 1.64 3.30
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62. resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0) refractory/resistant Colombo ⁴⁵ 2012 Subtotal (I-squared = .%, all Bookman ⁴⁰ 2009	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) sitive PLD vs O PLD vs O 1%, p = 0.852) PLD vs Patupilone , p = .)	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12)	16.40 2.04 1.02 19.47 1.65 1.64 3.30 10.30 10.30
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0) refractory/resistant Colombo ⁴⁵ 2012 Subtotal (I-squared = .%, all Bookman ⁴⁰ 2009 Pignata ³⁹ 2011	CPLD vs CP CPLD vs CP CPLD vs C .8%, p = 0.068) sitive PLD vs O PLD vs O !%, p = 0.852) PLD vs Patupilone . p = .)	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12)	16.40 2.04 1.02 19.47 1.65 1.64 3.30 10.30 10.30 46.26 10.52
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0) refractory/resistant Colombo ⁴⁵ 2012 Subtotal (I-squared = .%, all Bookman ⁴⁰ 2009 Pignata ³⁹ 2011	CPLD vs CP CPLD vs CP CPLD vs C 8%, p = 0.068) sitive PLD vs O PLD vs O 1%, p = 0.852) PLD vs Patupilone p = .) CPLD vs CP CPLD vs CP PLD vs T	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12) 0.95 (0.81, 1.13) 0.79 (0.67, 0.94)	16.40 2.04 1.02 19.47 1.65 1.64 3.30 10.30 10.30 46.26 10.52
sensitive CALYPSO ¹¹ 2010 Bafaloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62, resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0) refractory/resistant Colombo ⁴⁵ 2012 Subtotal (I-squared = .%, all Bookman ⁴⁰ 2009 Pignata ³⁹ 2011 Gordon ³⁶ 2004	CPLD vs CP CPLD vs CP CPLD vs C .8%, $p = 0.068$) sistive PLD vs O PLD vs O 1%, $p = 0.852$) PLD vs Patupilone , $p = .$) CPLD vs CP CPLD vs CP PLD vs T .9%, $p = 0.120$)	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12) 0.95 (0.81, 1.13) 0.79 (0.67, 0.94)	16.40 2.04 1.02 19.47 1.65 1.64 3.30 10.30 10.30 46.26 10.52 10.17
sensitive CALYPSO ¹¹ 2010 Bataloukos ⁴⁴ 2010 Alberts ⁴³ 2008 Subtotal (I-squared = 62. resistant and partially sen Kaye (1) ⁴¹ 2011 Kaye (2) ⁴¹ 2011 Subtotal (I-squared = 0.0 refractory/resistant Colombo ⁴⁵ 2012 Subtotal (I-squared = .%, all Bookman ⁴⁰ 2009 Pignata ³⁸ 2011 Gordon ³⁶ 2004 Subtotal (I-squared = 52.	CPLD vs CP CPLD vs CP CPLD vs C 8%, p = 0.068) sitive PLD vs O PLD vs O PLD vs O PLD vs Patupilone p = .) CPLD vs CP CPLD vs CP PLD vs CP PLD vs T 9%, p = 0.120) roups: $p = 0.427$	0.82 (0.72, 0.94) 1.15 (0.78, 1.66) 0.54 (0.32, 0.93) 0.83 (0.74, 0.94) 0.91 (0.60, 1.39) 0.86 (0.56, 1.30) 0.88 (0.66, 1.19) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12) 0.95 (0.80, 1.12) 0.95 (0.81, 1.13) 0.79 (0.67, 0.94)	16.40 2.04 1.02 19.47 1.65 1.64 3.30 10.30 10.30 46.26 10.52 10.17 66.94

Figure 2C and D (See previous page). Comparison of OS and PFS, according to treatment line (A and B respectively) or platinum sensitivity (C and D respectively), between patients treated with a PLD-containing regimen vs. any other PLD-free schedule. Abbreviation: OS, overall survival; PFS, progression free survival; HR, hazard ratio; CPLD, carboplatin and pegylated liposomal doxorubicin; CP, carboplatin and paclitaxel; PLD pegylated liposomal doxorubicin; O, olaparib; C, carboplatin; G, gemcitabine; T, topotecan.

carboplatin-PLD to carboplatin-paclitaxel combination: PLDbased regimen produces an advantage of less than two months in PFS (HR 0.82) without any advantage in OS. Anyhow, a subset analysis of the CALYPSO phase III trial about health-related quality of life in platinum-sensitive OC, confirmed a slightly lower toxicity and a lower impact on the body image item in carboplatin-PLD arm compared with carboplatin-paclitaxel with borderline differences on most other items.⁵⁵ The results reported in this trial, in our opinion, failed to provide a formal proof that PLD is the best option for clinical practice.¹¹

On this basis, it is possible to conclude that, at present, the cornerstone of platinum-sensitive OC treatment is represented by a re-challenge with carboplatin-based chemotherapy; additional evidence is required in order to consider PLD as a first choice in this specific setting.⁵⁶

Even in platinum-sensitive patients, the anti-VEGF monoclonal antibody bevacizumab is the only agent that demonstrated able to produce a consistent 4 mo improvement in terms of PFS, (HR 0.48) in combination to platinum-containing second-line treatment.⁵⁷

As a pitfall of our analysis, none of the trials examined was specifically designed for the partially platinum-sensitive setting. Indeed, the MITO-8 trial, investigating the role of PLD against CP in this setting, is presently ongoing, and the trial by Monk et al., comparing PLD vs. PLD/trabectedine, could not be included in our analysis.^{18,58} Ferrandina et al. described an advantage in terms of PFS for PLD compared with gemcitabine in patients who experienced recurrence within 12 mo.²⁸ If we consider that all trials designed for refractory patients did not report an advantage for PLD compared with any other drug, it is conceivable that these results were mostly produced in the patient cohort relapsing between 6 and 12 mo.

Finally our analysis highlights the total ineffectiveness of PLD compared with any other agent to produce an improvement in any of the pre-specified end-points in the platinum-refractory setting. Recently, two mono-institutional experiences suggested that in platinum-refractory setting the use of PLD did not result in survival benefit.^{33,34} The only study designed for platinum-resistant and refractory patients (Mutch et al.) in second-line, did not show any advantage for PLD compared with gemcitabine.²⁰ Furthermore, this trial reported that PLD was not superior even in the toxicity profile. A survival advantage for paclitaxel compared with PLD was reported in O'Byrne trial; however, these results have never been published in extenso.⁴⁸ On this basis, in the platinum-resistant setting, topotecan or gemcitabine still represent an adequate alternative to PLD despite of a low RR and moderate bone marrow toxicity.

Again, the most important results on this difficult subgroup of patients have been achieved by bevacizumab, which, in the AURELIA trial, was reported to almost double the PFS of platinum-refractory OC patients (6.7 vs. 3.4 mo). Moreover, the best outcome was reported in the subgroup of patients treated with the combination of weekly paclitaxel and bevacizumab that showed an interesting median PFS of 10.4 mo.^{46,59}

This metaanalysis presents some limitations: it was performed on literature data and was not possible to retrieve data about all end-points from all the studies; although the included trials reported homogeneity on many points, the differences in the agents used in the control arms may had produced another potential bias.

In conclusion the absence of advantage in terms of OS and the marginal benefit in terms of PFS, achieved only in selected groups of patients with a "favorable" outcome, indicate the need to reconsider the real impact of PLD in clinical practice, also taking into account the PLD-related toxicities. On the other hand, the reported findings do not argue against PLD use in clinical practice, but provide novel information which can be of help in the design of prospective studies, where combination with molecular targeted agents should be explored.

According to our results, even if PLD treatment produces a minimal advantage in terms of PFS, this effect does not translate into a significant impact in terms of OS. On this basis, PLD should not be formally considered "the first choice agent" after first-line treatment failure, especially in platinum-refractory setting, where none of the currently used agents (with the exception, perhaps, of bevacizumab) reported to be able to change the OC patient outcome. Individual treatment selection in the clinical practice should consider toxicity experienced by the patient, offering for instance PLD to patients with taxane-related neurotoxicity. New treatment approaches, largely based on preclinical findings, with validated efficacy predictors and investigated by trial design based on platinum-sensitivity are eagerly awaited.

Patients and Methods

Eligibility criteria

Eligible trials included patients with the following characteristics: diagnosis of OC and common demographic characteristics of trial population (age and performance status). In the experimental arm, patients were treated with single PLD or PLDcontaining regimen, while in the control arm with other single agent or PLD-free combination. Adequate staging and followup had to be described. We excluded: non-randomized studies;

Figure 3A and B (See opposite page). Comparison of RR and Ca125 response, according to treatment line (A and B respectively) or platinum sensitivity (C and D respectively), between patients treated with a PLD-containing regimen vs. any other PLD-free schedule. Abbreviation: OR, odds ratio; rr, risk ratio; CPLD, carboplatin and pegylated liposomal doxorubicin; CP, carboplatin and paclitaxel; PLD, pegylated liposomal doxorubicin; O, olaparib; C, carboplatin; G, gemcitabine; T, topotecan.

TRIALS	YEAR	TREATMENT	OR (95% CI)	% Weight
	TEAN	INCAIMENT		weight
II line Ferrandina ²⁸	2000	212		7.00
Mutch ²⁰	2008	PLD va G	2.14 (1.08, 4.26)	7.80
Kaye (1) ⁴¹	2007	PLD vs G	1.36 (0.45, 4.08)	5.55 7.83
Kaye (2) ⁴¹	2011	PLD vs O	0.66 (0.33, 1.30)	7.94
Bafaloukos ⁴⁴	2010	CPLD vs CP	0.79 (0.45, 1.37)	8.57
Alberts ⁴³	2008	CPLD va C	2.65 (1.48, 4.75)	8.41
Gordon ³⁶	2004	PLD vs T	122 (0.60, 2.50)	7.63
Rose 47	2007	PLD vs CC		7.40
AURELIA (1) 46	2012	PLD vs T	2.81 (0.72, 10.92)	
AURELIA (2) 46	2012	PLD vs P w	0.58 (0.23, 1.47)	6.41
O'Byrne 48	2002	PLD vs P	0.76 (0.38, 1.52)	7.74
Subtotal (I-squar			0.95 (0.61, 1.47)	79.72
line				
Pignata ³⁹	2011	CPLD va CP	0.92 (0.53, 1.62)	8.54
Subtotal (I-squar	red = .%, s) = .)	0.92 (0.53, 1.62)	8.54
III line				
Colombo ⁴⁵	2012	PLD vs Patupilone	0.46 (0.19, 1.12)	6.58
Vergote ³⁵	2009	PLD vs Canfosfamide	2.97 (0.91, 9.65)	5.16
Subtotal (I-squar	red = 83.7	%, p = 0.013)	1.12 (0.18, 6.99)	11.74
Overall (I-square	d - 71 00		0.95 (0.65, 1.39)	100.00
Overall (I-aquare	d = /1.05	s, p = 0.000)	0.85 (0.00, 1.38)	100.00
NOTE: Weights a	are from ra	andom effects analysis		
			Favours PLD-BASED treatment Favours control	
				*
TRIALS	YEAR	TREATMENT	rr (%6% CI)	% Weight
TRIALS	YEAR	TREATMENT	rr (16% CI)	
T. H.C. Co.	YEAR 2008	TREATMENT PLD vs G	rr (96% CI) 0.94 (0.52, 1.72)	
II Ine				Weight
II Ine Ferrandina ²⁸	2008	PLD vs G	0.94 (0.52, 1.72)	Weight 16.96
ll Ine Ferrandina ²⁸ Mutch 20	2008	PLD VS G PLD VS G	0.94 (0.52, 1.72)	Weight 16.96 29.65
II ine Ferrandina ²⁸ Mutch 20 Bataloukos ⁴⁴	2008 2007 2010	PLD V9 G PLD V9 G CPLD V9 CP	0.94 (0.52, 1.72) 1.09 (0.75, 1.58) 0.76 (0.39, 1.49)	Weight 16.96 29.65 14.64
ll Ine Ferrandina ²⁸ Mutch 20 Bataloukos ⁴⁴ Aberts ⁴³	2008 2007 2010 2008 2004	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T	0.94 (0.52, 1.72) 1.09 (0.75, 1.58) 0.76 (0.39, 1.49) 1.86 (0.77, 4.45)	Weight 16.96 29.65 14.64 9.53
II Ine Ferrandina 28 Mutch 20 Batatoukos 44 Alberts 43 Gorton 36 Subtotal (I-squa	2008 2007 2010 2008 2004	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T	0.94 (0.52, 1.72) 1.09 (0.75, 1.58) 0.76 (0.59, 1.49) 1.86 (0.77, 4.46) 2.50 (1.16, 5.41)	Weight 16.96 29.65 14.64 9.53 11.71
II Ine Ferrandina ²⁸ Mutch 20 Batalookos ⁴⁴ Aberts ⁴³ Gordon ³⁶ Subtotal (I-squa	2008 2007 2010 2008 2004	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T	0.94 (0.52, 1.72) 1.09 (0.75, 1.58) 0.76 (0.59, 1.49) 1.86 (0.77, 4.46) 2.50 (1.16, 5.41)	Weight 16.96 29.65 14.64 9.53 11.71
II Ine Ferrandina ²⁸ Mutch 20 Bataloukos ⁴⁴ Alberts ⁴³ Gordon ³⁶ Sublotal (I-squa -	2008 2007 2010 2008 2004 ared = 43.0%	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T 	0.94 (0.52, 1.72) 1.09 (0.75, 1.56) 0.76 (0.39, 1.40) 1.86 (0.77, 4.46) 2.50 (1.16, 5.41) 1.21 (0.83, 1.74)	Weight 16.96 29.65 14.64 9.53 11.71 82.49
II Ine Ferrandina 28 Mutch 20 Batatoukos 44 Alberts 43 Gordon 36 Subtotal (I-squa - III line Colombo 45	2008 2007 2010 2008 2004 ared = 43.0% 2012	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T s, p = 0.135) PLD vs Patupione	0.94 (0.52, 1.72) 1.09 (0.75, 1.58) 0.76 (0.39, 1.49) 1.88 (0.77, 4.46) 2.50 (1.16, 5.41) 1.21 (0.83, 1.74) 1.31 (0.73, 2.36)	Weight 16.96 29.65 14.64 9.53 11.71 82.49 17.51
II Ine Ferrandina ²⁸ Mutch 20 Bataloukos ⁴⁴ Alberts ⁴³ Gordon ³⁶ Sublotal (I-squa -	2008 2007 2010 2008 2004 ared = 43.0% 2012	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T s, p = 0.135) PLD vs Patupione	0.94 (0.52, 1.72) 1.09 (0.75, 1.56) 0.76 (0.39, 1.40) 1.86 (0.77, 4.46) 2.50 (1.16, 5.41) 1.21 (0.83, 1.74)	Weight 16.96 29.65 14.64 9.53 11.71 82.49
II Ine Ferrandina ²⁸ Mutch 20 Bataloukos ⁴⁴ Alberts ⁴³ Gordon ³⁶ Subtotal (I-squa - III line Colombo ⁴⁵ Subtotal (I-squa	2008 2007 2010 2008 2004 wrod = 43.0% 2012 wrod = .%, p +	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T PLD vs Patupione	0.94 (0.52, 1.72) 1.09 (0.75, 1.56) 0.76 (0.39, 1.40) 1.86 (0.77, 4.46) 2.50 (1.16, 5.41) 1.21 (0.83, 1.74) 1.31 (0.73, 2.36) 1.31 (0.73, 2.36)	Weight 16.96 20.66 14.64 9.53 11.71 82.49 17.51
II Ine Ferrandina 28 Mutch 20 Batatoukos 44 Alberts 43 Gordon 36 Subtotal (I-squa - III line Colombo 45	2008 2007 2010 2008 2004 wrod = 43.0% 2012 wrod = .%, p +	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T PLD vs Patupione	0.94 (0.52, 1.72) 1.09 (0.75, 1.58) 0.76 (0.39, 1.49) 1.88 (0.77, 4.46) 2.50 (1.16, 5.41) 1.21 (0.83, 1.74) 1.31 (0.73, 2.36)	Weight 16.96 29.65 14.64 9.53 11.71 82.49 17.51
II Ine Ferrandina 28 Mutch 20 Batatoukos 44 Atberts 43 Gorton 36 Subtotal (I-squa - III line Colombo 45 Subtotal (I-squa - Overall (I-squar	2008 2007 2010 2008 2004 ared = 43.0% 2012 ared = .%, p -	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T PLD vs Patupione	0.94 (0.52, 1.72) 1.09 (0.75, 1.56) 0.76 (0.39, 1.40) 1.86 (0.77, 4.46) 2.50 (1.16, 5.41) 1.21 (0.83, 1.74) 1.31 (0.73, 2.36) 1.31 (0.73, 2.36)	Weight 16.96 20.66 14.64 9.53 11.71 82.49 17.51
II Ine Ferrandina 28 Mutch 20 Batatoukos 44 Atberts 43 Gorton 36 Subtotal (I-squa - III line Colombo 45 Subtotal (I-squa - Overall (I-squar	2008 2007 2010 2008 2004 ared = 43.0% 2012 ared = .%, p -	PLD vs G PLD vs G CPLD vs CP CPLD vs C PLD vs T , p = 0.135) PLD vs Patupione) p = 0.208)	0.94 (0.52, 1.72) 1.09 (0.75, 1.56) 0.76 (0.39, 1.40) 1.86 (0.77, 4.46) 2.50 (1.16, 5.41) 1.21 (0.83, 1.74) 1.31 (0.73, 2.36) 1.31 (0.73, 2.36)	Weight 16.96 20.66 14.64 9.53 11.71 82.49 17.51

2010 2008 red = 88.6 tially sens 2008 2011 2011 red = 80.3	TREATMENT CPLD vs CP CPLD vs C 5%, p = 0.003) . sitive PLD vs G PLD vs O PLD vs O S%, p = 0.006)	OR (95% C) 0.79 (0.45, 1 2.65 (1.48, 4 1.44 (0.44, 4 2.14 (1.08, 4 0.66 (0.33, 1	37) 8.57 75) 8.41 74) 16.98
2008 red = 88.6 2008 2011 2011 red = 80.3 nt	CPLD vs C 5%, p = 0.003) . sitive PLD vs G PLD vs O PLD vs O	2.65 (1.48, 4 1.44 (0.44, 4 2.14 (1.08, 4	75) 8.41 74) 16.98
red = 88.6 tially sens 2008 2011 2011 red = 80.3 nt	5%, p = 0.003). sitive PLD vs G PLD vs O PLD vs O	2.65 (1.48, 4 1.44 (0.44, 4 2.14 (1.08, 4	75) 8.41 74) 16.98
tially sen: 2008 2011 2011 red = 80.3 nt	sitive PLD vs G PLD vs O PLD vs O	1.44 (0.44, 4	74) 16.98
2008 2011 2011 red = 80.3	PLD vs G PLD vs O PLD vs O		
2011 2011 red = 80.3	PLD vs O PLD vs O		
2011 red = 80.3	PLD vs O	0.66 (0.33, 1	26) 7.80
red = 80.3	Contract of the Contract of		30) 7.83
nt	3% n = 0.006)	0.49 (0.25, 0	.95) 7.94
	, p = 0.000]	0.88 (0.36, 2	.13) 23.57
	PLD vs G	1.36 (0.45, 4	
	PLD vs T	2.81 (0.72, 1	
	PLD vs P w	0.58 (0.23, 1	
	PLD vs Patupilone	0.46 (0.19, 1	an and a second s
100 = 51.4	2%, p = 0.105)	0.50 (0.42, 1	30) 22.37
			and second
	The second s		
0.000	Contraction and the second second		ald ford
red = 72.8	3%, p = 0.005)	0.86 (0.45, 1	.63) 36.48
d = 71.0	%, p = 0.000)	0.95 (0.65, 1	39) 100.00
		2 1 5	
		Favors PLD-BASED treatment Favors control	
YEAR	TREATMENT	rr (95% Ci)	% Weight
	 Markovská pracovské 		
2010	CPI Due CP	0.76/0.20 1.400	14.64
02100 = 00	,0%, p = 0.114)	1.14 (0.40, 2.10)	24.10
artially con	noitivo		
2008	PLD vs G	0.94 (0.52, 1.72	16.96
uared = .%	.p=.)		16.96
stant			
2007	PLD vs G	1.09 (0.75, 1.58)	29.65
2012	PLD vs Patupilone	1.31 (0.73, 2.30)	17.51
uared = 0.0	0%, p = 0.596)	1.15 (0.84, 1.57)	47.15
2004	PLD vs T	2.50 (1.18, 5.41)	11.71
uared = .%	, p = .)	2.50 (1.18, 5.41)	11.71
ared = 30.1	2%, p = 0.208)	1.21 (0.90, 1.83)	100.00
are from	random effects analysis		
	2011 2004 2007 2009 2002 red = 72.8 rd = 71.0° ire from r YEAR 2010 2008 uared = 60 artially nor 2008 uared = 60 artially nor 2008 tant 2007 2008 tant 2007 2012 uared = 0.0° 2004 uared = .%	2004 PLD vs T 2007 PLD vs CC 2009 PLD vs Canfostamide 2002 PLD vs P red = 72.8%, p = 0.005) xd = 71.0%, p = 0.000) are from random effects analysis YEAR TREATMENT 2010 CPLD vs CP 2008 CPLD vs CP 2008 CPLD vs C aarod = 60.0%, p = 0.114) artially sensitive 2008 PLD vs G 2008 PLD vs G 2007 PLD vs G 2012 PLD vs G 2013 PLD vs G 2014 PLD vs G 2015 PLD vs G 2015 PLD vs G 2016 PLD vs G 2017 PLD vs G 2017 PLD vs G 2018 PLD vs G 2018 PLD vs G 2017 PLD vs G 2017 PLD vs G 2017 PLD vs G 2018 PLD vs G 2018 PLD vs G 2017 PLD vs G 2017 PLD vs G 2018 PLD vs G 2018 PLD vs G 2017 PLD vs G 2018 PLD vs G 2017 PLD vs G 2018 PLD vs G 2017 PLD vs G 2018 PLD vs G 2018 PLD vs G 2019 PLD vs G 2010 PLD vs G 2010 PLD vs G 2012 PLD vs G 2012 PLD vs G 2013 PLD vs G 2014 PLD vs G 2015 PLD vs G 2015 PLD vs G 2016 PLD vs G 2017 PLD vs G 2018 PLD vs G 2018 PLD vs G 2019 PLD	2011 CPLD vs CP 2007 PLD vs CC 2009 PLD vs Cnotostanide 202 PLD vs P ed = 72.8%, p = 0.000) re from random effects analysis 2 1 5 Favors PLD-BASED treatment 2 1 5 Favors ontiol YEAR TREATMENT 2 1 5 Favors PLD-BASED treatment 2 1 5 Favors control YEAR TREATMENT 2 1 5 Favors CD 2010 CPL0 vs CP 2010 CPL0 vs C 2020 PLD vs G 2020 PL

Figure 3C and D (See opposite page). Comparison of RR and Ca125 response, according to treatment line (A and B respectively) or platinum sensitivity (C and D respectively), between patients treated with a PLD-containing regimen vs. any other PLD-free schedule. Abbreviation: OR, odds ratio; rr, risk ratio; CPLD, carboplatin and pegylated liposomal doxorubicin; CP, carboplatin and paclitaxel; PLD, pegylated liposomal doxorubicin; O, olaparib; C, carboplatin; G, gemcitabine; T, topotecan.

reports in languages other than English; non-comparable endpoints; studies that described particular administration of chemotherapy (e.g., intra-arterial or intra-peritoneal infusion); studies not reporting any data regarding our pre-specified endpoints. To avoid overlapping patient data in duplicate publications, only larger or updated publications were included.

Information sources

Eligible trials were retrieved from PubMed, Embase, the Central Registry of Controlled Trials of the Cochrane Library) and major meeting abstract databases (ASCO and ESMO) and selected studies published between January 2000, at the time of PLD treatment introduction, and January 2013.

Search strategy

Search strategy and study identification were conducted as described in previous works.^{60,61} Briefly, we performed a literature search of main scientific databases. Published trials, in form of full article or abstract, were eligible. In this analysis only Englishwritten prospective studies were allowed, in order to reduce or minimize the risk of selection or information bias.^{62,63} The main keywords and their combination used for the search were: ovarian cancer, systemic chemotherapy, pegylated liposomal doxorubicin, randomized clinical trials. The "related articles" function was used to include as many studies as possible in the first screening analysis and, subsequently, retrieved articles were screened to ensure accuracy of the search strategy.

Data collection

Studies were independently evaluated by two investigators (N.S. and D.C.) to select homogeneous reports. We extracted and evaluated different variables from selected trials such as number of patients enrolled, year of publication, treatment schedule, and efficacy results. Data regarding the occurrence of toxicities were obtained from the safety profile reported in each study. Any discrepancy was discussed and resolved by two additional reviewers (P.T. and P.T.).⁶⁴

Study endpoints

Study end-points were OS, PFS, response rates (RRs), CA125 response, and toxicity rates (TRs). The collected efficacy outcomes included median survival and clinical response.

Metaanalysis

A metaanalysis was performed in order to evaluate the overall effects of the PLD treatment vs. control arm on the pre-specified end-points.⁶⁵ Survival data were extracted as hazard ratios (HRs) of OS and PFS with relative confidence intervals (95% CI). The interaction between survival and PLD-treatment was obtained from each study by the HRs logarithm. The overall effect of PLD treatment on RR, CA125-response and toxicity was calculated using method for dichotomous data (odds ratio and risk ratio; 95% CI assessment). HR > 1 reflects more deaths or progression in the PLD-based arm. OR > 1 reflects a favorable outcome

Adverse events	Overall risk ratio (95% CI)	P value
Anemia	0.94 (0.42–2.11)	0.88
Neutropenia	0.89 (0.57–1.39)	0.61
Thrombocytopenia	1.34 (0.62–2.90)	0.45
Neurotoxicity	0.48 (0.16–1.41)	0.18
Palmar–plantar erythrodysesthesia	26.33 (11.76–58.99)	<0.01
Alopecia	0.22 (0.10–0.46)	<0.01

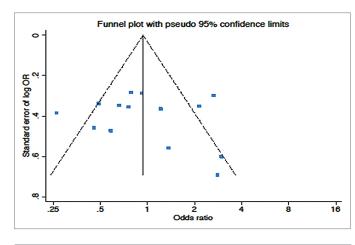


Figure 4. Funnel plot (Begg test) assessing publication bias.

in the PLD-based arm for response, survival probability or an unfavorable outcome for toxicities. A subgroup analysis, based on the platinum-status and line of treatment, was performed for all end-points. The Cochrane Q-test and I^2 statistics were used to assess heterogeneity between studies. For all endpoints the analyses were performed with the Cochrane-Mantel-Haenszel fixed-effects model and the DerSimonian and Laird random-effects model.⁶⁶⁻⁶⁸ The occurrence of publication bias was investigated through the Begg test and by visual inspection of funnel plots.⁶⁹ A two-tailed *P* value ≤ 0.05 was considered statistically significant. All the statistical analyses were performed by STATATM SE v. 12.0 (STATA[®] Corporation, Texas, USA) and according to PRISMA guidelines.⁷⁰

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work is supported by PhD program of Magna Graecia University: PhD in molecular oncology and translational and innovative medical and surgical techniques.

- Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127:2893-917; PMID:21351269; http://dx.doi. org/10.1002/ijc.25516
- Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62:220-41; PMID:22700443; http://dx.doi.org/10.3322/ caac.21149
- Thigpen T, duBois A, McAlpine J, DiSaia P, Fujiwara K, Hoskins W, Kristensen G, Mannel R, Markman M, Pfisterer J, et al.; Gynecologic Cancer InterGroup. First-line therapy in ovarian cancer trials. Int J Gynecol Cancer 2011; 21:756-62; PMID:21543937; http://dx.doi.org/10.1097/IGC.0b013e31821ce75d
- Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM, Baergen R; Gynecologic Oncology Group. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 2003; 21:3194-200; PMID:12860964; http://dx.doi. org/10.1200/JCO.2003.02.153
- Vasey PA, Jayson GC, Gordon A, Gabra H, Coleman R, Atkinson R, Parkin D, Paul J, Hay A, Kaye SB; Scottish Gynaecological Cancer Trials Group. Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. J Natl Cancer Inst 2004; 96:1682-91; PMID:15547181; http://dx.doi. org/10.1093/jnci/djh323
- Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, Mannel RS, Homesley HD, Fowler J, Greer BE, et al.; Gynecologic Oncology Group. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011; 365:2473-83; PMID:22204724; http://dx.doi. org/10.1056/NEJMoa1104390
- Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, et al.; ICON7 Investigators. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 2011; 365:2484-96; PMID:22204725; http://dx.doi.org/10.1056/NEJMoa1103799
- Colombo N, Peiretti M, Parma G, Lapresa M, Mancari R, Carinelli S, Sessa C, Castiglione M; ESMO Guidelines Working Group. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21(Suppl 5):v23-30; PMID:20555088; http://dx.doi.org/10.1093/ annonc/mdq244
- Cristea M, Han E, Salmon L, Morgan RJ. Practical considerations in ovarian cancer chemotherapy. Ther Adv Med Oncol 2010; 2:175-87; PMID:21789133; http://dx.doi.org/10.1177/1758834010361333
- Friedlander M, Trimble E, Tinker A, Alberts D, Avall-Lundqvist E, Brady M, Harter P, Pignata S, Pujade-Lauraine E, Schouli J, et al.; Gynecologic Cancer InterGroup. Clinical trials in recurrent ovarian cancer. Int J Gynecol Cancer 2011; 21:771-5; PMID:21543939; http://dx.doi.org/10.1097/ IGC.0b013e31821bb8aa
- Pujade-Lauraine E, Wagner U, Aavall-Lundqvist E, Gebski V, Heywood M, Vasey PA, Volgger B, Vergote I, Pignata S, Ferrero A, et al. Pegylated liposomal Doxorubicin and Carboplatin compared with Paclitaxel and Carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol 2010; 28:3323-9; PMID:20498395; http:// dx.doi.org/10.1200/JCO.2009.25.7519

- Weber B, Lortholary A, Mayer F, Bourgeois H, Orfeuvre H, Combe M, Platini C, Cretin J, Fric D, Paraiso D, et al. Pegylated liposomal doxorubicin and carboplatin in late-relapsing ovarian cancer: a GINECO group phase II trial. Anticancer Res 2009; 29:4195-200; PMID:19846972
- Ferrero JM, Weber B, Geay JF, Lepille D, Orfeuvre H, Combe M, Mayer F, Leduc B, Bourgeois H, Paraiso D, et al. Second-line chemotherapy with pegylated liposomal doxorubicin and carboplatin is highly effective in patients with advanced ovarian cancer in late relapse: a GINECO phase II trial. Ann Oncol 2007; 18:263-8; PMID:17108151; http:// dx.doi.org/10.1093/annonc/mdl376
- 14. Gladieff L, Ferrero A, De Rauglaudre G, Brown C, Vasey P, Reinthaller A, Pujade-Lauraine E, Reed N, Lorusso D, Siena S, et al. Carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in partially platinum-sensitive ovarian cancer patients: results from a subset analysis of the CALYPSO phase III trial. Ann Oncol 2012; 23:1185-9; PMID:21976386; http://dx.doi.org/10.1093/ annonc/mdr441
- Horowitz NS, Hua J, Gibb RK, Mutch DG, Herzog TJ. The role of topotecan for extending the platinum-free interval in recurrent ovarian cancer: an in vitro model. Gynecol Oncol 2004; 94:67-73; PMID:15262121; http://dx.doi.org/10.1016/j. ygyno.2004.03.047
- 16. Kavanagh J, Tresukosol D, Edwards C, Freedman R, Gonzalez de Leon C, Fishman A, Mante R, Hord M, Kudelka A. Carboplatin reinduction after taxane in patients with platinum-refractory epithelial ovarian cancer. J Clin Oncol 1995; 13:1584-8; PMID:7602347
- Pignata S, Lauraine EP, du Bois A, Pisano C. Pegylated liposomal doxorubicin combined with carboplatin: a rational treatment choice for advanced ovarian cancer. Crit Rev Oncol Hematol 2010; 73:23-30; PMID:19782576; http://dx.doi.org/10.1016/j. critrevonc.2009.08.004
- Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vermorken JB, Muggia FM, Pujade-Lauraine E, Lisyanskaya AS, Makhson AN, Rolski J, et al. Trabectedin plus pegylated liposomal Doxorubicin in recurrent ovarian cancer. J Clin Oncol 2010; 28:3107-14; PMID:20516432; http://dx.doi.org/10.1200/ JCO.2009.25.4037
- Poveda A, Vergote I, Tjulandin S, Kong B, Roy M, Chan S, Filipczyk-Cisarz E, Hagberg H, Kaye SB, Colombo N, et al. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer: outcomes in the partially platinum-sensitive (platinum-free interval 6-12 months) subpopulation of OVA-301 phase III randomized trial. Ann Oncol 2011; 22:39-48; PMID:20643862; http://dx.doi.org/10.1093/ annonc/mdq352
- Mutch DG, Orlando M, Goss T, Teneriello MG, Gordon AN, McMeekin SD, Wang Y, Scribner DR Jr., Marciniack M, Naumann RW, et al. Randomized phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer. J Clin Oncol 2007; 25:2811-8; PMID:17602086; http://dx.doi. org/10.1200/JCO.2006.09.6735
- Gordon AN, Tonda M, Sun S, Rackoff W; Doxil Study 30-49 Investigators. Long-term survival advantage for women treated with pegylated liposomal doxorubicin compared with topotecan in a phase 3 randomized study of recurrent and refractory epithelial ovarian cancer. Gynecol Oncol 2004; 95:1-8; PMID:15385103; http://dx.doi.org/10.1016/j. ygyno.2004.07.011

- 22. Kucukoner M, Isikdogan A, Yaman S, Gumusay O, Unal O, Ulas A, Elkiran ET, Kaplan MA, Ozdemir N, Inal A, et al. Oral etoposide for platinum-resistant and recurrent epithelial ovarian cancer: a study by the Anatolian Society of Medical Oncology. Asian Pac J Cancer Prev 2012; 13:3973-6; PMID:23098502; http://dx.doi.org/10.7314/APJCP.2012.13.8.3973
- 23. Lortholary A, Largillier R, Weber B, Gladieff L, Alexandre J, Durando X, Slama B, Dauba J, Paraiso D, Pujade-Lauraine E; GINECO group France. Weekly paclitaxel as a single agent or in combination with carboplatin or weekly topotecan in patients with resistant ovarian cancer: the CARTAXHY randomized phase II trial from Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO). Ann Oncol 2012; 23:346-52; PMID:21562072; http:// dx.doi.org/10.1093/annonc/mdr149
- 24. Chiyoda T, Tsuda H, Nomura H, Kataoka F, Tominaga E, Suzuki A, Susumu N, Aoki D. Effects of third-line chemotherapy for women with recurrent ovarian cancer who received platinum/taxane regimens as first-line chemotherapy. Eur J Gynaecol Oncol 2010; 31:364-8; PMID:20882873
- Seliger G, Mueller LP, Kegel T, Kantelhardt EJ, Grothey A, Groe R, Strauss HG, Koelbl H, Thomssen C, Schmoll HJ. Phase 2 trial of docetaxel, gemcitabine, and oxaliplatin combination chemotherapy in platinum- and paclitaxel-pretreated epithelial ovarian cancer. Int J Gynecol Cancer 2009; 19:1446-53; PMID:20009905; http://dx.doi.org/10.1111/ IGC.0b013e3181b62f38
- 26. Bamias A, Bamia C, Zagouri F, Kostouros E, Kakoyianni K, Rodolakis A, Vlahos G, Haidopoulos D, Thomakos N, Antsaklis A, et al. Improved survival trends in platinum-resistant patients with advanced ovarian, fallopian or peritoneal cancer treated with first-line paclitaxel/platinum chemotherapy: the impact of novel agents. Oncology 2013; 84:158-65; PMID:23296063; http://dx.doi. org/10.1159/000341366
- Ferrandina G, Corrado G, Licameli A, Lorusso D, Fuoco G, Pisconti S, Scambia G. Pegylated liposomal doxorubicin in the management of ovarian cancer. 2010; 6:463-83
- Ferrandina G, Ludovisi M, Lorusso D, Pignata S, Breda E, Savarese A, Del Medico P, Scaltriti L, Katsaros D, Priolo D, et al. Phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in progressive or recurrent ovarian cancer. J Clin Oncol 2008; 26:890-6; PMID:18281662; http:// dx.doi.org/10.1200/JCO.2007.13.6606
- Cannistra SA. Evaluating new regimens in recurrent ovarian cancer: how much evidence is good enough? J Clin Oncol 2010; 28:3101-3; PMID:20516442; http://dx.doi.org/10.1200/JCO.2010.29.7077
- Muggia FM. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs 1997; 54(Suppl 4):22-9; PMID:9361958; http://dx.doi. org/10.2165/00003495-199700544-00006
- Alberts DS, Garcia DJ. Safety aspects of pegylated liposomal doxorubicin in patients with cancer. Drugs 1997; 54(Suppl 4):30-5; PMID:9361959; http:// dx.doi.org/10.2165/00003495-199700544-00007
- Baumann KH, Wagner U, du Bois A. The changing landscape of therapeutic strategies for recurrent ovarian cancer. Future Oncol 2012; 8:1135-47; PMID:23030488; http://dx.doi.org/10.2217/ fon.12.112
- 33. Staropoli N, Ciliberto D, Botta C, Fiorillo L, Gualtieri S, Salvino A, Tassone P, Tagliaferri P. A retrospective analysis of pegylated liposomal doxorubicin in ovarian cancer: do we still need it? J Ovarian Res 2013; 6:10; PMID:23388584; http://dx.doi. org/10.1186/1757-2215-6-10

- 34. Dear RF, Gao B, Harnett P. Recurrent ovarian cancer: treatment with pegylated liposomal doxorubicin; a Westmead Cancer Care Centre experience. Asia Pac J Clin Oncol 2010; 6:66-73; PMID:20398040; http://dx.doi.org/10.1111/j.1743-7563.2009.01263.x
- Vergote I, Finkler N, del Campo J, Lohr A, Hunter J, Matei D, Kavanagh J, Vermorken JB, Meng L, Jones M, et al.; ASSIST-1 Study Group. Phase 3 randomised study of canfosfamide (Telcyta, TLK286) versus pegylated liposomal doxorubicin or topotecan as third-line therapy in patients with platinumrefractory or -resistant ovarian cancer. Eur J Cancer 2009; 45:2324-32; PMID:19515553; http://dx.doi. org/10.1016/j.ejca.2009.05.016
- Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 2001; 19:3312-22; PMID:11454878
- 37. Markman M, Moon J, Wilczynski S, Lopez AM, Rowland KM Jr., Michelin DP, Lanzotti VJ, Anderson GL, Alberts DS. Single agent carboplatin versus carboplatin plus pegylated liposomal doxorubicin in recurrent ovarian cancer: final survival results of a SWOG (S0200) phase 3 randomized trial. Gynecol Oncol 2010; 116:323-5; PMID:20044128; http://dx.doi.org/10.1016/j.ygyno.2009.11.026
- Sehouli J, Meier W, Wimberger P, Chekerov R, Belau A, Mahner S, Kurzeder C, Hilpert F, Klare P, Doerfel S, et al. Topotecan plus carboplatin versus standard therapy with paclitaxel plus carboplatin (PC) or gemcitabin plus carboplatin (GC) or carboplatin plus pegylated doxorubicin (PLDC): A randomized phase III trial of the NOGGO-AGO-Germany-AGO Austria and GEICO-GCIG intergroup study (HECTOR). ASCO Meeting Abstracts 2012; 30:5031.
- 39. Pignata S, Scambia G, Ferrandina G, Savarese A, Sorio R, Breda E, Gebbia V, Musso P, Frigerio L, Del Medico P, et al. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol 2011; 29:3628-35; PMID:21844495; http://dx.doi. org/10.1200/JCO.2010.33.8566
- Bookman MA, Brady MF, McGuire WP, Harper PG, Alberts DS, Friedlander M, Colombo N, Fowler JM, Argenta PA, De Geest K, et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Intergroup. J Clin Oncol 2009; 27:1419-25; PMID:19224846; http://dx.doi.org/10.1200/ JCO.2008.19.1684
- Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY, Amnon A, Bell-McGuinn KM, Chen LM, Friedlander M, et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 2012; 30:372-9; PMID:22203755; http://dx.doi.org/10.1200/ JCO.2011.36.9215
- 42. Vergote I, Finkler NJ, Hall JB, Melnyk O, Edwards RP, Jones M, Keck JG, Meng L, Brown GL, Rankin EM, et al. Randomized phase III study of canfosfamide in combination with pegylated liposomal doxorubicin alone in platinum-resistant ovarian cancer. Int J Gynecol Cancer 2010; 20:772-80; PMID:20973267; http://dx.doi.org/10.1111/ IGC.0b013e3181daaf59

- Alberts DS, Liu PY, Wilczynski SP, Clouser MC, Lopez AM, Michelin DP, Lanzotti VJ, Markman M; Southwest Oncology Group. Randomized trial of pegylated liposomal doxorubicin (PLD) plus carboplatin versus carboplatin in platinum-sensitive (PS) patients with recurrent epithelial ovarian or peritoneal carcinoma after failure of initial platinumbased chemotherapy (Southwest Oncology Group Protocol S0200). Gynecol Oncol 2008; 108:90-4; PMID:17949799; http://dx.doi.org/10.1016/j. ygyno.2007.08.075
- 44. Bafaloukos D, Linardou H, Aravantinos G, Papadimitriou C, Bamias A, Fountzilas G, Kalofonos HP, Kosmidis P, Timotheadou E, Makatsoris T, et al. A randomized phase II study of carboplatin plus pegylated liposomal doxorubicin versus carboplatin plus paclitaxel in platinum sensitive ovarian cancer patients: a Hellenic Cooperative Oncology Group study. BMC Med 2010; 8:3; PMID:20055981; http://dx.doi.org/10.1186/1741-7015-8-3
- 45. Colombo N, Kutarska E, Dimopoulos M, Bae DS, Rzepka-Gorska I, Bidzinski M, Scambia G, Engelholm SA, Joly F, Weber D, et al. Randomized, open-label, phase III study comparing patupilone (EPO906) with pegylated liposomal doxorubicin in platinum-refractory or -resistant patients with recurrent epithelial ovarian, primary fallopian tube, or primary peritoneal cancer. J Clin Oncol 2012; 30:3841-7; PMID:22987083; http://dx.doi. org/10.1200/JCO.2011.38.8082
- 46. Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, Sorio R, Vergote IB, Witteveen P, Bamias A, et al. AURELIA: A randomized phase III trial evaluating bevacizumab (BEV) plus chemotherapy (CT) for platinum (PT)-resistant recurrent ovarian cancer (OC). ASCO Meeting Abstracts 2012; 30:LBA5002.
- 47. Rose P, Edwards R, Finkler N, Seiden M, Duska L, Krasner C, Cappuccini F, Kolevska T, Brand E, Brown G, et al. Phase 3 Study: Canfosfamide (C, TLK286) plus carboplatin (P) vs liposomal doxorubicin (D) as 2nd line therapy of platinum (P) resistant ovarian cancer (OC). ASCO Meeting Abstracts 2007; 25:LBA5529.
- O'Byrne KJ. A phase III study of Doxil/Caelyx versus paclitaxel in platinum-treated, taxane-naive relapsed ovarian cancer. Proc Am Soc Clin Oncol 2002; 21:203a
- Armijo-Olivo S, Stiles CR, Hagen NA, Biondo PD, Cummings GG. Assessment of study quality for systematic reviews: a comparison of the Cochrane Collaboration Risk of Bias Tool and the Effective Public Health Practice Project Quality Assessment Tool: methodological research. J Eval Clin Pract 2012; 18:12-8; PMID:20698919; http://dx.doi. org/10.1111/j.1365-2753.2010.01516.x
- Detsky AS, Naylor CD, O'Rourke K, McGeer AJ, L'Abbé KA. Incorporating variations in the quality of individual randomized trials into metaanalysis. J Clin Epidemiol 1992; 45:255-65; PMID:1569422; http:// dx.doi.org/10.1016/0895-4356(92)90085-2
- Lawrie TA, Rabbie R, Thoma C, Morrison J. Pegylated liposomal doxorubicin for first-line treatment of epithelial ovarian cancer. Cochrane Database Syst Rev 2013; 10:CD010482; PMID:24142521
- Lawrie TA, Bryant A, Cameron A, Gray E, Morrison J. Pegylated liposomal doxorubicin for relapsed epithelial ovarian cancer. Cochrane Database Syst Rev 2013; 7:CD006910; PMID:23835762
- Gibson JM, Alzghari S, Ahn C, Trantham H, La-Beck NM. The role of pegylated liposomal doxorubicin in ovarian cancer: a metaanalysis of randomized clinical trials. Oncologist 2013; 18:1022-31; PMID:23881990; http://dx.doi.org/10.1634/ theoncologist.2013-0126

- 54. Mäenpää J. [First-line bevacizumab in ovarian cancer]. Duodecim 2011; 127:2037-44; PMID:22073535
- Brundage M, Gropp M, Mefti F, Mann K, Lund B, Gebski V, Wolfram G, Reed N, Pignata S, Ferrero A, et al. Health-related quality of life in recurrent platinum-sensitive ovarian cancer--results from the CALYPSO trial. Ann Oncol 2012; 23:2020-7; PMID:22291207; http://dx.doi.org/10.1093/ annonc/mdr583
- 56. Parmar MK, Ledermann JA, Colombo N, du Bois A, Delaloye JF, Kristensen GB, Wheeler S, Swart AM, Qian W, Torri V, et al.; ICON and AGO Collaborators. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet 2003; 361:2099-106; PMID:12826431; http://dx.doi. org/10.1016/S0140-6736(03)13718-X
- Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, Sovak MA, Yi J, Nycum LR. OCEANS: a randomized, double-blind, placebocontrolled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol 2012; 30:2039-45; PMID:22529265; http://dx.doi.org/10.1200/ JCO.2012.42.0505
- Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vermorken JB, Muggia FM, Pujade-Lauraine E, Park YC, Parekh TV, Poveda AM. Trabectedin plus pegylated liposomal doxorubicin (PLD) versus PLD in recurrent ovarian cancer: overall survival analysis. Eur J Cancer 2012; 48:2361-8; PMID:22541893; http://dx.doi.org/10.1016/j.ejca.2012.04.001
- Cannistra SA, Matulonis UA, Penson RT, Hambleton J, Dupont J, Mackey H, Douglas J, Burger RA, Armstrong D, Wenham R, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007; 25:5180-6; PMID:18024865; http:// dx.doi.org/10.1200/JCO.2007.12.0782
- Ciliberto D, Botta C, Correale P, Rossi M, Caraglia M, Tassone P, Tagliaferri P. Role of gemcitabinebased combination therapy in the management of advanced pancreatic cancer: a metaanalysis of randomised trials. Eur J Cancer 2013; 49:593-603; PMID:22989511; http://dx.doi.org/10.1016/j. ejca.2012.08.019
- Ciliberto D, Prati U, Roveda L, Barbieri V, Staropoli N, Abbruzzese A, Caraglia M, Di Maio M, Flotta D, Tassone P, et al. Role of systemic chemotherapy in the management of resected or resectable colorectal liver metastases: a systematic review and metaanalysis of randomized controlled trials. Oncol Rep 2012; 27:1849-56; PMID:22446591
- 62. Stewart LA, Parmar MK, Tierney JF. Metaanalyses and large randomized, controlled trials. N Engl J Med 1998; 338:61, author reply 61-2; PMID:9424569
- Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform metaanalyses of the published literature for survival endpoints. Stat Med 1998; 17:2815-34; PMID:9921604; http://dx.doi.org/10.1002/ (SICI)1097-0258(19981230)17:24<2815::AID-SIM110>3.0.CO;2-8
- 64. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62:e1-34; PMID:19631507; http://dx.doi. org/10.1016/j.jclinepi.2009.06.006

- Crowther M, Lim W, Crowther MA. Systematic review and metaanalysis methodology. Blood 2010; 116:3140-6; PMID:20656933; http://dx.doi. org/10.1182/blood-2010-05-280883
- 66. Wang D, Mou ZY, Zhai JX, Zong HX, Zhao XD. [Application of Stata software to test heterogeneity in metaanalysis method]. Zhonghua Liu Xing Bing Xue Za Zhi 2008; 29:726-9; PMID:19031771
- DerSimonian R, Levine RJ. Resolving discrepancies between a metaanalysis and a subsequent large controlled trial. JAMA 1999; 282:664-70; PMID:10517720; http://dx.doi.org/10.1001/ jama.282.7.664
- DerSimonian R, Kacker R. Random-effects model for metaanalysis of clinical trials: an update. Contemp Clin Trials 2007; 28:105-14; PMID:16807131; http://dx.doi.org/10.1016/j.cct.2006.04.004
- 69. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, et al. Recommendations for examining and interpreting funnel plot asymmetry in metaanalyses of randomised controlled trials. BMJ 2011; 343:d4002; PMID:21784880; http://dx.doi.org/10.1136/bmj.d4002
- Boston RC, Sumner AE. STATA: a statistical analysis system for examining biomedical data. Adv Exp Med Biol 2003; 537:353-69; PMID:14995047; http:// dx.doi.org/10.1007/978-1-4419-9019-8_23