
Cortical Bone Mechanical Properties Are Altered in an
Animal Model of Progressive Chronic Kidney Disease
Christopher L. Newman1, Sharon M. Moe2,3, Neal X. Chen2, Max A. Hammond4, Joseph M. Wallace4,5,

Jeffry S. Nyman6,7, Matthew R. Allen1*

1 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America, 2 Division of Nephrology, Department

of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America, 3 Roudebush VA Medical Center, Indianapolis, Indiana, United States of

America, 4 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America, 5 Department of Biomedical Engineering,

Indiana University—Purdue University, Indianapolis, Indiana, United States of America, 6 Department of Orthopaedic Surgery and Rehabilitation and Vanderbilt Center for

Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 7 Department of Veterans Affairs, Tennessee Valley Healthcare System,

Nashville, Tennessee, United States of America

Abstract

Chronic kidney disease (CKD), which leads tocortical bone loss and increasedporosity,increases therisk of fracture. Animal
models have confirmed that these changes compromise whole bone mechanical properties. Estimates from whole bone
testing suggest that material properties are negatively affected, though tissue-level assessmentshavenot been conducted.
Therefore, the goal of the present study was to examine changes in cortical bone at different length scales using a rat model
with theprogressive development of CKD. At 30 weeks of age (,75% reduction in kidney function), skeletally mature male
Cy/+ rats were compared to their normal littermates. Cortical bone material propertieswere assessed with reference point
indentation (RPI), atomic force microscopy (AFM), Raman spectroscopy,and high performance liquid chromatography
(HPLC). Bones from animals with CKD had higher (+18%) indentation distance increase and first cycle energy dissipation (+
8%) as measured by RPI.AFM indentation revealed a broader distribution of elastic modulus values in CKD animals witha
greater proportion of both higher and lower modulus values compared to normal controls. Yet, tissue composition,
collagen morphology, and collagen cross-linking fail to account for these differences. Though the specific skeletal tissue
alterations responsible for these mechanical differences remain unclear, these results indicate that cortical bone material
properties are altered in these animals and may contribute to the increased fracture risk associated with CKD.
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Introduction

Chronic kidney disease—mineral and bone disorder (CKD-

MBD) is characterized by hyperphosphatemia, secondary hyper-

parathyroidism, and an increased risk offractures[1–3].Unlike

osteoporosis, CKD-MBD appears to have a preferential impact on

cortical bone, leading to reduced bone mass and increased

porosity [4–6].These effects likely underlie the increased fracture

risk observed in patients with CKD[7–9].

Whole bone (structural)mechanical properties are dependent

upon a number of variables [10–11]. While bone mass is a major

determinant, both the distribution of bone and its material

properties (inherent physical and chemical properties) also play

crucial roles. Most biomechanical studies in rodent models of

CKD have focused on structural mechanical properties, employ-

ing three-point bending or dynamic mechanical analysis (DMA)

[12–18]. These studies indicate that the bending and viscoelastic

properties of bone are compromised in animals with CKD.

Specifically, DMA indicates that diseased animals have lower

storage modulus (a measure of stiffness) and tan delta (a measure of

energy dissipation) [14–15], while three point bending studies

indicate that ultimate load, stiffness, and energy to failure are

lower in CKD animals [12].

While there is an increasing awareness of the importance of

bone quality in CKD [19], few studies have explicitly examined

material properties in animal models[14–15,20]. Material prop-

erties can be estimated from whole bone mechanical tests using

standardengineering equations that account for whole bone

structure and geometry.Because these estimates assume that

skeletal tissue is homogeneous, isotropic, and linearly elastic,

direct measures ofmaterial properties in bone would provide

additionalinsight into how the disease is affecting fracture

resistance. Therefore, the goal of the present study was to examine

material-level changes in cortical bone at several length scales

using a rat model with the progressive development of CKD.

Specifically, we hypothesized that CKD adversely impacts cortical

bone material properties as determined by material-level mechan-

ical testing and assessments of bone composition and collagen

morphology.
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Materials And Methods

Animal Model
The current study utilized a slowly progressive animal model of

CKD, the Cy/+ rat. Cy/+ ratsare characterized by autosomal

dominant polycystic kidney disease [21]. These animals have a

mutation (R823W) in Anks6, a gene that codes for the protein

SamCystin. Currently, the function of this protein is unknown,

and the specific role of this mutation in the development of

polycystic kidney disease is unclear. Aside from its expression in

the kidney, however, little is known about its role in the cell

[22].Unlike most other PKD-related proteins, though, SamCystin

does not localize to the primary cilia of kidney cells [23]. While

there is no known human disease associated with this gene,

thespontaneous onset of disease provides a helpful phenotypic

model of human CKD [21].Unlike the more common surgical

models[24], Cy/+ rats display a gradual onset of disease.And

unlike most genetic models[25–26], they exhibit a slow enough

progression that bone disease does not begin to occur until after

skeletal maturity.

Skeletal tissuefrom animals in a previous study wasutilized [12].

All animals were fed a casein diet (Purina AIN-76A; 0.7% Pi) to

increase phosphorus availability in order to produce a more

consistent kidney disease phenotype.Fresh frozen tibiaefrom 30-

week-old male Cy/+ ratsand their age-matched non-affected

littermates were assessed mechanically, compositionally, and

morphologically at several length scales.Fresh frozen femora were

used for collagen cross-linking analyses. Blood was collected at the

end of the experiment for biochemical analyses (previously

reported in [12]).All procedures were conducted under the

approval of Indiana University School of Medicine Institutional

Animal Care and Use Committeeprotocol # 10479.

Reference Point Indentation
Tibiae were thawed to room temperature and soaked overnight

in phosphate-buffered saline. The anteromedial surface of the

proximal diaphysis of the tibia was assessed using reference point

indentation (RPI) (Biodent Hfc, Active Life Scientific, Santa

Barbara, CA). The reference probe, which housed a BP2 test

probe, waslowered vertically, normal to the surface, until itrested

on the surface of the bone.In order to stabilize the unit, a reference

force of ,13 N was applied before each measurement was

initiated.Each test included a series of 10 cycles at 2 Hz to a force

of 10 N. Bones were maintained in a hydrated state throughout

the test. Five locations per sample, each ,2 mm apart, were

indented. Raw data from the RPI analysis software (version 2.0)

were imported into a customized MATLAB code (Mathworks)

designed to provide cycle-by-cycle data for each test [27], from

which first cycle unloading slope, indentation distance increase,

first cycle energy dissipation, creep indentation distance, first cycle

indentation distance, total indentation distance, and total energy

dissipation were calculated for each test. All five tests from each

animal were averaged to produce a single value for each variable.

Tissue Composition
Raman spectroscopy was performed using a LabRAM HR 800

Raman Spectrometer (HORIBA JobinYvon, Edison, NJ) con-

nected to a BX41 microscope (Olympus, Tokyo, Japan). A

660 nm laser was focused on the bone surface using a 50X

objective to a spot size of ,10 mm. Five locations were imaged

,1 mm apart on the anteromedialmid-diaphysiswith five 20

second acquisitions at each location as previously published [28].

A five point linear baseline correction was applied in LabSpec 5

(HORIBA JobinYvon). Using OriginPro 8.6 (OriginLab, North-

ampton, MA), a single Gaussian peak was fit to the PO4
3-n1 peak,

and the areas under the PO4
3-n1, CO3

2-n1, and Amide I peaks

were calculated at each location. Type B carbonate substitution

was found by the band area ratio of CO3
2-n1/PO4

3-n1. The

degree of matrix mineralization was determined by the band area

ratios of PO4
3-n1/Amide I. Mineral maturity (crystallinity) was

determined by the inverse of the full width at half maximum

(FWHM) of the PO4
3-n1 peak.

AFM Indentation
The anteromedial portion of the mid-diaphysis used above was

polished with a 3 mm polycrystalline water-based diamond

suspension in order to create a flat region for testing. Nanoinden-

tation was performed using a BioScope Catalyst atomic force

microscope (Bruker, Santa Barbara, CA), operating in peak force

tapping mode using previously published methods [29]. Indenta-

tions were performed using a polycrystalline diamond probe

(NaDia ND-DYC series; Advanced Diamond Technologies, Inc.)

with a measured spring constant of 29.25 N/m. Four locations per

sample were indented and, at each location (20 mm620 mm grid),

49 indentationswere performed. Samples were loaded to 200 nN

with force-separation curves acquired from each indentation.

Within each location, indentations were spaced about 2 mm apart

in order to avoid interactions from neighboring indentations. In

total, 196 indentations were performed for each sample. The

indentation elastic modulus was calculated from 5% to 95% of the

withdrawal curve using the classic Hertz model of contact between

a rigid sphere and an elastic half space because the indentation

depth is much smaller than the radius of curvature of the probe

[29]. The indentation elastic modulus was determined from the

following equation: E = 3F(1-v‘2)/(4r‘(1/2) d‘(3/2)) where E is the

indentation elastic modulus, F is the indentation force, v is the

Poisson’s ratio of the sample (assumed to be 0.35), r is the tip

radius (nominal radius of 50 nm, with the same probe used for all

samples), and d is the indentation depth. All of the individual

indentations were averaged to produce a single value for each

animal, though individual tests were used for distribution

comparisons among the groups.

Collagen Morphology
Following AFMindentation, the polished surface was partially

decalcified by soaking the bones in 0.5 M EDTA for 25 minutes

followed by five minutes of sonication in a water bath. This process

was repeated five times for each sample. For imaging, RTESPA

probes were used (Bruker; radius nominally 8 nm, spring constant

= 40 N/m). The scan size was set at 3.5 mm with 5126512 pixels

and a scan rate of 0.5 lines/s. For measurements of collagen

morphology, four locations were imaged per sample, and 10 to 15

fibrils were measured at each location. 40 to 50 fibrils per sample

were averaged to produce a single value for each animal, though

the individual tests were used for distribution comparisons. Using

SPIP 5.1.10 (Image Metrology, Hrsholm, Denmark),D-periodic

spacing was calculated using2D Fast Fourier Transformations (2D

FFTs) as previously described [28].

Collagen Cross-Linking
Segments of bone (,3 mm in length) from the proximal femoral

diaphysis were fully demineralized in 20% EDTA (0.68 M,

pH 7.4). Approximately 10 mg of demineralized bonewerehydro-

lyzedin6 N HCl (,10 mL per 1 mg) at 110uC for 20 to 24 hours.

After evaporating the acidusing a SpeedVAC centrifuge with

coldtrap, each hydrolysate was resuspended in ultrapure water,

split into two equal portions, and dried. Half the residue was

resuspended in ultrapure water with an internal standard

Cortical Material Properties in CKD
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(561026 g/L pyridoxine). The solution was filtered and diluted

with 0.05% heptafluorobutyric acid in 10% acetonitrile, and

50 mL of each hydrolysate were assayed by a high performance

liquid chromatography (HPLC) system (Beckman-Coulter System

Gold 168) with a silica-based column (Waters Spherisorb).

Standards with varying concentrations of pyridinoline (Pyd)

(Quidel),deoxypyridinoline (Dpd) (Quidel),pentosidine(PE) (Inter-

national Maillard Reaction Society), and a constant amount of

pyridoxinewere also assayed. Using a Waters 2475 fluorescence

detector (excitation/emission of295/400 nm for Pyd and Dpd and

328/378 nm for PE), chromatograms were recorded to determine

the amount of each crosslink. These amounts were then

normalized by collagen content, which was determined from the

other half of each hydrolysate by another HPLC assay [30].

Briefly, witha-amino-butyric acid (a-ABA) included as an internal

standard, the amino acids were subjected to derivatization

withphenyl isothiocyanate (PITC). Along with standards of

varying concentrations of hydroxyproline (Sigma) and proline

(Sigma)and a constant amount of a-ABA, the derivatized samples

were resuspendedin a buffer solution of 5% acetonitrile in 5 mM

disodium phosphate. Upon injecting 50 mLof this sample,

chromatograms were generated with a UV detector (Beckman-

Coulter System Gold 168). The calculated mass of hydroxyproline

was then multiplied by 7.5 (assuming 13–14% of type I collagen by

mass) and divided by the molecular weight of collagen (30,000 Da)

[31], thereby giving crosslink concentration as mol/mol of

collagen.

Statistical Analysis
All analyses were performed using SPSS software. Comparisons

between groups were made with Student’s t-tests (assumptions

validated by Shapiro-Wilk and Levene tests). When non-normal

distributions or unequal variances were present, comparisons were

made using Wilcoxon ranked-sum tests and unequal variance t-

tests, respectively. Distributions included all measures from each

individual, and comparisons were made using Kolmogorov-

Smirnov tests. A priori a-levels were set at 0.05 to determine

significance.

Results

Animal Model
Details about the phenotype of these animals have been

previous published [12]. Briefly, measures of kidney function,

including BUN (+116%) and the albumin-to-creatinine ratio (+
301%), weresignificantly higher in Cy/+ animals compared to the

normal controls. Similar to what is observed in humans with

CKD, there were no differences between groups for phosphorus or

calcium levels, but both serum PTH (+240%) and FGF23 (+195%)

weredrastically higher(FIGURE 1).Cy/+ animals had higher

numbers of osteoclasts and higher levels of bone remodeling.

Using three-point bending, they exhibited lower ultimate load (2

28%), stiffness(217%), and energy to fracture (246%). Estimates

of material properties indicate that they had lower ultimate stress

(220%) and toughness (247%) (FIGURE 2)[12].

Reference Point Indentation
Indentation distance increase (IDI)provides an assessment of the

change in depth between the first cycle and the final cycle. Cy/+
animals had significantly higher IDI (+18%), indicating that the

tissue ismore prone to damage under the same applied load

(FIGURE 3). The amount of energy dissipated during the first

cycle was also significantlyhigher in animals with CKD (+8%).

While the first cycle creep indentation distance (+18%) was higher

in Cy/+ animals, there was no difference in microstructural

stiffness (first cycle unloading slope)between the two groups.No

differences were noted in first cycle indentation distance, total

indentation distance, or total energy dissipation (Table 1).

AFM-based indentation
There was no difference in the indentation elastic modulus

between the groups (FIGURE 4a). However, when all indenta-

tions within each groupwere considered as a population, the

distribution of elastic modulus values did differ between the two

groups. Animals with CKD had a greater proportion of both high

and low values of elastic modulus than their normal counterparts

(FIGURE 4b).

Tissue Composition
Raman spectroscopy revealed no differences between animals

with CKD and their normal counterparts with regard to overall

compositionof the mineral and organic matrices (Table 2).

Specifically, there were no differences between the groups in the

phosphate-to-amide I ratio (the mineral-to-matrix ratio), mineral

crystallinity, or the carbonate-to-phosphate ratio (a reflection of

type B carbonate substitution).

Collagen Morphology and Cross-Linking
There were no mean differences in D-periodicity between the

two groups (Table 2). There were also no differences in the

distribution of D-periodicity when all fibrils were considered. In

addition, both enzymatic and non-enzymatic cross-linksas assessed

by HPLC were similar between groups (Table 2).

Discussion

The mechanical integrity of skeletal tissue is determined by the

amount of tissue present, its distribution, and its quality.

Compromises in any of these factors can lead to an increased

fracture risk. The notable loss of cortical bone mass associated with

CKD is assumed to be primarily responsible for the increased

fracture risk seen in patients [5]. The current study advances our

understanding of bone fragility in CKD by showing that

microscale and nanoscale mechanical properties are alteredinde-

pendently of changes in bone mass and porosity.

Our lab has previously documented reductions in both

structural and estimated materialproperties in Cy/+ rats, animals

with progressive CKD [12,32]. But, whole bone testing only

provides indirect estimates of material properties, which is why

wedirectly assessedmicroscale mechanical propertiesusing refer-

ence point indentation (RPI).RPI data from the present study

indicate that animals with CKD had higher IDI, higher first cycle

creep indentation distance, and first cycle energy dissipation.

Taken together, these results indicatethat the tissue in animals with

CKD is less resistant to indentation and more prone to damage.

Indentation distance increase was nearly 20% higher in CKD

animals compared to their normal counterparts. Similar differ-

ences in IDI have been previously reported in diabetic rats[33].

These data have two important implications. First, they show that

CKD negatively affects skeletal tissue independently of bone mass,

which means that estimates of bone massalone likely underesti-

mate the overall mechanical effects of CKD.These differences in

bone quality may explain the conflicting data available on BMD

and fracture risk in CKD patients[6,34–40]. Second, our data

provide a basis for considering in vivo applications of RPI in the

clinical setting of CKD. RPI has been used to successfully

differentiate patients with and without hip fractures[41] as well as

those with and without atypical femoral fractures [42]. A related

Cortical Material Properties in CKD
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indentation device has also been shown to discriminate patients

with diabetes from their normal counterparts[43]. Assessment of

tissue-level mechanical properties, combined with standard

imaging modalities to measure bone mass, cortical geometry

(especially porosity), and trabecular architecture, may prove to be

an ideal combination by which to assess the overall mechanical

integrity of bones in patients with CKD.

The current study also employed a hierarchical approach by

examining nanoscale mechanical properties with atomic force

microscopy. AFM indentation provides a direct assessment of the

nanoscale stiffness produced by the collagen and mineral

composite. Consistent with measurements of microscale stiffness

(first cycle unloading slope), these results show that the average

indentation elastic modulus was not significantly different between

the two groups.Yet, the distribution of elastic modulus values was

different. Animals with CKD displayed a greater degree of

heterogeneity in nanoscale elasticity. Because increased material

heterogeneity is often considered advantageous [44], these results

may reflect an adaptive response to declining integrity at larger

length scales. Alternatively, extreme variations in nanoscale

properties maylead to localized stress concentrations that result

in damage accumulation from lower forces[45]. Although

heterogeneity is likely necessary for normal mechanical integrity,

extreme heterogeneity may be problematic from a mechanical

Figure 1. Biochemical assessment of kidney function and mineral metabolism. These previously published data (Allen et al., 2013) show
abnormalities in kidney function and mineral metabolism resulting from hyperparathyroidism in the animals utilized in the current work. Data are
presented as a percentage of non-affected normal animals with (*) representing statistical significance.
doi:10.1371/journal.pone.0099262.g001

Figure 2. Structural mechanical properties and estimated material properties. These previously published data (Allen et al., 2013) show
compromised whole bone mechanical properties from femoral 3-point bending and apparent material-level mechanical properties derived from
standard beam bending equations in the animals utilized in the current work. Data are presented as a percentage of non-affected normal animals
with (*) representing statistical significance.
doi:10.1371/journal.pone.0099262.g002
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standpoint [46]. Future studies should attempt to better under-

stand the role of material heterogeneity in CKD in order to

specifythe contributionofmicroscale and nanoscalepropertiesto

whole bone mechanical properties.

While whole bone, microscale, and nanoscale mechanical

differences are present in animals with CKD, tissue composition,

collagen morphology, and collagen cross-linking fail to account for

the differences. These data conflict with studiesshowing higher

mineral-to-matrix ratios, lower mineral crystallinity, increased

advanced glycationendproducts (AGEs), and decreased gene

expression of lysyl oxidase in alternative models of CKD [14–

15,47]. One potential explanation for these disparate results is that

these previous studies utilized younger animals that developed

advanced CKD during skeletal growth. Teasing apart the

interaction between growth and disease is difficult, which is why

the present study employed the use of a model in which kidney

disease occurs after skeletal maturity.

Previous studies have demonstrated that non-enzymatic cross-

links (pentosidine, specifically) are increased in the circulation of

patients with CKD[48–51]. These findings coincide with the

accumulation of AGEs in soft tissues detected by fluorescence

methods[52]. Because high levels in the circulation are associated

with the deposition of AGEs in other tissues, this may be true of

skeletal tissue as well. To date, this has only been confirmed in one

small clinical study in patients on dialysis [53]. Currently, there are

few data in animal models, and clinical trials examining predialysis

patients are lacking. Using a low turnover 5/6 nephrectomy

model, two studies have reported increased pentosidineusing

Figure 3. Microindentation reveals that CKD skeletal tissue is less able to resist damage. Using reference point indentation (RPI), the
indentation distance increase (IDI) was found to be significantly higher in CKD animals compared to normal. These data indicate that the mechanical
integrity of the bone is less able to resist microscale damage formation and propagation. Data are presented as mean and standard deviation. *p,
0.05 versus normal controls.
doi:10.1371/journal.pone.0099262.g003

Table 1. Mechanical properties from microindentation and nanoindentation.

RPI Normal (n = 6) Cy/+ (n = 6) p-values

First Cycle Indentation Distance (mm) 83.3863.15 88.2465.45 *0.088

First cycle Energy Dissipation (mJ) 275.53614.00 297.94619.35 *0.044

First Cycle Unloading Slope (N/mm) 0.4760.02 0.4560.03 *0.113

First Cycle Creep Indentation Distance (mm) 6.0860.43 7.1760.95 *0.028

Indentation Distance Increase (mm) 10.8160.92 12.7161.13 *0.009

Total Indentation Distance (mm) 89.3962.73 95.2165.13 #0.080

Total Energy Dissipation (mJ) 663.06643.53 712.30689.19 *0.252

AFM Normal (n = 5) Cy/+ (n = 4) p-values

Indentation Elastic Modulus (MPa) 962.99 345.98 996.73 588.99 0.920

Values are presented as mean 6 standard deviation.
*equal variance t-test.
#Wilcoxon ranked-sum test.
p-values less than 0.05 are in bold.
doi:10.1371/journal.pone.0099262.t001
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Raman spectroscopy[14–15]. While Raman spectroscopy has

been utilized to detect AGEs in ocular tissue[54], its ability to

detect changes in bone is unknown as HPLC is the standard

method used to measure AGEs in skeletal tissue[53,55–58]. Here,

having employed HPLC, thehypothesized increases in AGE

content were not observed. While increases may occur with more

advanced disease in theseanimals, the relationship between

circulating pentosidineand its accumulation in bone collagen in

CKDremains unresolved.

At present, clinical data on bone quality in CKD are minimal.

Aside from the aforementioned dialysis study [53], CKD patients

with high bone turnover had reduced stiffness and a decreased

mineral-to-matrix ratio as assessed on iliac crest biopsies [59]. As

these data are from cancellous bone, though, direct comparison

with the current work on cortical bone is difficult. Connecting

these dots by examining cortical bone properties in patients (which

is possible with iliac crest biopsies) and cancellous properties in rats

will be an essential step in moving forward.

Limitations to the current study should also be recognized. First,

because tissue from a previous study was used, the sample sizes

used here were small. Hence, any applications to other animal

models or patients should occur with a measure of caution.

Second, the mechanical assessments were localized to the

periosteal surface, which may not be fully representative of the

entire cortex. As such, the assessed parameters may differ at other

cortical sites. Finally, this study assessed material properties in 30-

week-old animals. As the disease progresses, differences in

composition and morphologymay arise.Nevertheless, the advan-

Figure 4. Nanoindenation reveals that CKD skeletal tissue has increased heterogeneity in the elastic modulus compared to normal
bone. There was no significant difference in the average elastic modulus (A), but the distribution of elastic modulus values was significantly broader
(B), with a greater proportion of both high and low values in CKD relative to normal (p,0.0001).
doi:10.1371/journal.pone.0099262.g004
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tage of using 30-week-old animals is that these animals are

skeletally mature but do not yet exhibit the rampant increase in

cortical porosity present at 35 weeks [32].

In conclusion, these data show that both microscale and

nanoscale cortical bone material properties are altered in an

animal model of CKD. The specific skeletal tissue alterations

responsible for these mechanical differences remain unclear.

Nevertheless, in addition to bone loss and cortical porosity, defects

in material-level mechanical properties may also contribute to the

increased fracture risk associated with CKD.
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Puig L, et al. (2013)Microindentation for in vivo measurement of bone tissue

material properties in atypical femoral fracture patients and controls. J Bone

Miner Res 28:162–168.
43. Farr JN, Drake MT, Amin S, Melton LJ III, McCready LK, et al. (2014) In Vivo

assessment of bone quality in postmenopausal women with type 2 diabetes.

J Bone Miner Res 29:787–795.
44. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity

promotes energy dissipation in bone. Nat Mater 6:454–462.
45. Phelps JB, Hubbard GB, Wang X, Agrawal CM (2000) Microstructural

heterogeneity and the fracture toughness of bone. J Biomed Mater Res 51:735–

741.
46. Currey J (2005) Structural heterogeneity in bone: good or bad?

J MusculoskeletNeuronal Interact 5:317.
47. Aoki C, Uto K, Honda K, Kato Y, Oda H(2013) Advanced glycation end

products suppress lysyl oxidase and induce bone collagen degradation in a rat
model of renal osteodystrophy. Lab Invest 93:1170–1183.

48. Galli F (2007) Protein damage and inflammation in uraemia and dialysis

patients. Nephrol Dial Transplant 22 (Suppl 5):v20–36.
49. Miyata T, Ueda Y, Shinzato T, Iida Y, Tanaka S, et al. (1996) Accumulation of

albumin-linked and free-form pentosidine in the circulation of uremic patients
with end-stage renal failure: renal implications in the pathophysiology of

pentosidine. J Am Soc Nephrol 7:1198–1206.

50. Sakata N, Noma A, Yamamoto Y, Okamoto K, Meng J, et al. (2003)
Modification of elastin by pentosidine is associated with the calcification of aortic

media in patients with end-stage renal disease. Nephrol Dial Transplant
18:1601–1609.

51. Zoccali C, Mallamaci F, Asahia K, Benedetto FA, Tripepi G, et al. (2001)
Pentosidine, carotid atherosclerosis and alterations in left ventricular geometry in

hemodialysis patients. J Nephrol 14:293–298.

52. Arsov S, Graaff R, van Oeveren W, Stegmayr B, Sikole A, et al. (2014)
Advanced glycation end-products and skin autofluorescence in end-stage renal

disease: a review. ClinChem Lab Med 52:11–20.
53. Mitome J, Yamamato H, Saito M, Yokoyama K, Marumo K, et al.

(2011)Nonenzymaticcross-linking pentosidine increase in bone collagen and

are associated with disorders of bone mineralization in dialysis patients. Calcif
Tissue Int 88:521–529.

54. Glenn JV, Beattie JR, Barrett L, Frizzell N, Thorpe SR, et al. (2007) Confocal
Raman microscopy can quantify advanced glycation end product (AGE)

modifications in Bruch’s membrane leading to accurate, nondestructive
prediction of ocular aging. FASEB J 21:3542–52.

55. Nyman JS, Roy A, Acuna RL, Gayle HJ, Reyes MJ, et al. (2006). Age-related

effect on the concentration of collagen crosslinks in human osteonal and
interstitial bone tissue. Bone 39:1210–1217.

56. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, et al. (2005) Advanced
glycationend products and bone loss during aging. Ann NY AcadSci 1043:710–

717.

57. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of enzymatic and glycation
induced cross-links as a determinant of bone quality in spontaneously diabetic

WBN/Kob rats. Osteoporosis Int 17: 1514–1523.
58. Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, et al. (2009)

Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation
of cortical bone growth, and diminished whole bone strength and fatigue life.

J Bone Miner Res 24: 1618–1627.

59. Malluche HH, Porter DS, Monier-Faugere M, Mawad H, Pienkowski D
(2012)Differences in bone quality in low- and high-turnover renal osteodystro-

phy. J Am Soc Nephrol 23:525–532.

Cortical Material Properties in CKD

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e99262


