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Abstract

Genotype networks are a concept used in systems biology to study sets of genotypes having the same phenotype, and the
ability of these to bring forth novel phenotypes. In the past they have been applied to determine the genetic heterogeneity,
and stability to mutations, of systems such as metabolic networks and RNA folds. Recently, they have been the base for
reconciling the neutralist and selectionist views on evolution. Here, we adapted this concept to the study of population
genetics data. Specifically, we applied genotype networks to the human 1000 genomes dataset, and analyzed networks
composed of short haplotypes of Single Nucleotide Variants (SNV). The result is a scan of how properties related to genetic
heterogeneity and stability to mutations are distributed along the human genome. We found that genes involved in
acquired immunity, such as some HLA and MHC genes, tend to have the most heterogeneous and connected networks, and
that coding regions tend to be more heterogeneous and stable to mutations than non-coding regions. We also found, using
coalescent simulations, that regions under selection have more extended and connected networks. The application of the
concept of genotype networks can provide a new opportunity to understand the evolutionary processes that shaped our
genome. Learning how the genotype space of each region of our genome has been explored during the evolutionary
history of the human species can lead to a better understanding on how selective pressures and neutral factors have
shaped genetic diversity within populations and among individuals. Combined with the availability of larger datasets of
sequencing data, genotype networks represent a new approach to the study of human genetic diversity that looks to the
whole genome, and goes beyond the classical division between selection and neutrality methods.
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Introduction

Genotype networks are a concept used in the field of systems

biology to study the ‘‘evolvability’’ or ‘‘innovability’’ of a set of

genotypes having the same, broadly defined, phenotype, such as

viability, and to determine whether a given phenotype is robust to

mutations [1,2]. They have been used to study the evolvability of

metabolic networks in simple organisms, by identifying how much

a metabolic network can be altered without losing the ability of

surviving using a given carbon source [3–7]. Similarly, they have

been used to study the ability of a metabolic network to ‘‘evolve’’ a

new phenotype, such as the ability of surviving on a new carbon

source [8]. Genotype networks have also been used to study the

robustness of RNA folds and protein structures, evaluating how

many mutations can be accumulated in a sequence without losing

the secondary structure [9–11].

The concept of genotype network is derived from the metaphor

of protein space proposed by Wright [12], and adapted by

Maynard Smith [13], a representation of all possible protein

sequences as a framework to describe how evolutionary processes

take place. This sequence space is explored by evolving

populations, which, mutation after mutation, and through

generations of individuals carrying similar sequences, reach

proteins of maximal adaptive value. Although genotype networks

have also been referred to as neutral networks [14,15], we here

prefer to use the term genotype networks, because we do not have

any information on the phenotype of the sequences we study (the

individuals of the 1000 Genomes dataset are anonymous), and we

do not know whether all the nodes in a network are effectively

neutral with respect to fitness.

Genotype networks are also at the base of a model proposed to

reconcile the two neutralist and selectionist schools of thoughts in

evolutionary biology [16]. According to this model, evolution is

characterized by cycles of ‘‘neutral’’ evolution, in which popula-

tions accumulate neutral or even slightly deleterious mutations,

followed by beneficial mutations, which can sweep through a

population and thus allow a new repertoire of genotypes to

accumulate in the population. The set of genotypes accumulating

in a population during a cycle of neutral evolution lie on the same

genotype network, and beneficial mutations are events that allow a

population to switch from one genotype network to another.

Under this model, even negative or neutral mutations can have a
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beneficial effect in the long run, as they allow a population to

explore genotype space and increase the chances of finding a

beneficial mutation [16].

In general, genotype networks are defined in relation to a given

phenotype. For example, they can be used to compare the genetic

variability of individuals with a genetic disease against a control

dataset, or to study the genetic variation behind phenotypic traits

like lactose tolerance or eye color. However, in the current work

we present only a coarse-grained genome-wide analysis of how the

properties of a population sample of a genotype network are

distributed along the genome, defining the phenotype as viability,

i.e., the mere ‘‘presence’’ of a genotype in any of the individuals of

the 1000 Genomes dataset. We performed coalescent simulations

to predict whether the sample size of the 1000 Genomes is

representative of variation in real populations, and to verify how

many samples are needed to represent networks of a given size.

The genome-wide scan presented here can form a basis for future

applications of genotype networks, and will permit better use of

genotype networks to understand genome variation.

Description of the genotype networks method
A genotype network is a graph whose nodes are genotypes such

as DNA sequences (or, in our case, short haplotypes of Single

Nucleotide Variants), and where two sequences are connected by

an edge if they differ in a single nucleotide, corresponding to a

single mutational step [1].

To better understand the concept of genotype network, it is

useful to introduce the notion of a genotype space, defined as the

set of all possible genotypes in a region of the genome. For

example, Figure 1A shows the genotype space of a region of five

contiguous Single Nucleotide Variants (SNVs). Each node in

Figure 1A represents one possible genotype as a string of ‘‘0’’s and

‘‘1’’s, where the ‘‘0’’s represent the reference allele, and the ‘‘1’’s

represent the alternative allele. In this space, two genotypes are

directly connected if they differ only in a single nucleotide, e.g. the

nodes ‘‘00000’’ and ‘‘00001’’ are connected.

In empirical data, populations usually occupy only a small

portion of an entire genotype space. As an example, in Figure 1B,

we marked in green all the genotypes that are observed at least

once in a hypothetical population. We define the genotype

network of this population as the portion of genotype space

occupied by the population. The method we propose is based on

comparing the properties of a genotype network to the whole

genotype space, and asking question about its extension in this

space, and how tightly connected its nodes are.

In particular, we focus on two classes of attributes of genotype

networks. The first class is suitable to understand how a network is

distributed throughout this space. The second class of attributes

relate to the connectivity of the network, and has implications on

the network’s robustness when a point mutation appears.

Extension and heterogeneity of the genotype

network. The first two attributes of interest are the number of

vertices and the average path length of a genotype network. These

attributes allow one to study how far a network extends through

genotype space, and how heterogeneous or genetically distant the

genotypes in a population are.

As an example of how two populations might differ in these

properties, Figure 1C shows the genotype networks of two

hypothetical populations, one having high average path length

(yellow nodes), and the other low average path length (blue nodes).

Even though the two populations contain the same number of

distinct genotypes (vertices), the yellow population is genetically

more heterogeneous, and its individuals are genetically more

diverse, than the individuals of the blue population. Specifically,

the yellow population contains individuals that have genetically

very distant genotypes, such as ‘‘00000’’ (all loci having the

reference allele) and ‘‘11111’’ (all loci having the alternative allele),

while in the blue populations, the genetically most distant

individuals have at most two allelic differences (e.g. ‘‘00001’’ and

‘‘01001’’). Thus, the distance of the vertices and the average path

length of the genotype networks of these two populations indicate

that they adiffer in how far they extend through the space.

Robustness and stability of the genotype network. Two

other attributes of interest are the number of components and the

average degree of genotypes in a genotype network. In other

literature on genotype networks, these attributes have been used as

measures of robustness to mutations [5,17]. In this work, since we

do not have detailed phenotypic information, we prefer to speak

about the stability of a genotype network in a genomic region to

mutations.

Figures 1D and 1E show two hypothetical genotype networks

that differ in the number of components and their average degree.

Both networks occupy the same number of nodes, but on average

the nodes of the genotype network of Figure 1D (only the blue

nodes) have more connections than the nodes in the network of

Figure 1E. Specifically, in the network of Figure 1D, most nodes

are connected to at least three other nodes, whereas the network in

Figure 1E is much more fragmented, as most nodes have only one

or two connections, and some groups of nodes are not even

connected.

The biological significance of these attributes can be seen by

considering the effect of a random point mutation on a network

node (genotype). If we randomly select a genotype and mutate one

of its nucleotides, the resulting genotype will be one of its

neighbors in the network, because, by definition, nodes in a

genotype network are neighbors if they differ in a single

nucleotide. As the connectivity of a genotype network increases,

the chances increase that a mutant genotype will be a genotype

that is already part of the network. For example, if we take the

node ‘01100’ in Figure 1D or 1E, and simulate a random point

mutation, the result will be one of the five genotypes ‘01000’,

‘00100’, ‘11100’, ‘01110’, or ‘01101’. In Figure 1D, four out of

these five genotypes already belong to the genotype network, so a

point mutation is not likely to create genotypes outside the

genotype network. In Figure 1E, however, all nodes connected to

the original genotype do not belong to the genotype network, so

any point mutation must create a genotype outside the network.

Thus, we can interpret genotype networks with few connected

components and with high average degree as more stable to

mutations than other types of genotype networks.

Results

Genome-wide distributions
We executed a genome-wide scan of genotype networks for the

1000 Genomes dataset, producing an overview of how the number

of vertices, the average path length, the number of components,

and the average degree of the genotype networks are distributed

on the human genome. The scan is implemented as a series of

sliding windows that subdivide the genome into overlapping

regions of 11 SNVs (see Methods). The results are available as a

UCSC browser custom track hub, accessible at http://genome.

ucsc.edu/cgi-bin/hgTracks?db = hg19&hubUrl = http://bioevo.upf.

edu/,gdallolio/genotype_space/hub.txt. Raw data can be down-

loaded using the UCSC Tables function or forwarded by request.

Table 1 presents an overview of the genomic regions having the

highest values of each of the network properties we calculated.

Interestingly, most of these top regions are associated with genes

Human Genotype Networks
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involved in acquired immunity, such as HLA and MHC genes. In

particular, the three regions with the highest average path length

belong to HLA genes (HLA-DRB1, HLA-DRB5 and HLA-

DQA1), while a region in HLA-DPA1 shows an exceptionally

number of connected components. Moreover, if we divide the

number of vertices by the number of components, we find that two

regions related to the MHC I complex, MICA and MICB, have

especially large components.

The higher genetic heterogeneity (in terms of the average path

length and larger component size) of these regions involved in

acquired immunity can be explained by their role in interacting

with disease agents. The HLA and MHC regions are known for

being among the most variable regions within human populations,

Figure 1. Examples of genotype networks and their properties. A. Representation of the Genotype Space for a region including 5 loci or
Single Nucleotide Variants (SNVs). The space of all possible genotypes is represented as a Hamming graph (whole network). Each node represents
one possible genotype, and each edge represents that the two nodes connected have only one difference. B. Example of genotype network. On top
of the Genotype Space, we mark the genotypes observed in a population, and define it as the genotype network of that population (green nodes). C.
Genotype networks of two populations (yellow and blue). The green population has a large average path length and diameter, while the blue
population has a short average path length and diameter. D. Genotype network of a population having a high average degree and only one single
component. E. Genotype network of a population having low average degree and many fragmented components.
doi:10.1371/journal.pone.0099424.g001
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and their function in interacting with pathogens greatly increases

the genetic variability between individuals [18,19]. The higher

genetic heterogeneity of many regions involved in acquired

immunity can be interpreted as a high capacity for finding novel

responses to different classes of pathogens. In this sense, the

exceptionally high number of components in the HLA-DPA1

region is a contrasting observation, as so many components

indicate a very fragmented network. Maybe the diversity of this

region is so high that our sample size is not able to capture it, thus

identifying a fragmented network instead of a large connected

component.

Evaluating the effect of missing samples
A difficulty in applying genotype networks to SNV data is that

one needs many individuals to correctly represent the genetic

variation in real populations. If the number of individuals in a

dataset is not enough, some genotypes or haplotypes may not be

represented in the network, not because they are not present in the

real population, but just because they are missing from the

population sample. In particular, some properties such as average

path length and average degree cannot be calculated properly (in

mathematical terms) when there are too many missing nodes in a

network, so it is important to understand the effect of sample size

on our ability to infer genotype network properties.

To evaluate the effect of missing haplotypes, we performed

coalescent simulations including 5,000 haplotypes (2,500 diploid

individuals) for each of the African, Asian and European

populations, for a total of 15,000 haplotypes. From this simulated

dataset, we successively sampled a number of randomly chosen

haplotypes, with as few as 100 haplotypes (50 individuals) per

population, and we observed how properties of genotype networks

varied as we reduced this sample size. The results are shown in

Figure 2. Each data point in the figure represent the average of 5

independent re-samplings of the same number of individuals, using

networks of 11 SNVs.

Table 1. Regions showing top scores in the genome.

region criteria Closest Distance to Description of 2nd closest Description of 2nd closest

gene closest gene closest gene gene gene

chr2:91959344-91968231 high number
of components

GGT8P inside gene pseudogene

chr6:33037767-33038449 high number
of components

HLA-DPA1/
HLA-DPB1

inside gene Homo sapiens major
histocompatibility
complex, class II

chr:7203189-7420319641 high number
of components

ITGB8 50,684 bp integrin HLA-DPA1/ major histocompatibility

HLA-DPB1 complex, class II

praja ring finger 2,

chr5:108634323-108635534 high average
degree

PJA2 34,876 bp E3 ubiquitin protein ligase AK021888 unknown function

chr8:25935936-25937929 high average
degree

EBF2 inside gene early B-cell factor 2

Homo sapiens

chr6:32507854-32508257 high average
path length

HLA-DRB1 inside gene major histocompatibility
complex, class II

Homo sapiens major

chr6:32568909-32569343 high average
path length

HLA-DRB5 11,297 bp major histocompatibility
complex, class II

HLA-DQA1 histocompatibility complex,
class II

Homo sapiens

chr6:32611264-32611586 high average
path length

HLA-DQA1 inside gene major histocompatibility
complex, class II

chr3:36921415-36921688 high number
of vertices

TRANK1 inside gene tetratricopeptide repeat and
ankyrin repeat Containing 1

chr4:9176678-9178624 high number
of vertices

C9JJH3 33,759 bp Deubiquitinating enzyme LOC650293 transmembrane helix
receptor

chr8:35105546-35106981 high number
of vertices

UNC5D inside gene receptor of netrin involved
in nervous system

chr4:9200148-9202368 few components,
but large number
of vertices

USP17L10 10,015 bp Deubiquitinating enzyme

chr6:31357915-31358747 few components,
but large number
of vertices

MICA 8,814 bp MHC class I
polypeptide-related
sequence A

HLA-B major histocompatibility
complex, class I

chr6:31455010-31456012 few components,
but large number
of vertices

MICB 6,646 bp MHC class I polypeptide-
related Sequence B

uc003ntm.3 HLA complex Group 26
(non-protein coding)

doi:10.1371/journal.pone.0099424.t001
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Figure 2 shows that properties of genotype networks change

nearly linearly for a sample size of 5,000 to 1,000 haplotypes,

suggesting that for this range of sample sizes the effect of missing

haplotypes is not very strong. Interestingly, the relative differences

between populations remain the same, independently of sample

size, e.g., European and Asian populations have similar values at

different sample sizes, and the global population always has a

higher number of vertices, greater average path length, and

greater average degree than the three sub-populations. For lower

sample sizes, from 1000 to 100 haplotypes (corresponding to 500

to 50 diploid individuals), the quantities we computed change

more sharply, suggesting that the effect of missing samples is

substantial and may cause wrong interpretation of the results. For

example, for a sample of 300 haplotypes, the global population has

more components than the African population, reversing the result

observed for higher sample sizes. Overall, this analysis suggests

that for networks of 11 SNVs, only observations based on more

than 1,000 samples should be trusted.

Correlation between Network Properties
Figure 3 shows pairwise correlations between genotype network

properties for data based on chromosome 22, also comparing

them with region size and recombination rate. Each panel in the

figure shows two properties, one on the X axis, and the other on

the Y axis, as defined in the diagonal panels. For example, the

bottom-left panel shows a pairwise comparison between region

size (on the X axis) and average path length (on the Y axis), and

also indicates that these properties are correlated with a Pearson

coefficient of r = 0.089.

The first two rows and columns show the effect of region

(window) size and of recombination rate on genotype network

properties. The region size refers to the length, in base pairs, of the

region occupied by a network spanning 11 SNVs (2–3 kb on

average). The recombination rate is a measure of the average

amount of recombination observed from the first to the last SNV

in an 11 SNV window, and was obtained from the 1000 Genomes

website. These two properties allow us to determine if we have to

correct for these factors when comparing genotype network

properties among different regions. Notably, there is a small but

significant effect of recombination on the average degree (r = 0.34;

P,1610230), on the number of vertices (r = 20.29; P,1610230),

and on the average path length (r = 0.23; P,1610230). Given this

relationship, we took into account recombination when comparing

network properties across regions in some analyses (e.g. see

‘‘Genotype Networks of Coding and Non-Coding regions’’).

The remaining panels in Figure 3 show the pairwise correlation

between all other network properties. Some properties are clearly

correlated. For example, the average degree and the number of

vertices have a correlation coefficient of 0.80 (P,1610230),

meaning that large networks also tend to have larger average

degree. Notably, the correlation between these two properties

increases if we use a logarithmic scale for the number of vertices

(r = 0.89, p-value,1610230). Together with recent results that

have demonstrated a similar correlation both in RNA models [20],

and in models of protein complexes [21], this suggests that a

logarithmic correlation between network size and degree may be a

universal feature of genotype networks.

Figure 2. Distribution of Genotype network properties in a set of coalescent simulations, varying the number of samples used to
construct the networks. We first simulated 15,000 haploid sequences (5,000 for each of an African, Asian and European population). Then, we
randomly sampled a given number of haplotypes, from 5,000 to 100, and calculated the distribution of properties of genotype networks built using
only the randomly sampled individuals. Networks are based on 11 SNVs, and each data point represents the average of five random subsamplings of
the same size. Bars are too short to be visible for most data points, and show 6 times the standard deviation of the mean.
doi:10.1371/journal.pone.0099424.g002
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Figure 3 also shows that the average degree and the average

path length have a correlation coefficient of 0.70 (P,1610230).

This correlation may be caused by the fact that adding one node

to a small network increases both the average path length and the

average degree. Consistent with this notion, this correlation

becomes weaker for larger networks (Figure 3).

Genotype Networks of Coding and Non-Coding regions
We used the functional annotations from the 1000 Genomes

website to determine whether the presence of a coding or of a non-

coding SNV affects the properties of a genotype network. In

particular, we restricted our analysis to all the SNVs having a

functional effect (according to the ENCODE annotations [22]),

Figure 3. Correlation between Genotype network properties on chromosome 22. Each panel shows the pairwise distributions of two
properties, one of each axis. For example, the two squares at the intersection of ‘‘Average Degree’’ and ‘‘Average Path Length’’ show the pairwise
distribution of scores for these properties. The intensity of the blue shape is proportional to the density of points, while black dots represent outliers
of the distribution, and facilitate the visualization of the limits of each distribution. Ideally, if there is a linear correlation between two properties, a
linear plot should appear. The pairwise correlation coefficient is shown in all panels, in the right bottom corner. All correlations are significant (p value
,0.05).
doi:10.1371/journal.pone.0099424.g003
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and classified all networks into four categories, according to the

effects of the SNVs included. The classes are:

I. networks containing only coding SNVs;

II. networks containing both coding and non-coding SNVs;

III. networks containing only non-coding SNVs;

IV. networks containing only SNVs in intergenic regions, or

for which no annotation is available, and which have no

known functional effect (excluded from further analysis).

These annotations are obtained from the 1000 Genomes

website, and are calculated using the Variant Annotation Tool

[23,24]. For simplicity, in the rest of the paper, we refer to these

classes as ‘‘coding’’, ‘‘both’’, ‘‘noncoding’’, and ‘‘no annotations’’.

Since we had previously shown that the recombination rate is

correlated with some network properties (see the section ‘‘Corre-

lation between Network Properties’’), we removed the networks

with the highest recombination rate (more than 1 cM between the

first and the last SNV of the window). Moreover, to compare

networks based on windows belonging to different annotation

classes, we applied an analysis of covariance, using the annotation

category as a grouping variable, and the recombination rate as a

covariable. This analysis aims at comparing the functional

categories for genotype network properties taking into account

the effect of recombination rate, and we performed it separately

for each of our three subpopulations. Networks of the class ‘‘no

annotations’’ (containing only SNVs for which no annotation is

available) are excluded from this analysis, as a clear interpretation

for this category cannot be provided.

Overall, the three classes of networks from our different

subpopulations have different numbers of connected components,

a difference that is significant between all three populations.

Specifically, networks containing only coding SNVs have fewer

connected components than networks comprised of non-coding

SNVs (see Table S1). Moreover, networks containing both coding

and non-coding SNVs have intermediate numbers of connected

components. Thus, networks containing coding SNVs are more

connected, while non-coding networks tend to be more fragment-

ed. These differences hold in all pairwise comparisons between the

coding and noncoding classes, even when a Bonferroni multiple

testing correction is used (p,0.009 in all comparisons).

Figure 4 shows the means of these and other network properties

for chromosome 22 in the global population. Coding networks

tend to have more vertices, greater average path length, and

greater average degree than non-coding networks. Overall, these

results show that coding regions are less fragmented (they have

fewer components) than non-coding networks, but at the same

time, they are more extended in genotype space (higher path

length), and are more connected (higher average degree). It should

be noted that even though the differences between annotation

categories reach statistical significance in almost all comparisons

and for almost all properties, the magnitude of the observed

differences is small in general.

Effects of a simulated selective sweep on genotype
networks

Figure 5 compares the distribution of Network Properties

between the data from chromosome 22 and two simulated

datasets, representing a neutral and a selection scenario. The

neutral scenario is based on the known demography for the

European, Asian and African populations [25]; The selection

scenario is based on the same parameters as the neutral scenario,

but adds a simulated selective sweep with a small selection

coefficient (0.015), in which the selected allele reaches a final

frequency of 0.99. We chose this scenario of weak selection,

because it has recently been proposed that strong selection events

were rare in our evolutionary history [26,27]. This analysis shows

that all four genotype network properties we consider differ

between the neutral and selection scenarios. The least marked

difference occurs in the number of components, where the selec-

tion simulations show a slightly lower number of components than

the neutral scenario (Wilcoxon test: W = 575321.5, p-value = 261029).

In contrast, the selection scenario leads to a higher number of

vertices, average path length, and degree than the neutral scenario

(p,10610215 for Wilcoxon test, for all the properties). In parti-

cular, the quantile-quantile plots (qqplots) shown in Figure S3 show

that in the selection scenario the proportion of average path length

values close to 4 is greater than in the neutral scenario. Together,

these results indicate that after a selective sweep genotype networks

tend to be both more stable and connected (lower number of

components and higher average degree) and at the same time more

extended in genotype space (higher number of vertices and average

path length).

Discussion

Strategies to apply genotype networks to next
generation sequencing data

So far, genotype networks have not been applied extensively to

population genetics data. The main reason is that doing so

requires very large datasets, on the order of thousands of

sequences or more. Even in the work presented here, we limited

our analysis to regions spanning 11 SNVs, because according to

coalescent simulations, the number of samples in the 1000

Genomes dataset is only large enough to reconstruct networks of

this size with reasonable accuracy. In the future, larger datasets

will make it possible to analyze larger regions, but for the moment,

the limitation of small sample size can be overcome by

constructing genotype networks through a sliding window

approach, as presented in this paper. Thanks to this approach, it

is possible to compare regions or genes of different size, by

comparing the distributions of network properties among all

windows.

Another difficulty in applying genotype networks to SNV data is

that some network properties are associated with the recombina-

tion rate. In particular, network degree and number of vertices

increase as the recombination rate in a region increases.

Moreover, one would expect that a recombination event can

fragment a genotype network, creating networks divided into

multiple unconnected components. In our current analysis, we do

not distinguish if the fragmentation of a network is caused by

recombination, population demography, or other factors. This

difficulty could be partially solved by removing the windows that

show higher recombination rates (likely to contain recombination

hotspots), and by applying multivariate analysis, using recombi-

nation as a covariable.

Genotype Networks and Human Genome Variation
In this work we presented a genome-wide scan of how the

properties of genotype networks are distributed in the human

genome, using data from the 1000 Genomes project.

One observation is that there are small, but significant

differences between networks of coding regions and those of

non-coding SNVs. First of all, networks including coding SNVs

tend to be less fragmented (lower number of components) than

non coding networks. This result is perhaps intuitive, as we can

expect that coding regions, being exposed to higher selective

constraints than coding regions, would accumulate fewer mutations,
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and therefore have less fragmented networks. Moreover, we can

expect that mutations in coding regions would accumulate at a

slower pace and fall within few mutational steps from the genotypes

of the previous generations, while mutations in non-coding regions

would accumulate faster and fall more often within more than one

mutational step from the previous genotypes. This would lead to an

higher fragmentation of genotype networks in non-coding regions,

especially in the present work, where networks are defined using a

mutational distance of one.

Secondly, our results showed that coding networks are both

richer in genotype diversity (higher average path length), and at

the same time more stable to mutations (higher average degree).

This result can be a consequence of their lower fragmentation. If a

network is fragmented into multiple components, long paths of

genotypes connected by one single mutational step each become

less likely. Similarly, genotypes of more fragmented networks are

less likely to be connected to other genotypes in the network, and

this reduces the average degree of the network. It is also possible

that the higher fragmentation observed is due to undersampling.

More precisely, non-coding regions would require a higher

number of samples to be fully reconstructed, compared to coding

regions, such under-sampling could affect non-coding regions

more than coding regions.

In addition, our analysis on simulated sequences showed that

regions simulated under a selection scenario have also fewer

components, but more vertices, greater average path length, and

greater average degree, compared to regions exposed to neutral

drift. This suggests that a selection event may have a direct impact

on the structure of a genotype network. Genotype networks may

help identify potential past selection events.

Future Directions
As the cost of genome sequencing will decrease in the next

years, and as larger datasets of sequences will become available,

genotype networks may become useful tools to understand genome

variation. One could employ them to analyse datasets of case and

control individuals, and to better understand the genetic variation

associated with a disease. In this case, genotype networks could be

defined in reference to the presence or absence of a given disease,

which is a more specific phenotype than the one used in this paper.

Such an analysis may even allow us to learn how to identify genomic

variants associated with potential diseases. However, doing so will

require very large datasets of case/control individuals.

In the present work, we showed how genotype networks can be

applied to study intra-specific variation, in particular in the human

genome. We provided a few examples of how to use genotype

networks to study this type of variation. We showed that it may be

necessary to take into account the effect of recombination, and

that some genotype network properties are associated with one

another in empirical data. Moreover, we provided a description of

the background distribution of these properties in the whole

genome, and how they vary among coding and non-coding

regions. The work presented here may constitute a starting point

for applying genotype networks to study genome variation more

extensively.

Materials and Methods

Genotype Datasets and Individuals
We downloaded Single Nucleotide Variant (SNV) genotype

data from the Phase I release of the 1000 Genomes dataset (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_

call_sets/) [28] on January 2013 (revision 2ff9d3af6cde in the

Figure 4. Distribution of network properties, comparing SNV functional annotations. Each point shows the mean +/22 standard
deviations of the mean for a class of networks.
doi:10.1371/journal.pone.0099424.g004
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repository, see ‘‘Reproducibility of the study’’). Using the suite

vcftools [29], we removed all the SNVs having a minor allele

frequency in the global population lower than 0.01, and a coverage

lower than 2-fold. We considered only phased SNVs, and did not

analyze chromosomes X and Y. A total of 11,684,193 SNVs passed

this filtering, with an average of one SNV every ,250 bases.

From the 1000 Genomes dataset, we excluded all 242 American

individuals (labels MXL, CLM, PUR, and ASW on the 1000

genomes website). One reason to exclude these populations is that

it facilitates the comparison with the coalescent simulations, as no

accurate demographic model for these populations is available

[23]. A second reason is that, based on a principal component

analysis (not shown), these individuals appeared to be genetically

admixed with individuals from three other continents. The

resulting dataset is composed of 850 individuals, or 1,700 haploid

sets (chromosomes) grouped into individuals from three continents,

African (AFR), Asian (ASN), and European (EUR). The African

group includes 185 individuals (Yoruba from Nigeria and Luhyia

from Kenya); the Asian group includes 286 individuals (Chinese

from Beijing and South China, plus Japanese); the European

group includes 379 individuals (Utah residents, Finland, Great

Britain, Spain, Italy).

For the analysis of coding/non coding regions (see ‘‘Genotype

Networks of Coding and Non-Coding regions) we used the

functional annotations on SNVs from the 1000 Genomes ftp site

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/

functional_annotation/annotated_vcfs). These annotations were

generated by the 1000 genomes consortium, using the Variant

Annotation Tool [23,24]. The category of ‘‘functional coding’’ SNVs

includes SNVs that are in a protein coding region, and that are

transcribed and included in the mature transcript. The category of

‘‘functional non-coding’’ SNVs includes all the SNVs in non-coding

regions that lie in transcription factor binding sites and in UTR

regions, plus all the SNVs in regions that are transcribed but do not

have any function, such as those in pseudogenes. All the other SNVs

are included in a category called ‘‘no functional effect known’’, which

includes all the SNVs for which no annotation is available. Intronic

SNVs are included in this latter set, if there is no evidence for any

functional effect. This last category of ‘‘no functional effect known’’

has been excluded from later analysis, as no clear interpretation of

this set was possible.

Figure 5. Distribution of network properties, comparing a dataset of neutral demography simulations against a scenario of
selective sweep. Selection scenario simulates a recent selective sweep with a selection coefficient of 0.015, and a final frequency of 0.99. The
networks included in this graph are calculated by merging the 5,000 haplotypes of the three populations simulated (African + European + Asians) into
a global population, and calculating the genotype networks on all the 15,000 haplotypes together.
doi:10.1371/journal.pone.0099424.g005
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Construction of Genotype Networks
Genotype Networks are computed using a customized version of

Networks, a software produced by our group [29]. VCF2Networks

allows to parse a Variant Call Format (vcf) file [30], generate a

genotype network from it, and calculate network properties. The

igraph library [31] and its python bindings are used to represent

graphs and to calculate network properties.

Figure S1 schematically shows the protocol used to convert a vcf

file to a genotype network. The first step is to apply the Minor

Allele Frequency filter of 0.01 described above, and to remove all

SNVs that have unphased data, or that are triallelic. Then, to

generate the networks, we consider the two haplotypes of each

individual as separate entities. Each genotype is encoded as a

binary string, where ‘‘0’’ represents the reference allele, and ‘‘1’’

the alternative allele, using the annotations from the downloaded

vcf files (triallelic loci are not included in the 1000 Genomes

dataset). After encoding all the distinct genotypes observed in a

population, we build a network in which each node represents one

genotype, and an edge connects two nodes if they differ in a single

allele between each other, i.e., if the Hamming distance between

their binary string representations is equal to one.

Description of Network Properties
Among the properties whose calculation is implemented in the

tools VCF2Networks, we calculated the following for this

contribution: the number of vertices, the average path length,

the number of components, and the average degree. Here is a

short description of how each of these properties is computed.

The number of vertices is equivalent to the number of distinct

genotypes present in a population. Notably, due to the definition

of a genotype network used here, the number of vertices is

equivalent to the Dh statistics described by [32]. As an example,

the network in Figure 1B has 17 vertices, while both networks in

Figure 1C have exactly six vertices. The average path length is the

average of all possible shortest paths between pairs of genotypes in

a network, and it corresponds to the average number of single

nucleotide changes that it takes to move from any node in the

network to another. In the example of Figure 1C, the yellow

network has an average path length of 2.33, and the blue network

has an average path length of 1.67. Genotype networks of

populations that have explored a greater portion of genotype space

would have a higher number of vertices and a higher average path

length.

A connected component of a graph is a subgraph in which each

pair of nodes is connected through a continuous path of edges.

The number of components of a network is the number of such

subgraphs. For example, the network in Figure 1B contains a

single component, while the network in Figure 1E contains three

connected components, as there are three disconnected groups of

nodes. The degree of a node is the number of its neighbors, i.e.,

nodes connected to it by a single edge. For example, in Figure 1D,

the node ‘‘01000’’ has a degree of one, as it is connected to only

one other node, while the node ‘‘01100’’ has a degree of four, as

four edges emanate from it. The average degree of a network is the

average of the degrees of all the nodes in the network: in

Figure 1D, it is 2.20. Nodes without edges are called isolated and

have degree zero. For networks with more than one component

and some isolated nodes (e.g., Figure 1E), all components,

including those comprising only a single, isolated node, are

included in the calculation of the average degree. For example, the

network in Figure 1E has an average degree of 1.54. As explained

in the Introduction, we interpret the number of components and

average degree as a measure of the stability of a genotype network

to point mutations.

Sliding windows approach
In order to compute genotype networks in a genome-wide scan,

we divided the genome into contiguous and overlapping windows

of 11 SNVs, building networks based on this fixed size. We chose a

window size of 11 SNVs after having tested different window sizes

on chromosome 22. More specifically, Figure S2 shows how the

properties of the genotype networks of chromosome 22 vary with

window size. In particular, for a window size of 11 SNVs, the

networks of all the African, Asian and European populations have

a similar number of components, while for larger sizes these three

populations start to differ in this respect. Having similar

component numbers for all populations is important because in

mathematical terms, calculating properties such as the average

degree of networks may lead to incomparable results when based

on different numbers of components.

Calculation of Genome Wide top scores and filters
To calculate which region showed the highest values for each

network property in the whole genome, we first removed all

networks for regions with low quality sequence or included

alignment gaps. To do so, we filtered out all networks in which at

least one SNV intersected one base with the ‘‘Gap’’ track in the

UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/

hgTrackUi?g = gap, last modification 2009-03-08). We also

removed all regions corresponding to centromeres, to Giemsa

band neighbors of the centromers, and to the first and last Giemsa

bands of each chromosome, corresponding to telomeres. Then we

applied a filter based on the quantile distribution of the remaining

scores and on manual inspection (to remove possile artifacts) to

identify only the top-scoring regions for each network property.

Simulations
We implemented two sets of coalescent simulations, one based

on the known demographic model (thus representing neutral

evolution) and one simulating a selective sweep. We performed

these simulations using the COSI software [25], version 1.2.1.

Specifically, we simulated 3 populations (African, European, and

Asian) of 5,000 individuals each, under the known demographic

models for them [25]. The parameters used for the simulations

represent an out-of-Africa migration event 3,500 generations ago,

followed by a split between European and Asian populations 2,000

generations ago, and, in the case of simulations with selection, a

selective sweep in which the selected variant has a selection

coefficient of 0.0150 and a final frequency of the selected allele of

0.99. The exact parameters used for the simulations are available

in the repository of this project (https://bitbucket.org/dalloliogm/

genotype_space). After performing the simulations, we applied a

filter of Minor Allele Frequency .0.01, removing all SNVs that

had a low frequency in all three populations, i.e., we used the same

criterion that we had used to filter the 1,000 Genomes data. These

two simulated datasets allowed us to estimate the distribution of

network properties under a well-defined demographic model, and

to estimate the distribution of these properties for a larger sample

size (5,000 chromosomes per population). Moreover, these

simulations allowed us to evaluate the effects of a strong selective

sweep on the properties of Genotype Networks.

Reproducibility of the study, and other tools used
Following the best practices described in [33] the whole project

presented in this manuscript, including the raw data, the scripts to

produce plots and analysis, and a versioned log of all the

commands used, are available at https://bitbucket.org/

dalloliogm/genotype_space.
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Figure 1 was generated using the Cytoscape software [34]. To

manipulate genome-wide data, we used the bedops [35] and the

bedtools [36] suites.

Supporting Information

Figure S1 Workflow used to calculate genotype network
properties from a VCF file.
(PNG)

Figure S2 Distribution of genotype network properties
in chromosome 22, changing the number of SNVs used
to generate each network (window size), from 5 to 29
SNVs. In order to have the same number of individuals in each

population, each point is based on 5 samples of 370 haplotypes.

(PNG)

Figure S3 Quantile-quantile plots of neutral vs selection
simulations. Only the networks of the global populations

(African + European + Asians) have been included.

(PNG)

Table S1 Wilcoxon test comparing coding and non
coding networks.

(DOC)
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