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The generation of neuronal cell 
diversity is controlled by interde-

pendent mechanisms, including cell 
intrinsic programs and environmental 
cues. During development, the aston-
ishing variety of neurons is originated 
according to a precise timetable that is 
managed by a complex network of genes 
specifying individual types of neurons. 
Different neurons express specific sets 
of transcription factors, and they can 
be recognized by morphological char-
acteristics and spatial localization, but, 
most importantly, they connect to each 
other and form functional units in a 
stereotyped fashion. This connectivity 
depends, mostly, on selective cell adhe-
sion that is strictly regulated. While 
intrinsic factors specifying neuronal 
temporal identity have been extensively 
studied, an extrinsic temporal factor 
controlling neuronal temporal iden-
tity switch has not been shown. Our 
data demonstrate that pulses of steroid 
hormone act as a temporal cue to fine-
tune neuronal cell differentiation. Here 
we also provide evidence that extrinsic 
JAK/STAT cytokine signaling acts as a 
spatial code in the process. Particularly, 
in Drosophila mushroom bodies, neu-
ronal identity transition is controlled 
by steroid-dependent microRNAs that 
regulate spatially distributed cytokine-
dependent signaling factors that in turn 
modulate cell adhesion. A new era of 
neuronal plasticity assessment via man-
aging external temporal cues such as 
hormones and cytokines that specify 
individual types of neurons might open 
new possibilities for brain regenerative 
therapeutics.
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How Multiplicity of Neuron Types 
is Generated

The development of multiple compart-
ments of the brain is a highly orchestrated 
process, where commitment of certain 
types of neurons to specific zones, layers 
and compartments is linked to the devel-
opmental stage, at which neurons are 
generated.1,2 During the last few years, 
significant progress has been made in 
the discovery of genes that identify and 
control development of different neuro-
nal subtypes (reviewed in refs. 3–5). A 
subsequent series of intrinsic signaling 
programs are described in invertebrate 
and vertebrate organisms where neuronal 
progenitors in a time-dependent manner 
progressively acquire specific identity via 
expression of unique sets of genes that 
coordinate the generation of the multiple 
projection neuron subtypes.

Like in vertebrates, neuronal stem cells 
in Drosophila produce different types of 
neurons depending on embryonic ante-
rior-posterior and dorsal-ventral polarity 
that establish gradients of morphogens 
and induce expression of gap, pair-rule 
and Hox genes that subsequently assemble 
a set of differentially expressed transcrip-
tion factors.6-11 Following the lineage spec-
ification, the neuronal stem cell generates 
a characteristic set of neuron subtypes.12-14 
The exact birthdate of specialized neurons 
suggests an interaction between temporal 
cues and neuron-intrinsic cell fate factors. 
Despite the broad data about existence of 
these intrinsic programs, it is important to 
note that the extrinsic temporal determi-
nants of differential morphogenesis have 
not been revealed in any organism. We 
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by regulation of secondary-response gene 
transcription. These mechanisms deter-
mine stage- and tissue-specific responses 
to each developmentally regulated ecdy-
sone pulse. Moreover, ecdysone signaling 
is patterned spatially as well as temporally; 
depending on the cell type and the devel-
opmental stage, the ecdysone receptor 
complex binds different co-activators or 
co-repressors that can have other binding 
partners, regulated by additional signal-
ing pathways. For example, the putative 
transcription factor Abrupt attenuates 
ecdysone signaling by binding to its co-
activator Taiman,31 and we showed that 
this interaction plays an important role 
in cell non-autonomous regulation of 
early germline progeny differentiation.29  
Moreover, other signaling pathways 

the same neuronal precursors after transi-
tion from larval to pupal stages. This MB 
neuron diversification is coincident with 
key developmental time periods (Fig. 1). 
In Drosophila there are two key systemic 
developmental timers—steroid ecdysone 
and juvenile hormone15—that synchronize 
the genetic, morphological and behavioral 
changes associated with developmental 
transitions.21-29 Pulses of the steroid hor-
mone ecdysone trigger major postembry-
onic developmental transitions, including 
molting and metamorphosis.15 Ecdysone 
interacts with a heterodimer of Ecdysone 
Receptor (EcR) and Ultraspiracle (Usp)—
two members of nuclear receptor super-
family.30 This complex directly induces 
expression of primary-response targets, 
which in turn multiply hormonal signal 

discovered that in Drosophila steroid hor-
mones regulate the chronological neuronal 
identity switch that is executed by steroid-
dependent microRNAs (miRNAs) (Fig. 1).

Steroid Hormone Regulates 
Chronological Neurogenesis  

in Drosophila

As a model to study extended neurogen-
esis we use Drosophila learning center 
or mushroom body (MB) neurons that 
are responsible for olfactory learning 
and memory.20 MB neuron subtypes are 
generated in the same lineages by type 
I neuroblasts and specified in a birth-
order-dependent fashion.12 MB γ and 
α'/β' neurons are produced during larval 
stages, while α/β neurons are born from 

Figure 1. Model of differential neurogenesis regulation by cooperation of developmentally controlled temporal systemic signaling and intrinsic 
spatiotemporal codes. Scheme represents the chronologically regulated signaling cascade controlling α’/β’ to α/β neuronal identity switch in the Dro-
sophila MB that takes place at the larva-to-pupa developmental transition. Amount of ecdysone at different stages of development is represented as 
relative levels (scheme adopted from ref. 15). Developmentally regulated pulse of the steroid hormone ecdysone acts as an extrinsic temporal signal-
ing code to activate expression of miRNAs from the let-7 complex in the differentiating MB neurons.16-18 Temporally induced miRNAs let-7 and miR-125 
are intrinsic spatiotemporal codes that downregulate at least two BTB domain containing transcription factors Abrupt and Chinmo,16,19 which allows 
for the α’/β’ to α/β neuronal cell fate transition. Cell adhesion molecule FasII is downstream of let-7/Abrupt signaling. During larval stages Abrupt 
suppresses FasII expression allowing for early-born lobes to be formed, while at the pupal stage downregulation of Abrupt allows FasII expression and 
promote α/β neuronal differentiation.16
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types of cells and tissues and, therefore, 
affects a wide range of biological func-
tions. Conditional knockout of Dicer has 
been extensively used to address the col-
lective role for miRNAs in specific tissues 
and cell types in mice. The essential func-
tions for the miRNA pathway have been 
uncovered in the brain: miRNAs regu-
late neuronal development and synaptic 
plasticity, oligodendroglia differentiation 
and myelin formation and are impli-
cated in brain tumor development and 
in the regulation of neurodevelopmental 
and neurodegenerative disorders.49-58 The 
role of specific miRNAs in the regula-
tion of embryonic and adult neurogen-
esis, particularly in the proliferation and 
differentiation of neural stem cells, is 
emerging. Recent work from Parsons et 
al.54 provided a genome-scale profiling of 
miRNA differential expression patterns in 
human embryonic stem cell neuronal lin-
eages. This allowed identifying molecular 
miRNA signatures for human embryonic 
neurogenesis: the in vitro neuroectoderm-
originated human neuronal cells acquire 
their identity by downregulation of pluri-
potence-associated miRNAs (such as hsa-
miR-302 family). In addition, induction 
of high levels of expression of miRNAs 
required for regulation of human central 
nervous system development (such as hsa-
miR-10 and let-7) occurs in a stage-spe-
cific manner. In a similar study Stappert 
et al.55 demonstrated that time-controlled 
modulation of specific miRNA activities 
not only regulates human neural stem cell 
self-renewal and differentiation but also 
contributes to the development of defined 
neuronal subtypes; hence miR-125b and 
miR-181 promote and miR-181a* inhib-
its generation of dopaminergic fate neu-
rons. Boissart et al.50 found that miR-125 
potentiates early neural specification of 
human embryonic stem cells by regulat-
ing SMAD4, a key factor for pluripotent 
stem cell lineage commitment. Using 
primary cultures derived from P1 rat 
cortex, neuron-enriched (miR-376a and 
miR-434) and glia-enriched (miR-223, 
miR-146a, miR-19 and miR-32) miRNAs 
were identified.52 MiRNAs have been 
also found to direct development of spe-
cific brain regions during embryogenesis. 
Nowakowski et al.53 showed that miR-92b 
is involved in the regulation of a number 

represses hormone production and thereby 
promotes systemic growth.42 A number 
of studies in vertebrate models and cell 
cultures also show relationships between 
hormones and miRNAs. Glucocorticoids 
influence a variety of physiological pro-
cesses in vertebrates, including adapta-
tion to stress, metabolism, immunity and 
neuronal development. Kawashima et al.43 
show that glucocorticosteroids regulate 
levels of brain-derived neurotrophic fac-
tor (BDNF) via suppression of miR-132 
expression, which possibly contributes 
to the regulation of synaptic plasticity in 
the brain. On the other hand, miRs-18 
and -124a can regulate levels of cortico-
steroid receptor and therefore modulate 
downstream effectors of this hormonal 
signaling.44 Recent work from Huang et 
al.45 demonstrates that the miR-21 pro-
moter has a thyroid hormone response ele-
ment that allows miRNA to be activated 
in response to hormonal stimuli. Thyroid 
hormone in vertebrates is an important 
regulator of development, differentiation 
and growth. Overactivation of miR-21 
promotes hepatoma cell migration and 
invasion, analogous of that observed with 
thyroid hormone stimulation.45 In breast 
cancer, the estrogen receptor α (ERα) 
binds the miR-221/222 transcription start 
site and recruits co-repressors to suppress 
their transcriptional activity,46 while miR-
NAs miR-191 and miR-425 are upregu-
lated via estrogen-mediated activation.47 
Another study shows that miR-221/222 
acts as a negative regulator for ERα48 sup-
porting the idea for the existence of nega-
tive regulatory loop involving miRNAs 
and hormonal receptors.

Together, these data confirm that hor-
mones and miRNAs are prone to work 
together in regulation of multiple pro-
cesses. On one hand, cell-specific miRNAs 
can be used as additional factors that fine-
tune the specificity of cellular responses to 
global hormonal signaling; on the other 
hand, miRNAs are also involved in feed-
forward and feedback loops to readjust the 
precision of this systemic signaling in a 
given cell type.

MicroRNAs in the Brain

Biogenesis of miRNAs exhibits specific 
temporal and spatial profiles in different 

(insulin, TGFβ, JAK/STAT) interact with 
ecdysone pathway components to further 
fine-tune the cell-type specific function.31-33 
This additional level of combinatorial con-
trol allows for a highly managed regula-
tion of gene expression by the systemic 
signaling. In the brain, it has been shown 
that ecdysone is responsible for γ neuron 
remodeling during metamorphosis,34 and 
we found that ecdysone signaling is also 
required for α'/β' to α/β temporal identity 
switch that is accomplished via miRNAs 
to guarantee the specificity of this global 
endocrine signaling for differentiation of a 
certain type of neurons in the developing 
Drosophila brain.16

Hormones and MicroRNAs

Development of the living organism is 
organized into discrete temporal stages, 
each of which is characterized by a unique 
program of gene expression that controls 
tissue formation and differentiation.  
miRNAs were first found because of their 
role in the regulation of developmental 
staging of the nematode C. elegans.35,36 
Multiple studies in insects also suggest an 
important role for miRNAs in the coor-
dination of the developmental transitions; 
depletion of Dicer-1 (protein required for  
miRNAs biogenesis) in B. germanica37 
and mutations in Drosophila miRNAs 
let-7 and miR-125 impair regulation of 
metamorphic processes.38,39 The tempo-
ral regulation of these and many other 
miRNAs expression is mediated by devel-
opmentally controlled hormonal signals. 
For example, in Drosophila, the upregu-
lation of miR-100, miR-125, and let-7 
encoded by the miRNA let-7-C locus and 
downregulation of miR-34,17 miR-14,40 
and miR-841 require the steroid hormone 
ecdysone. Recent work from Chawla 
and Sokol18 identified and mapped three 
Ecdysone Response Elements within the 
let-7-C locus, proving that miRNAs can 
be first-response targets of the hormonal 
signaling. Importantly, not only do hor-
mones regulate miRNA expression but 
also miRNAs can affect the strength of 
systemic signaling. For example, miR-14 
has been identified to mediate a positive 
autoregulatory loop of EcR that amplifies 
ecdysone response,40 while miRNA ban-
tam activity in ecdysone-producing cells 
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results in severe cerebellar hypoplasia and 
developmental failure of several neuronal 
types.71 By coherently repressing multiple 
proneurogenic genes in a timely manner 
this BTB protein supports neuronal dif-
ferentiation and brain growth.72 During 
embryonic development of the murine 
cerebral cortex another mammalian BTB 
factor, HOF is specifically expressed in 
immature non-dividing cells and is down-
regulated in differentiated cells of the hip-
pocampus; importantly, it is one of the 
factors that might be involved in early 
definition of hippocampal compartment 
within the neocortex.70

Similarly, in the Drosophila nervous 
system several BTB/POZ domain zinc 
finger transcription factors have been 
implicated in specifying neuronal and 
glial cell lineages. For example, Tramtrack 
proteins transcriptionally repress genes 
that promote transformation of neuronal 
support cells into neurons,73,74 while Lola, 
Fruitless, Abrupt, and Chinmo are intrin-
sically required for development of differ-
ent subsets of neurons.16,19,69,75-79 Such data 
provide evidence that BTB/POZ zinc-
finger proteins play an important role in 
the transcriptional program that controls 
differentiation of progenitors into neu-
rons. Since the growth and organization 
of the brain is tightly correlated with the 
speed of the whole organism development, 
it implies that neuron differentiation 
should be responsive to external temporal 
cues. Interestingly, the neuronal temporal 
identity of Drosophila MB neurons is gov-
erned by two BTB transcription factors, 
Chinmo and Abrupt and both of them 
are subjects to miRNA-mediated regula-
tion.16,19,79 We found that this regulation 
is chronologically induced by systemic 
steroid signaling that controls the major 
larva-to-pupa transition during Drosophila 
development, which also coincides with 
the time-point when the last-born neurons 
are generated.16 This demonstrated for the 
first time that differential neurogenesis is 
hierarchically regulated by extrinsic sys-
temic signaling, which, in chronological 
manner, adjusts programs of intrinsic tem-
poral determinants of neuronal cell fate 
and that BTB transcription factors play a 
role as temporal codes in the process.

Next, we aimed to understand whether 
intercellular environmental signaling, 

maintenance provides a new additional 
layer of gene regulation, which has an 
effect on nervous system functions and 
contributes to therapeutic approaches 
toward neurological diseases. These new 
findings also propose miRNAs as possible 
candidates for innovative brain therapies. 
However, since the general role for miR-
NAs is the transcriptional repression of 
their targets, upcoming studies should be 
focused on finding functional miRNA-
target pairs that are also defined at the 
spatiotemporal level.

BTB Transcription Factors  
as Temporal Codes

We established a spatiotemporal connec-
tion between the ecdysteroid-induced 
miRNA let-7 and its target, the BTB tran-
scription factor Abrupt in the developing 
brain.16 BTB/POZ zinc finger factors are 
a class of nuclear DNA-binding proteins 
containing the BTB domain, which was 
first identified as a conserved element in 
the developmentally regulated Drosophila 
proteins Broad-complex, Tramtrack and 
Bric-a-brac.66 Afterwards, the BTB pro-
tein-protein interaction motif was found 
in hundreds of different proteins virtu-
ally in all organisms, ranging from yeast 
to humans. It is involved in the regula-
tion of gene expression through the local 
control of chromatin conformation and 
the recruitment of degradation targets 
to E3 ubiquitin ligase complexes.67,68 
Interestingly, the BTB domain can 
form dimers and mediate interactions 
with non-BTB domain containing pro-
teins and can establish both stable and 
transient interactions. This explains the 
ability of BTB containing proteins to 
participate in multiple processes and 
implies that management of their proper 
levels is of a particular significance.68

BTB/POZ domain zinc finger factors 
were linked to broad range of develop-
mental processes in vertebrates and inver-
tebrates: chromatin remodeling, cancer 
development and intriguingly, regulation 
of cell fate specification in the nervous 
system.66-72 For example, the BTB/POZ 
zinc-finger transcription factor-encoded 
by gene Rp58 is required for the correct 
differentiation of neural progenitors into 
neurons, since its neural-specific deletion 

of intermediate progenitors populations 
in mice brain that give rise to the cerebral 
cortical neurons.

A number of studies in vertebrates reveal 
the role for miRNAs in the regulation of 
adult neurogenesis that is largely restricted 
to two major brain regions: subventricular 
zones of the ateral ventricle and of the den-
tate gyrus in the hippocampus. MiRNAs 
let-7b,59 miR-9,57 miR-106b-25 cluster,60 
miR-137,61 miR-184,62 miR-124,63 and 
their specific targets were identified to reg-
ulate neural cell proliferation and/or neu-
ronal differentiation during adulthood. 
Latest studies from Liu et al.64 uncovered 
the molecular mechanism by which miR-
17-92 cluster regulates ischemia-induced 
neural progenitor cell proliferation which 
stimulates adult neurogenesis after injury. 
It has been discovered that stroke sub-
stantially upregulates miR-17-92 cluster 
expression in neural progenitor cells of the 
adult mouse. Overexpression of miR-17-
92 cluster in the cell culture and in vivo 
significantly increased cell proliferation, 
whereas inhibitions of individual mem-
bers of miR-17-92 cluster, miR-18a and 
miR-19a suppressed cell proliferation and 
increased cell death. Subventricular zone 
neuronal fate is determined by miR-124:49 
in vivo inhibition of miR-124 causes a 
block in neurogenesis and leads to an 
accumulation of ectopic cells with astro-
cyte characteristics (neural stem cells) in 
the olfactory bulb, while upon miR-124 
overexpression neural stem cells are not 
maintained in the subventricular zone of 
mouse brain and neurogenesis is lost.

Studies from Drosophila revealed that 
this evolutionary ancient miR-124 controls 
neural stem cells proliferation by targeting 
anachronism—an inhibitor of neuroblast 
proliferation.56 Drosophila mutant lack-
ing miR-124 shows reduced proliferative 
activity of neuronal progenitor cells and 
decreased production of adult postmitotic 
neurons. We showed that ecdysteroid sig-
naling induces expression of let-7-C in 
Drosophila brain, which is required for 
proper differentiation of the last-born MB 
neurons. let-7 deficiency16 or ecdysone sig-
naling deficit65 leads to MB morphological 
defects that result in learning and memory 
disabilities.

Involvement of miRNAs in regulation 
of neuronal development, plasticity and 
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in the adult mushroom bodies; MBs 
with slim α/β lobes and fused β-lobes  
(Fig. 2G–H and 2J–K; Table 1) were 
observed. Importantly, similar MB mor-
phological defects were identified upon 
overexpression of Abrupt in the MB neu-
roblasts (Fig. 2I–J and 2L; Table 1). This 
evidence supports the hypothesis that 
spatially distributed JAK/STAT signaling 
represses the transcription factor Abrupt 
in neuronal stem cells and this downregu-
lation is critical for proper neurogenesis. 
Since previously we found that ecdysone 
signaling also targets this BTB transcrip-
tion factor via let-7 miRNA, we conclude 
that two extrinsic signaling pathways, 
global hormonal and local cytokine, col-
laborate to regulate extended neurogenesis 
during Drosophila MB development.

Interestingly, another BTB-zinc finger 
protein Chinmo that has been found to 
control stem cell self-renewal and direct 
neuroblast temporal identity also depends 
on JAK/STAT activity and can be tar-
geted by miRNA let-7 and miR-125.19,79,88 
This implies that regulation of expres-
sion of JAK/STAT dependent BTB fac-
tors Abrupt and Chinmo should be under 
strict developmental control to guarantee 
faithful cell fate determination. Our cur-
rent and previous data provide evidence 
that in the developing brain, the tempo-
rally induced by ecdysone miRNA let-7 
negatively regulates Ab, which is addi-
tionally targeted by the local JAK/STAT 
cytokine signaling pathway to ensure 
proper MB development. The interaction 
between global developmental and local 
tissue-specific signaling results in forma-
tion of a robust spatio-temporal pattern to 
fine-tune the fidelity of neuronal cell dif-
ferentiation, which is essential for proper 
brain morphogenesis (Fig. 3).

Cell Adhesion as a Final Outcome 
of Differential Neurogenesis

The complexity of the brain is generated 
by multiple types of neurons that con-
nect to each other in a specialized man-
ner, which often depends on selective cell 
adhesion.89 Neurons expressing similar 
cell adhesion proteins not only cluster 
together to organize brain compartments 
that have distinct functions, selective cell 
adhesion is also used for establishment of 

pupal and pharate brains, apart from glial 
cells, GFP signal indicating JAK/STAT 
activity was restricted to these mitoti-
cally active neuronal stem cells (Fig. 2C). 
Similar pattern of JAK/STAT signaling 
activity was detected with STAT92E anti-
bodies (Fig. 2D). This expression analysis 
shows that the JAK/STAT signaling path-
way is active in all postembryonic neuronal 
stem cells regardless of the developmental 
stage or ecdysone signaling activity.

Previously, we found that Abrupt is 
expressed in early-born γ, α'/β' neurons 
and miRNA let-7 in the late-born α/β 
neurons and this temporally induced let-7 
expression is necessary to downregulate 
Ab, which is critical for proper specifica-
tion of the last-born neurons.16 Abrupt is 
a very potent cell fate regulator, since its 
misexpression is sufficient to even induce 
homeotic transformation.87 Therefore, 
we hypothesized the possibility that spa-
tially distributed cytokine signaling would 
repress Abrupt expression in the MB neu-
ral stem cells (Fig. 2B).

To test this we analyzed different JAK/
STAT pathway mutants (see Materials 
and Methods) and found that downregu-
lation of JAK/STAT signaling via expres-
sion of dominant negative form of dome 
specifically in the neuroblasts resulted 
in changed Abrupt expression pattern 
in the MB cell body clusters and in the 
appearance of ectopic Abrupt protein in 
some of the neuroblasts (Fig. 2E and F). 
Next, we wanted to test if this misexpres-
sion would affect the neuronal stem cell 
progeny differentiation. MB neuroblasts 
are continuously dividing to give rise to 
MB neurons (Kenyon cells) that based on 
their birthdate and cell adhesion molecule 
expression, are clustered into three types 
of MB lobes (γ, α'/β' and α/β) with dis-
tinct axonal projection patterns. We used 
FasII antibodies as a molecular marker for 
γ and α/β MB axons to evaluate whether 
downregulation of JAK/STAT signal-
ing or overactivation of the transcription 
factor Abrupt in the MBNs affect over-
all MB morphology. We observed that 
downregulation of JAK/STAT activity 
via overexpression of a dominant negative 
form of dome or STAT RNAi using pan-
neuronal and neuroblast-specific driver 
lines (inscGal4 and worGal4, respectively) 
indeed caused morphological changes 

such as extrinsic cell-to-cell signaling 
would also cooperate to fine-tune the out-
come of differential neurogenesis.

Concerted Action of Cytokines 
and Steroids in Differential  

Neurogenesis

Interestingly, let-7 target Abrupt that is 
expressed in MBs is associated with the 
evolutionary conserved JAK/STAT sig-
naling pathway, which plays key roles in 
multiple developmental and physiological 
processes in the brain, ranging from the 
regulation of neurogenesis and stem cell 
fate to memory formation.80-82 In the adult 
brain, endogenous cytokine levels are very 
low under normal physiological condi-
tions; however, various types of injuries, 
including trauma, seizures and ischemia 
induce an increase of cytokine ligand lev-
els, which in turn promotes neuronal stem 
cell self-renewal.83 In the developing brain, 
some neuroepithelial cells become neuro-
blasts and generate the neuronal and glial 
cells, and in the Drosophila optic lobe, the 
timing of this transition is negatively reg-
ulated by JAK/STAT signaling. Secretion 
of the JAK/STAT ligand Unpaired (Upd) 
shapes an activity gradient in the neuro-
epithelium and negatively regulates the 
progression of the proneural wave.84 JAK/
STAT signaling is further integrated with 
the Notch and EGFR signals to balance 
neuroblast self-renewal and neuron differ-
entiation.81,84 Since the BTB transcription 
factor Abrupt has been shown previously 
to be negatively regulated by the JAK/
STAT signaling pathway in ovaries,31,85 
we evaluated whether JAK/STAT plays 
a role in Abrupt regulation during MB 
development.

We used a 10xSTAT-GFP reporter line 
(Fig. 2A and C) and antibodies against 
STAT92E, the Drosophila homolog of 
mammalian STAT (signal transducer 
and activator of transcription) proteins  
(Fig. 2D) to visualize JAK/STAT signal-
ing activity in the developing brain. At 
the larval stage, JAK/STAT activity was 
predominantly observed in neuroblasts 
(Miranda positive cells, arrows) and in glia 
(Repo positive cells) (Fig. 2A). Mushroom 
body neuroblasts (MBNs) are the only 
neuronal stem cells that continue to divide 
during later stages;86 interestingly, in the 
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Figure 2. For figure legend, see page 179.
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expression pattern of a given gene; how-
ever, it is not well-defined which set of 
transcriptional factors regulates differen-
tial expression of appropriate cell adhe-
sion proteins that modulate the degrees 
to which various neurons adhere to each 
other to make synapses. In the Drosophila 
MBs, the ortholog of NCAMs, Fasciclin 2 
(Fas2) displays specific temporal patterns 
of expression that plays a significant role 
in the spatial segregation of MB neurons. 
Low levels of Fas2 are detected in the γ 

synaptic expression is facilitating stress 
actions while its decreased expression 
is impairing effects of stress on memory 
consolidation.96 All these data imply that 
regulation of NCAM expression is a pre-
requisite for proper brain development and 
function. However, the question remains: 
What genetic machinery regulates precise 
expression of adhesion molecules in the 
brain?

Ample sets of regulatory elements are 
required for spatiotemporally restricted 

synaptic connections that allow neurons 
to communicate and transfer information. 
Significant alterations in the brain struc-
ture and functions are generated even by 
moderate changes in the quantities of 
adhesion molecules on the neuronal cell 
surfaces. Therefore, differential cell adhe-
sion is the final aftermath of differential 
neurogenesis, suggesting that timing and 
levels of cell adhesion protein expression 
must be precisely regulated (Fig. 3).

Among the most important cell adhe-
sion molecules (CAMs) involved in the 
development of the nervous system, syn-
aptic plasticity and cognition and mem-
ory are neural cell adhesion molecules 
(NCAMs) that belong to the immuno-
globulin superfamily. Previous data show 
that levels of human NCAM2 that is pri-
marily expressed in the brain to stimulate 
neurite outgrowth and facilitate dendritic 
and axonal compartmentalization are 
essential for normal brain development.90 
For example, the increased expression of 
NCAM2 as a result of trisomy 21 may 
cause dosage-related detrimental effects 
in Down syndrome; also, in genome-
wide association studies, NCAM2 was 
suggested as a candidate gene for the 
development of autism and Alzheimer’s 
disease,91-93 and multiple NCAM1 proteins 
are differentially altered in bipolar dis-
order and schizophrenia.94 Furthermore, 
NCAMs play a critical role in plastic-
ity of the nervous system and in mecha-
nisms controlling learning and memory 
and their expression levels are known to 
be highly susceptible to modulation by 
stress.95 Moreover, NCAM is involved in 
some of the bidirectional effects of stress 
on memory processes, where its increased 

Figure 2 (see previous page). JAK/STAT signaling is involved in Abrupt regulation during MB development. (A, C and D) In Drosophila brain JAK/STAT 
signaling activity [marked with 10xSTAT-GFP reporter in (A) and (C)] and STAT92E antibody staining (D) is detected at larval and pharate stages. JAK/
STAT signaling is active in neuroblasts [marked with anti-Miranda (red) and glial cells marked with anti-Repo (blue) in (A) and (C) or determined based 
on morphology and nuclear DAPI staining in (D)]. Yellow arrows indicate both JAK/STAT signaling activity and neuroblast location. (B) Schematic draw-
ing of Abrupt expression pattern and its regulation by previously described regulatory factors16 in the MB neuronal body cluster. Abrupt expression is 
restricted to the early born γ, α’/β’ MB (red colored) neurons where it functions as a negative regulator of FasII (cell adhesion molecule) expression. At 
the larva-to-pupa transition developmentally regulated ecdysteroid signaling induces expression of miRNA let-7 in the α/β (green colored) neurons. 
let-7 negatively regulates Abrupt which allows for FasII expression, necessary for MB neurons to undergo cell fate transition into α/β. The question 
mark depicted on the scheme inquires whether spatially distributed cytokine signaling acts in the concert with temporally regulated hormonal stimuli 
to adjust Abrupt activity in the mushroom body neuroblast (MBN) and ganglion mother cells (GMCs) (yellow). (E and F) Anti-Abrupt staining (green) 
is elevated in the MBN upon JAK/STAT signaling downregulation achieved by overexpression of dominant negative form of dome (F) in comparison 
to the control (E). Circles show MBN location [marked also with anti-Miranda (red)], arrows point to anti-Abrupt staining inside the MBN, white dashed 
line outlines Ab-negative area in the MB cell body clusters [note smaller area in (F) in comparison to (E)]. (G–L) Both, downregulation of JAK/STAT sig-
naling (H, J and K) and overexpression of the transcription factor Abrupt in the neuroblasts (I, J and L) causes similar morphological defects detected 
with anti-FasII staining in the adult brains in comparison to control [UAS-domeDN/TM6 in (G)]. White vertical line indicates position of the midline, 
dashed yellow line shows α/β MB lobes, yellow arrows point to slim α/β and fused β MB lobes.

Table 1. Downregulation of JAK/STAT signaling and upregulation of Abrupt expression in the 
MBNs affects MB development

Driver UAS-transgene α/β MB lobe morphology*

inscGal4 x

UAS-ab

Escapers have fused β lobes (100%)

Slim α/β lobes (50.0%)

n = 4

UAS-abRNAi
No visible morphological changes

n = 18

UAS-STATRNAi
Fused β lobes (22.2%)

Slim α/β lobes (22.2%)

n = 18

UAS-domeDN

Fused β lobes (90.9%)

Slim α/β lobes (50.0%)

n = 22

worGal4 x

UAS-ab

Fused β lobes (100%)

Slim α/β lobes (100%)

n = 16

UAS-domeDN

Fused β lobes (100%)

Slim α/β lobes (36.4%)

n = 22

Control UAS-domeDN/TM6
No visible morphological changes

n = 20

*α/β MB lobe morphology was evaluated from the maximum projections of confocal MB images 
based on FasII antibody staining. Fused β lobes were counted per brain; n, number of analyzed MB 
lobes per genotype.
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MB neurons makes their axons to project 
into the places, where the later-born α/β 
neurons would send their axons.16 Since 
distinct MB neurons have different func-
tions in Drosophila behavior regulation, it 
would be interesting to analyze, whether 
this alteration in the cell adhesive charac-
teristic would change fly cognition.

Importantly, we also show that  
miRNAs are mediators between extrinsic 
temporal cues and intrinsic spatiotemporal 
codes that determine the precision of neu-
ronal adhesiveness during brain develop-
ment. It would be important in the future 
to explore the role of these factors in the 
adult brain plasticity. Interestingly, it has 
been proposed that the increased sticki-
ness of human neurons might explain the 
accelerated evolution of the human brain 
beyond the brains of primates.100 Another 

differential cell adhesion as a fundamen-
tal mechanism of neuronal cell differen-
tiation that controls the finest aspects of 
neuronal specification (Fig. 3). Once a 
specific neuron is born, it must recognize 
and join other neurons of the correct type 
to assemble into a specific brain compart-
ment that normally is determined and 
maintained by the system of preferential 
cell affinities. Even more, neurons send 
out axons and dendrites that via differ-
ential cell adhesion make synapses with 
other neurons. However, neurons do 
not simply reside inertly stuck together; 
instead, the new synapses are established 
and actively maintained by selective adhe-
sion created and gradually adjusted by 
neurons; thus, contributing to the nervous 
system plasticity. We found that misex-
pression of Fas2 in the early-born α'/β' 

and high levels in the α/β, but not α'/β' 
lobes.97-99 Fas2 provides specific adhesive 
codes among MB neurons preventing 
them from intermingling and assuring for-
mation of distinct MB lobes. We showed 
that the transcription factor Abrupt sup-
presses Fas2 expression in the earlier-born 
neurons, while steroid-induced miRNA 
let-7 via downregulation of Abrupt allows 
this critical adhesion molecule to be 
highly expressed in the late-born α/β neu-
rons. Thus, the precise Fas2 expression is 
essential for proper MB morphology and 
function16 (Fig. 1).

Together, these data show that NCAMs 
are multifunctional proteins involved 
in neurogenesis and neurodevelopment 
and their expression levels are critical for 
dendritic and axonal compartmentaliza-
tion and synaptic plasticity. This makes 

Figure 3. Model of spatiotemporal regulation of differential neurogenesis. Differentiation of the neural stem cell progenitor into a specific neuron 
subtype depends on concerted action of intrinsic and extrinsic programs. Intrinsic regulation is achieved via combination of multiple transcription 
factors that are hierarchically specified during organismal development starting from establishing the anterior-posterior and dorsal-ventral polarity 
that creates gradients of morphogens and induces expression of gap, pair-rule and Hox genes, and subsequently assembling a set of differentially 
expressed transcription factors, combination of which produces the unique code for a certain neuronal subtype. This code is additionally adjusted by 
extrinsic cell-to-cell signaling, for example Notch for binary cell fate decision or JAK/STAT cytokine signaling for neuronal cell type specification. This 
unique code constantly changes in response to internal and external conditions that coordinate the development of the whole organism. Hormones 
are great temporal code candidates, as they direct all major developmental steps. The combination of spatial and temporal codes in neuronal precur-
sors allows certain types of neurons to be born at exact place and time, which is critical for brain morphogenesis. For normal brain function, these 
neurons must cluster and synapse in a stereotyped fashion, which predominantly depends on selective cell adhesion. As a result of establishment 
of brain compartments and differential neuronal connections, functional neural circuits are created that process all kinds of information and control 
behavior, learning, memory and plasticity of each individual.



www.landesbioscience.com	 Fly	 181

10.	 von Ohlen T, Doe CQ. Convergence of dorsal, dpp, 
and egfr signaling pathways subdivides the drosoph-
ila neuroectoderm into three dorsal-ventral columns. 
Dev Biol 2000; 224:362-72; PMID:10926773; 
http://dx.doi.org/10.1006/dbio.2000.9789

11.	 Hirth F, Hartmann B, Reichert H. Homeotic 
gene action in embryonic brain development of 
Drosophila. Development 1998; 125:1579-89; 
PMID:9521896

12.	 Lee T, Lee A, Luo L. Development of the Drosophila 
mushroom bodies: sequential generation of three 
distinct types of neurons from a neuroblast. 
Development 1999; 126:4065-76; PMID:10457015

13.	 Isshiki T, Pearson B, Holbrook S, Doe CQ. 
Drosophila neuroblasts sequentially express tran-
scription factors which specify the temporal identity 
of their neuronal progeny. Cell 2001; 106:511-21; 
PMID:11525736; http://dx.doi.org/10.1016/S0092-
8674(01)00465-2

14.	 Schmid A, Chiba A, Doe CQ. Clonal analysis of 
Drosophila embryonic neuroblasts: neural cell types, 
axon projections and muscle targets. Development 
1999; 126:4653-89; PMID:10518486

15.	 Riddiford LM. Hormones and Drosophila develop-
ment. In: Bate M, Arias AM, eds. The Development 
of Drosophila Melanogaster. Plainview, NY: Cold 
Spring Harbor Laboratory Press, 1993.

16.	 Kucherenko MM, Barth J, Fiala A, Shcherbata HR. 
Steroid-induced microRNA let-7 acts as a spatio-
temporal code for neuronal cell fate in the develop-
ing Drosophila brain. EMBO J 2012; 31:4511-
23; PMID:23160410; http://dx.doi.org/10.1038/
emboj.2012.298

17.	 Sempere LF, Sokol NS, Dubrovsky EB, Berger 
EM, Ambros V. Temporal regulation of microRNA 
expression in Drosophila melanogaster mediated by 
hormonal signals and broad-Complex gene activity. 
Dev Biol 2003; 259:9-18; PMID:12812784; http://
dx.doi.org/10.1016/S0012-1606(03)00208-2

18.	 Chawla G, Sokol NS. Hormonal activation of 
let-7-C microRNAs via EcR is required for adult 
Drosophila melanogaster morphology and function. 
Development 2012; 139:1788-97; PMID:22510985; 
http://dx.doi.org/10.1242/dev.077743

19.	 Wu YC, Chen CH, Mercer A, Sokol NS. Let-7-
complex microRNAs regulate the temporal identity 
of Drosophila mushroom body neurons via chinmo. 
Dev Cell 2012; 23:202-9; PMID:22814608; http://
dx.doi.org/10.1016/j.devcel.2012.05.013

20.	 Heisenberg M. Mushroom body memoir: from 
maps to models. Nat Rev Neurosci 2003; 4:266-
75; PMID:12671643; http://dx.doi.org/10.1038/
nrn1074

21.	 Riddiford LM. Hormone receptors and the regula-
tion of insect metamorphosis. Receptor 1993; 3:203-
9; PMID:8167571

22.	 Kozlova T, Thummel CS. Essential roles for ecdysone 
signaling during Drosophila mid-embryonic develop-
ment. Science 2003; 301:1911-4; PMID:12958367; 
http://dx.doi.org/10.1126/science.1087419

23.	 McBrayer Z, Ono H, Shimell M, Parvy JP, Beckstead 
RB, Warren JT, et al. Prothoracicotropic hor-
mone regulates developmental timing and body 
size in Drosophila. Dev Cell 2007; 13:857-71; 
PMID:18061567; http://dx.doi.org/10.1016/j.dev-
cel.2007.11.003

24.	 Shirras AD, Bownes M. Separate DNA sequenc-
es are required for normal female and ecdysone-
induced male expression of Drosophila melanogaster 
yolk protein 1. Mol Gen Genet 1987; 210:153-
5; PMID:3123886; http://dx.doi.org/10.1007/
BF00337772

25.	 Gaziova I, Bonnette PC, Henrich VC, Jindra M. 
Cell-autonomous roles of the ecdysoneless gene in 
Drosophila development and oogenesis. Development 
2004; 131:2715-25; PMID:15128659; http://dx.doi.
org/10.1242/dev.01143

for 15 min. Staining was performed as 
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