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Core tip: The differential subcellular localization of sig-
nal transducer and activator of transcription 3 makes it 
play distinct functions in transcriptional regulation, cell 
proliferation and cellular respiration, thus contributing 
to development, reproduction and tumorigenesis in 
physiological and pathological conditions.
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INTRODUCTION
Signal transducer and activator of  transcription factors 
(STATs) are a family of  transcription factors that regulate 
cell growth, survival, differentiation, and motility. Struc-
tural studies identified that STAT proteins consist of  an 
N-terminal domain, a coiled-coil domain, a DNA-binding 
domain, a Src homology 2 (SH2) domain and a transacti-
vation domain, of  which the DNA-binding domain is re-
quired for the recognition of  specific binding sequences. 
Until now, seven members of  the STAT family have been 
identified and characterized, including STAT1, STAT2, 
STAT3, STAT4, STAT5a, STAT5b and STAT6. Despite 
the difference from canonical oncogenes, STAT3 has 
been recognized as a critical regulator in tumor cells since 
its identification[1]. STAT3 is over-expressed or activated 
by various carcinogenic agents, and can induce cell pro-
liferation, differentiation and anti-apoptosis by activat-
ing the target genes, including STAT3, c-Myc and p53[2]. 
STAT3 exists in two main isoforms, full-length STAT3α 
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Abstract
Signal transducer and activator of transcription 3 
(STAT3), a member of the STAT family, is a key regula-
tor of many physiological and pathological processes. 
Significant progress has been made in understanding 
the transcriptional control, posttranslational modifica-
tion, cellular localization and functional regulation of 
STAT3. STAT3 can translocate into the nucleus and 
bind to specific promoter sequences, thereby exerting 
transcriptional regulation. Recent studies have shown 
that STAT3 can also translocate into mitochondria, par-
ticipating in aerobic respiration and apoptosis. In addi-
tion, STAT3 plays an important role in inflammation and 
tumorigenesis by regulating cell proliferation, differen-
tiation and metabolism. Conditional knockout mouse 
models make it possible to study the physiological func-
tion of STAT3 in specific tissues and organs. This review 
summarizes the latest advances in the understanding 
of the expression, regulation and function of STAT3 in 
physiological and tumorigenic processes. 
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and truncated STAT3β generated by alternative splicing. 
Under normal circumstances, STAT3α is the main iso-
form expressed in cells. STAT3β can competitively bind 
to the promoter of  STAT3α target genes and inhibit 
the transactivation function of  STAT3α. Additionally, 
STAT3β has its own specific target genes that differ from 
those of  STAT3α[3].

STAT3 protein exists in a latent or inactive form 
in the cytoplasm. STAT3 can be activated by receptor-
associated kinases and phosphorylated at various phos-
phorylation sites, particularly at Tyr-705 and Ser-727. Pre-
vious studies suggested that only phosphorylated STAT3 
(p-STAT3) can translocate into the nucleus. However, 
recent data indicated that the nuclear translocation and 
transcriptional activity are partially independent of  phos-
phorylation pathways[4]. Furthermore, STAT3 may trans-
locate into mitochondria to control cell metabolism inde-
pendent of  its transcriptional regulatory activity[5]. Here 
we review the emerging biochemical and biological data 
on STAT3 and discuss its comprehensive roles in animal 
development and etiopathology of  various diseases. 

TRANSCRIPTIONAL REGULATION OF 
STAT3
STAT3 protein is expressed at a basal level in cells but 
rapidly increases once activated by specific cytokines. 
STAT3 is a critical factor in interleukin-6 (IL-6) induced 
gene regulation. STAT3 can be phosphorylated by IL-6 
signal pathway, whereas IL-6 can also activate STAT3 at 
the transcriptional level. The level of  STAT3 mRNA in-
creases 1 h after IL-6 treatment and reaches to the maxi-
mum value at 3 h. There is an IL-6 response element (IL-
6RE) in the promoter of  STAT3 which contains a low 
affinity STAT3-binding element and a cAMP-responsive 
element (CRE). STAT3 executes its regulation in co-
operation with this CRE-binding protein through self-
activation[6]. 

In diabetic mice, estrogen administration can increase 
the level of  STAT3 mRNA. There is a binding site of  es-
trogen receptor α (ERα) in STAT3 promoter. Estrogen 
treatment induces the accumulation of  ERα on STAT3 
promoter and regulates the expression of  STAT3[7]. 
STAT3 overexpression in tumor cells is related to the 

cytoplasmic/nuclear accumulation of  β-catenin and the 
activation of  β-catenin/T-cell factors (TCF) pathway. 
β-catenin is a key mediator in cell adhesion and signal 
transduction. Overexpression of  β-catenin enhances 
both STAT3 mRNA and protein levels. There is a func-
tional TCF binding element in STAT3 promoter, indicat-
ing that β-catenin/TCF may participate in the regulation 
of  STAT3 expression[8].

The suppressors of  cytokine signaling (SOCS) family 
consists of  eight members, including SOCS1 to SOCS7 
and cytokine-inducible SH2 domain proteins (CIS)[9]. 
SOCS proteins exist at low levels in resting cells and dra-
matically increase after STAT activation. SOCS proteins 
serve as classic negative regulatory factors of  STAT acti-
vation[10]. Among them, SOCS3, a target gene of  STAT3, 
contributes to negative feedback regulation of  the JAK/
STAT3 signal pathway, and inhibits the self-activation of  
STAT3[11]. Bone marrow SOCS3 deficient mice exhibit 
overexpression of  STAT3 and continuous activation of  
the JAK/STAT3 signal pathway, suggesting that STAT3 
expression is negatively regulated by SOCS3[12]. 

POST-TRANSCRIPTIONAL REGULATION 
OF STAT3 EXPRESSION
Human STAT3 gene is located on the long (q) arm of  
chromosome 17 at position 21.31. The encoding product 
of  the STAT3 gene is an 89 kDa protein[13]. Further study 
identified a cDNA clone encoding a variant of  STAT3 
(named STAT3β), which is different from classic STAT3 
(named STAT3α). Compared to STAT3α, STAT3β is the 
truncated form and lacks the internal domain of  50 base 
pairs located near the C-terminus (Figure 1). The encod-
ing product of  STAT3β is an 80 kDa protein. Under nor-
mal conditions, STAT3β exists in various cells, such as 
monocytes, lymphocytes and neutrophil granulocytes. In 
COS cells, STAT3β is phosphorylated at tyrosine sites by 
IL-5R treatment and binds to the palindromic IL-6/inter-
feron-g response element (pIRE) located in the promoter 
of  intercellular adhesion molecule-1 (ICAM-1). However, 
this phosphorylated STAT3β exhibits a negative tran-
scriptional regulation through inhibiting the transactiva-
tion potential of  STAT3α, suggesting that STAT3β may 
be a dominant-negative regulator of  transcription and 
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Figure 1  Domain structure of signal transducer and activator of transcription (3α and 3β). The signal transducer and activator of transcription 3α (STAT3α) 
protein is composed of N-terminal, coiled-coil, DNA binding, linker, SH2, and transactivation domains. However, the transactivation domain is absent in the alternative 
splicing variant, STAT3β. 



promotes apoptosis[14]. 
Depending on context, truncated STAT3β can be 

phosphorylated at tyrosine 705 and bind to DNA se-
quence that is equal to that bound by STAT3α with 
negative transcriptional regulation. Overexpression 
of  STAT3β can induce apoptosis and inhibit tumor 
growth[15,16]. However, alternative splicing regulation 
by antisense oligodeoxynucleotides targeting STAT3 
can specifically shift the expression from STAT3α to 
STAT3β. High expression of  endogenous STAT3β pro-
motes cell apoptosis and leads to cell cycle arrest. This 
apoptosis-promoting effect of  STAT3β is independent 
on the inhibition of  STAT3α target genes. Several genes 
that differ from classic STAT3α target genes are specifi-
cally decreased by STAT3β knockdown, including lens 
epithelium-derived growth factor, p300/CBP-associated 
factor, Cyclin C, peroxisomal biogenesis factor 1 and 
STAT1β[3], indicating that STAT3β may promote cell 
apoptosis through regulating its own specific target genes 
in addition to negative transcriptional regulation of  STA-
T3α. 

POST-TRANSLATIONAL MODIFICATION 
OF STAT3
STAT3 phosphorylation
STAT3 protein exists in the cytoplasm as an inactive 
form until phosphorylation by receptor-associated ki-
nases. Activated JAK kinases phosphorylate STAT3 
through binding of  the SH2 domain to a phosphorylated 
tyrosine residue, by which the C-terminus of  p-STAT3 
triggers its release from receptor, and form a homo- or 
hetero-dimerization of  p-STAT3. Dimerized STAT3 
translocates to the nucleus and binds to the promoters 
bearing cognate DNA-binding sequences[17]. STAT3 can 
be also phosphorylated by other tyrosine kinases, such 
as the Src family. However, such Src-induced STAT3 
phosphorylation does not always result in STAT3 activa-
tion[18]. Tyrosine phosphorylation is necessary for STAT3 
activity. In addition, serine phosphorylation at residue 
727 of  STAT3 also leads to the up-regulation of  the tran-
scriptional activity. STAT3 phosphorylation at Ser-727 
is mediated by MAPK, P38 and c-Jun N-terminal kinase 
(JNK) pathways, and involved in transcriptional regula-
tion of  the target genes of  STAT3[19]. Ser-727 mutant 
STAT3 knock-in mice display impaired development 
and survival process[20]. Recently, several articles reported 
that un-phosphorylated STAT3 can interact with nuclear 
factor-kB (NF-kB). Un-phosphorylated STAT3 (U-
STAT3)/NF-kB complex translocates into the nucleus 
and activates the expression of  NF-kB target genes[21]. 

STAT3 acetylation
Protein acetylation is a crucial post-translational modifi-
cation of  gene expression and involved in extensive phys-
iological and pathological processes[22]. Investigation on 
protein acetylation is focused on the alteration of  chro-
matin structure and activation of  transcription factors. 

The inhibition of  histone deacetylases (HDACs) can in-
duce the acetylation of  STAT3 at Lys-685, and acetylated 
STAT3 (Ac-STAT3) regulates the function of  dendritic 
cells through activating the transcription of  indoleamine 
2,3-dioxygenase[23]. 

The significant increase in STAT3 acetylation at 
Lys-685 is detected in tumor tissues. CD44, a transmem-
brane glycoprotein, has been recognized as a marker for 
tumor cells. Activated CD44 can bind STAT3 and p300 
in the nucleus and acetylate STAT3 at Lys-685. CD44/
Ac-STAT3 complex activates cyclinD1 expression by 
binding to its promoter, leading to cell proliferation[24]. 
Additionally, Ac-STAT3 may be the major determinant 
for promoter methylation of  tumor suppressor genes. 
DNA methyltransferase 1 (DNMT1) is primarily in-
volved in the maintenance of  methylation. Ac-STAT3/
DNMT1 complex can induce gene silencing through 
binding to target genes, leading to increased CpG island 
methylation. STAT3 mutant at Lys685 exhibits impaired 
STAT3 acetylation and tumor growth. Acetylation inhibi-
tors and HDAC activators can inhibit STAT3 acetylation 
with demethylation and reactivation of  several tumor-
suppressor genes, including cyclin-dependent kinase 
inhibitor 2A (CDKN2A), deleted in lung and esophageal 
cancer 1 (DLEC1) and STAT1. In triple-negative breast 
cancer cells and melanoma, Ac-STAT3 is related to the 
methylation of  the ERα gene. Therefore, inhibition of  
Ac-STAT3 is favorable for hormone therapy through re-
activating ERα expression[25].

Other post-translational modification of STAT3
Except for phosphorylation and acetylation, STAT1 
and STAT3 are also subjected to SUMOylation through 
binding to small ubiquitin-like modifier (SUMO). STAT3 
SUMOylation suppresses the transcriptional activity of  
STAT3 by affecting STAT3 phosphorylation and dimer-
ization[26].

STAT3 LOCALIZATION AND FUNCTION
Nucleo-cytoplasmic shuttling of p-STAT3
Since protein synthesis and modification are processed 
in the cytoplasm, most transcription factors need to pass 
through the nuclear pore complex and enter into the 
nucleus to exert their transcriptional activity. In general, 
proteins that have a molecular weight greater than 50 
kDa require specific structural domain named nuclear 
localization sequence (NLS) and nuclear export sequence 
(NES). Both NLS- and NES-containing proteins can 
recognize and combine with specific soluble carriers to 
mediate the nucleo-cytoplasmic trafficking[27]. Most NLS 
can recognize importin α and co-regulate the shuttling of  
proteins through interacting with importin β1[28]. 

The transcriptional regulatory activity of  STAT3 is 
dependent on nuclear translocation. The distinction be-
tween STAT3 and other STAT members is that activated 
STAT3 can shuttle between the cytoplasm and nucleus, 
and accumulate in the nucleus to play the role in tran-

233WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

Qi QR et al . Regulation and function of STAT3



scriptional activation. In the canonical nuclear transloca-
tion, p-STAT3 is released from the receptor, forms a 
homo- or hetero-dimer, and translocates into the nucleus. 
Importin α3 can specifically recognize the coiled-coil 
domain and mediate the nucleo-cytoplasmic shuttling of  
STAT3 protein[29].

Nucleo-cytoplasmic shuttling of U-STAT3
Previous studies showed that STAT3 protein acquires 
its DNA binding activity only in a phosphorylated form. 
However, recent studies indicated that the transcriptional 
activation of  STAT3 in the nucleus is also independent 
of  phosphorylation[21]. Both phosphorylated and un-
phosphorylated STAT3 proteins exist in the nucleus and 
regulate different target genes. Data from fluorescently-
labeled STAT3 mutants in STAT3 deficient cells show 
that U-STAT3 can shuttle constitutively between the 
cytoplasm and nucleus under the condition of  NLS and 
NES mutation, indicating that the nuclear accumulation 
of  U-STAT3 is independent of  the binding of  NLS or 
NES and importins. Both native gel electrophoresis and 
dual-focus fluorescence correlation spectroscopy identify 
that the N-terminal domain is essential for dimer forma-
tion and nuclear accumulation of  U-STAT3. The mono-
meric N-terminal deletion mutant can be phosphorylated 
and dimerized in response to IL-6 treatment without 
nuclear accumulation. Therefore, the N-terminal domain 
has an important role in nucleo-cytoplasmic trafficking 
of  U-STAT3[30]. 

STAT3 in mitochondria 
Except for the classic transcriptional regulation during 
cell proliferation and differentiation through nuclear 
translocation, STAT3 translocation in different organ-
elles may regulate cell metabolism and be involved in a 
broad range of  biological functions independent of  tran-
scriptional activity. For instance, phosphorylated STAT3 
at Serine 727 (P-Ser-STAT3) is localized to the mito-
chondria of  hepatocytes and myocardial cells. STAT3 
deficient cells exhibit a low activity of  complex Ⅰ and 
Ⅱ[31], suggesting that STAT3 regulates mitochondrial 
respiration via electron transport chain. Data from co-
immunoprecipitation indicate that the translocation of  
STAT3 to mitochondria is mediated by the presequence 
receptor Tom20[32]. However, the mechanism that STAT3 
alters mitochondrial respiration is controversial. There 
is an unfavorable ratio of  complexes Ⅰ/Ⅱ and STAT3 
in cardiac tissue, which implied the existence of  an addi-
tional mechanism of  STAT3 regulation of  ATP produc-
tion in vivo[33]. The sirtuin 1 (SIRT1), a NAD-dependent 
deacetylase, is located in the nucleus and known as a key 
factor regulating and controlling the mitochondrial bioen-
ergetics by means of  activating gene expression through 
deacetylating some important signal molecules, such as 
STAT3. In Sirt1-null cells, there is a significantly higher 
serine-phosphorylated STAT3 level in mitochondria with 
an increase in the mitochondrial bioenergetics and ATP 
formation[34].

In eukaryotes, the primary function of  mitochondria 
is aerobic respiration and energy production, in which the 
reactive oxygen species (ROS) is the inevitable by-prod-
ucts. During the process of  ischemia-reperfusion injury 
in the myocardium, the opening of  mitochondrial perme-
ability transition pore (MPTP) is a major response to car-
diomyocyte death, while the ROS from respiratory chain 
is the primary endogenous reason for MPTP opening. 
Mitochondria play a major role in cardio-protection, most 
likely by preventing MPTP opening, while mitochondrial 
STAT3 has an impact on inhibiting MPTP opening and 
cardio-protection. In calcium-induced MPTP opening 
model, STAT3-KO mitochondria tolerate less induction 
of  MPTP opening. The function of  STAT3 in MPTP sta-
bility may be carried out through binding to cyclophilin 
D[32]. Another study found that GRIM-19-induced mito-
chondrial STAT3 location may involve in TNF-mediated 
necroptosis[35].

It is identified that cancer cells have the feature of  
metabolic turnover in aerobic glycolysis - the Warburg 
effect[36], in which STAT3 acts as a central mediator of  
cell metabolism through both HIF-1α-dependent and 
-independent mechanisms. Oncogenic signals activate 
STAT3 phosphorylation and induce STAT3 translocation 
into the nucleus where it regulates HIF-1α expression. 
Mitochondrial STAT3 displays Serine 727 phosphoryla-
tion, while tyrosine phosphorylation or DNA binding 
activity is not detected, unlike canonical transcriptional 
activation. p-Ser-STAT3 located in mitochondria shows 
many metabolic functions and induces malignant trans-
formation mediated by oncogenic Ras[37]. Fibroblast 
growth factor receptor 4-R388 (FGFR4-R388), a known 
single nucleotide polymorphism which promotes breast 
cancer cell motility and invasiveness, can promote mi-
tochondrial cytochrome c activity and induce pituitary 
tumor cell growth through STAT3 serine phosphoryla-
tion. Therefore, serine phosphorylation of  STAT3 and 
mitochondrial translocation may contribute to tumor cell 
transformation and tumorigenesis[38].

FUNCTION OF STAT3 IN 
PATHOPHYSIOLOGY AND 
DEVELOPMENT
STAT3 in stem cells
Mouse embryonic stem cells (ES cells) are pluripotent 
cells derived from the inner cell mass of  blastocysts. The 
self-renewal and pluripotency of  ES cells depend on leu-
kemia inhibitory factor (LIF) and bone morphogenetic 
protein 2 (BMP2) during in vitro culture[39]. Based on 
chromatin immunoprecipitation-deep sequencing (ChIP-
seq), 13 specific transcriptional factors (Nanog, Oct4, 
STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, 
Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators 
(p300 and Suz12) are identified in the regulatory network 
of  ES cells, and these factors are involved in LIF and 
BMP signaling pathways, and play important roles in self-
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renewal, reprogramming and pluripotency of  ES cells[40].
LIF activates STAT3 through the Janus kinase (JAK) 

signal pathway. p-STAT3 is functionally associated with 
the transcriptional regulation of  target genes for the 
self-renewal of  ES cells, including Kruppel-like factors 
(Klf4 and Klf5)[41]. Furthermore, persistently activated 
STAT3 can maintain the self-renewal process without 
LIF[42]. Transcriptional factors Nanog and STAT3 are the 
molecular markers of  ES cells. Nanog and STAT3 co-
regulate the transcriptional activation of  STAT3 target 
genes through binding to their promoters, such as α2M 
and Nanog promoters. This activation is abrogated by 
eliminating LIF, indicating that the function of  Nanog 
and STAT3 is dependent on the LIF signal pathway[43]. 
Overexpression of  STAT3 target genes, such as Klf4 
and Klf5[41], has been shown to promote self-renewal of  
ES cells, while knockdown of  these genes has no impact 
on the self-renewal in the presence of  LIF or STAT3[44]. 
Gastrulation brain homeobox 2 (Gbx2), a LIF/STAT3 
target gene, can facilitate the pluripotency of  ES cells 
when over-expressed without LIF and STAT3[45]. These 
results illustrated that LIF/STAT3 may act upstream to 
trigger the maintenance of  ES cells through activating a 
range of  downstream target genes. 

STAT3 in proliferation and apoptosis
P-STAT3 can activate proliferation-related genes to pro-
mote cell proliferation. Moreover, U-STAT3 can bind to 
the promoters of  pro-apoptotic genes and inhibit their 
expression in tumor cells, but not in normal cells. Inhibi-
tors of  STAT3 phosphorylation or dominant-negative 
STAT3 mutants facilitate the expression of  pro-apoptosis 
factors, suggesting that STAT3 plays a dominant role in 
regulating cell proliferation and anti-apoptosis[46]. STAT3 
knockout mice exhibit complete embryonic lethality. 
STAT3 deficient embryos show a rapid degeneration on 
day 7 of  pregnancy, highlighting the important role of  
STAT3 in embryo development[47]. Conditional ablation 
of  STAT3 in myocardial cells leads to higher susceptibil-
ity to drug-induced heart failure[48]. In addition, ischemic 
preconditioning can induce the phosphorylation of  
STAT3 at Tyr-705 and Ser-727 in myocardial cells. How-
ever, the expression of  cardio-protective factor (COX-2 
and HO-1) and anti-apoptotic proteins [Mcl-1, Bcl-x (L) 
and c-FLIP (S)] is elevated in normal cells 24 h later, but 
not in STAT3 deficient cells[49]. These results illustrated 
the function of  STAT3 in anti-inflammation and anti-
apoptosis. 

Mammary gland involution initiates at the ending of  
lactation, involving extensive apoptosis of  the secretory 
alveolar epithelium and inflammatory response. Although 
STAT3 is expressed in the mammary gland throughout 
the whole reproductive cycle, it is only activated by LIF 
on the day of  delivery and at 6-12 h after weaning[50]. 
STAT3 has an important role in mammary gland involu-
tion. Conditional ablation of  STAT3 in mammary cells 
causes delayed involution of  the mammary gland[51]. 
STAT3 is involved in the apoptotic process of  mammary 

epithelial cells and tissue remodeling through inducing 
the expression of  pro-apoptotic factors and regulating 
the balance of  matrix metalloproteinase (MMP) and tis-
sue inhibitor of  metalloproteinase (TIMP)[52]. Mammary 
STAT3 deficient mice have impaired accumulation of  
inflammatory factors, macrophages and mastocytes in the 
mammary gland[53]. In addition, p-STAT3 in mammary 
epithelial cells is also involved in lysosomal-mediated 
cell death pathway through up-regulating the expression 
of  lysosomal proteases cathepsin B and L[54]. Therefore, 
STAT3 expression in the mammary gland may participate 
in apoptosis under physiological conditions. 

STAT3 in tumorigenesis and cancer-related inflammation 
As a key transcriptional factor, p-STAT3 can translocate 
into the nucleus and bind to specific DNA sequences to 
activate the expression of  target genes, including c-Myc 
and FGFR2, consequently regulating the proliferation, 
differentiation and anti-apoptosis of  tumor cells[55,56]. 
Furthermore, acetylated STAT3 can induce the down-
regulation of  tumor suppressor genes through promoter 
methylation and facilitate tumorigenesis. MicroRNAs 
are short non-coding RNAs (ncRNAs) mediating post-
transcriptional down-regulation of  target genes and func-
tioning in cell proliferation and apoptosis. MicroRNA-21 
(miR-21) is an oncogene that contributes to anti-apopto-
sis in most tumor cells. There are two strictly conserved 
STAT3 binding sites in the enhancer of  miR-21. MiR-21 
induction by IL-6 is STAT3-dependent. ChIP results also 
confirm the accumulation of  STAT3 in the upstream 
enhancer of  miR-21[57], indicating that IL-6/STAT3 path-
way contributes to miR-21 induction. 

Chronic infection and inflammation contribute to 
about 15% of  human cancers. The inflammatory re-
sponse can induce necrotic cell death accompanied with 
activation of  numerous cytokines, growth factors and 
chemokines which facilitate cell proliferation and sur-
vival[58]. The STAT3 signal pathway is the major intrinsic 
pathway for inflammation in tumor cells. STAT3 activates 
many inflammatory-related genes including BCL-XL, 
intercellular adhesion molecule 1 and vascular endothe-
lial growth factor, and is involved in the maintenance of  
inflammatory environment[59]. NF-kB has the ability to 
induce the expression of  inflammatory mediators, and is 
the major pathway functioning in inflammation-induced 
carcinogenesis and anti-tumor immunity. The signaling 
pathways of  STATs, especially STAT3, are closely re-
lated with NF-kB signaling[60]. The inflammatory factor 
IL-6, the target gene of  NF-kB, is the important STAT3 
activator. In tumor cells, STAT3 directly interacts with 
NF-kB, translocates into the nucleus and contributes to 
the constitutive NF-kB activation in cancer. In addition, 
STAT3 binding to NF-kB also regulates numerous onco-
genic and inflammatory genes[61]. 

Targeting the STAT3 pathway should be a promis-
ing and novel form of  treatment for human cancers. 
Blocking STAT3 by siRNAs, antisense oligonucleotides, 
dominant-negative mutants, and specific inhibitors of  
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STAT3 in combination with chemotherapeutics can syn-
ergistically inhibit the growth, invasion and metastasis of  
carcinoma cells[62-64]. Therefore, inhibiting STAT3 signals 
are a promising therapeutic target for most types of  hu-
man cancers with constitutively activated STAT3. 

STAT3 in reproduction
In mammals, the uterus is receptive to blastocyst during a 
restricted time termed as “implantation window”. LIF is 
expressed at a high level during implantation window in 
humans and mice. LIF deficient mice display embryo im-
plantation failure[65]. In mouse uterus, STAT3 protein is 
expressed and phosphorylated in the luminal epithelium 
on day 4 of  pregnancy. LIF treatment induces the STAT3 
phosphorylation in mouse uterine luminal epithelium 
isolated from day 4 of  pregnancy but not for days 3 and 
5[66]. LIF antagonist (LA, truncated LIF protein) injection 
led to the failure of  mouse embryo implantation through 
inhibiting STAT3 phosphorylation[67]. In humans, LIF 
and STAT3 are expressed in decidual tissues during early 
pregnancy. LIF can activate STAT3 phosphorylation in 

both non-decidualized and decidualized human endome-
trial stromal cells in vitro[68], indicating that LIF/STAT3 
signaling is involved in human embryo implantation and 
decidualization. 

To investigate the function of  STAT3 during embryo 
implantation, a cell-permeable STAT3 peptide inhibitor 
is injected into mouse uterine lumen before implantation, 
which significantly reduces embryo implantation by 70%. 
STAT3 phosphorylation in uterine luminal epithelium 
activated by LIF and some LIF targeted genes, such as 
Irg1, is significantly inhibited by STAT3 inhibitors both 
in vivo and in vitro[69]. Meanwhile, the injection of  STAT3 
decoy into uterine lumen during implantation also causes 
implantation failure[70]. Co-immunoprecipitation assay 
showed that STAT3 can bind to progesterone receptor 
A (PR-A) and co-regulate the embryo implantation and 
decidualization in mice. Conditional ablation of  STAT3 
only in PR-positive cells (PRcre/+Stat3f/f; Stat3d/d) is used to 
investigate the role of  STAT3 in reproduction. Condi-
tional ablation of  STAT3 in the uterus (Stat3d/d) results in 
embryo implantation failure. Furthermore, Stat3d/d mice 
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are also defective in hormonally induced decidual reac-
tion[71], suggesting that the interaction between STAT3 
and PR is essential for successful implantation. 

CONCLUSION
STAT3 is a key transcription factor and regulates a mul-
titude of  genes important for proliferation, differentia-
tion, apoptosis, inflammation and tumorigenesis. STAT3 
expression and activity are regulated through alternative 
splicing, post-translational modification and subcellu-
lar localization. STAT3β, the new isoform of  STAT3, 
participates in apoptosis and plays a role distinct from 
STAT3α. Despite the different mechanism, STAT3 
activation through phosphorylation or acetylation can 
facilitate tumorigenesis synergistically. STAT3 shuttles 
among the cytoplasm, nucleus, mitochondria and some 
other possible organelles, and exerts its diverse functions 
in transcriptional regulation, cellular respiration, prolif-
eration and apoptosis. A variety of  animal models reveal 
that STAT3 is essential for embryo development, pluri-
potency maintenance of  stem cells, embryo implantation 
and decidualization. Increasing evidence confirms that 
STAT3 is a key modulator of  cancer and inflammation 
(Figure 2). Hence, further clarification of  the biological 
function of  STAT3 will validate its promising application 
prospect for gene therapy in multi-directions.
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