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Core tip: p53 is tightly regulated by dynamic ubiquitina-
tion and deubiquitination. A number of deubiquitinat-
ing enzymes (DUBs) have been shown to regulate p53 
stability and activity by either directly deubiquitinating 
p53 or indirectly deubiquitinating its regulators. We re-
cently discovered that Otub1, an OTU family DUB, sta-
bilizes and activates p53 via  distinct and non-canonical 
mechanism wherein it suppresses the MDM2 cognate 
ubiquitin-conjugating enzymes UbcH5. Here we review 
the current progress made towards the understanding 
of the Otub1 functions as a potent E2 inhibitor and the 
underlying mechanisms.
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MDM2 AND MDMX: KEEPING P53 
UNDER CONTROL
The p53 tumor suppressor plays a central role in main-
taining the genomic stability and preventing the organism 
from cancer[1-3]. Loss of  p53 function, either through 
direct mutations in the p53 gene or indirectly through 
alterations in the p53 regulatory networks, is associated 
with most, if  not all, human cancers[4,5]. Germline mu-
tations of  p53 result in the cancer-prone Li-Fraumeni 
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Abstract
Deubiquitination has emerged as an important mecha-
nism of p53 regulation. A number of deubiquitinating 
enzymes (DUBs) from the ubiquitin-specific protease 
family have been shown to regulate the p53-MDM2-
MDMX networks. We recently reported that Otub1, a 
DUB from the OTU-domain containing protease family, 
is a novel p53 regulator. Interestingly, Otub1 abrogates 
p53 ubiquitination and stabilizes and activates p53 in 
cells independently of its deubiquitinating enzyme ac-
tivity. Instead, it does so by inhibiting the MDM2 cog-
nate ubiquitin-conjugating enzyme (E2) UbcH5. Otub1 
also regulates other biological signaling through this 
non-canonical mechanism, suppression of E2, including 
the inhibition of DNA-damage-induced chromatin ubiq-
uitination. Thus, Otub1 evolves as a unique DUB that 
mainly suppresses E2 to regulate substrates. Here we 
review the current progress made towards the under-
standing of the complex regulation of the p53 tumor 
suppressor pathway by DUBs, the biological function of 
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syndrome in human[6] and deletion of  the p53 gene leads 
to spontaneous tumors in mice[7,8]. p53 is a stress-induced 
transcription factor that activates or represses the expres-
sion of  many target genes, thereby executing its anti-pro-
liferative activity by inducing cell cycle arrest, apoptosis, 
or senescence[1,2,9-11]. Under normal circumstances, p53 is 
tightly controlled at low levels mainly by its negative regu-
lator MDM2[12-14]. As a RING-finger-containing ubiquitin 
ligase (E3)[15,16] MDM2 mediates p53 ubiquitination and 
degradation through the proteasomal system[17,18]. MDM2 
also directly suppresses p53 transactivation activity by 
binding and concealing the N-terminal transactivation 
domain of  p53[19-21]. The centrality of  the MDM2-medi-
ated p53 suppression has been demonstrated by mouse 
genetic studies showing that deletion of  the mdm2 gene 
caused embryonic lethal phenotype, which is completely 
rescued by concomitant deletion of  p53[22,23]. This essen-
tial function of  MDM2 requires its E3 activity, as mice 
with homozygous knock-in of  the E3 inactivation mu-
tant, MDM2C464A, are also embryonic lethal, which can be 
rescued by deleting p53 as well[24]. Consistently, MDM2 
is overexpressed in a number of  human cancers, most of  
which contain wild-type p53[25-29].

The MDM2 homolog MDMX has emerged as an 
equally important p53 regulator as MDM2[30]. MDMX 
shares high homology with MDM2 in their C-terminal 
RING-finger domain and the N-terminal p53-binding 
domain. Like MDM2, MDMX binds to the N-terminal 
transactivation domain of  p53 and suppresses its activity. 
However, MDMX does not have appreciable ubiquitin 
ligase activity towards p53[31,32], yet it assists MDM2 to 
suppress p53 function. MDMX directly binds to MDM2 
via their RING domains[33-35] and renders MDM2 suffi-
ciently stable to ubiquitinate and degrade p53[33,36-38]. Also, 
MDMX suppresses p53 function by specifically promot-
ing p53-induced MDM2 transcription following DNA 
damage[39]. MDM2, in turn, ubiquitinates and degrades 
MDMX in response to DNA damage[40-42]. Thus, the 
mutual regulation between MDM2 and MDMX ensures 
a proper cellular level and activity of  p53. Supporting the 
indispensible role of  MDMX towards p53, deleting the 
p53 gene also rescues the lethal phenotype of  knocking 
out the mdmx gene in mice[43-45]. Like MDM2, MDMX 
is also overexpressed or amplified in several types of  
human cancers that harbor wild-type p53[46-49]. Recent 
studies have provided further molecular insights into 
the non-redundant and indispensible role for MDMX 
in MDM2-mediated p53 degradation. First, like MDM2, 
the RING domain of  MDMX and resulting MDM2-
MDMX heterodimerization are required for the regula-
tion of  MDM2, as deletion of  the RING-finger domain 
of  MDMX or knock-in of  the MDM2-binding defective 
MDMX mutant (C462A) resulted in embryonic lethal 
phenotype, which was completely rescued by deletion 
of  p53[50,51]. Second, The extreme C-terminal short se-
quences outside of  the RING domain of  both MDM2 
and MDMX contribute to the MDM2 E3 activity, owing 
to their role in the formation of  MDM2-MDMX het-
erodimer and perhaps the E3 holoenzyme mediating p53 

polyubiquitination[37,38,52]. Third, a recent in vitro study has 
shown that while MDM2 alone is sufficient to mediate 
multi-monoubiquitination of  p53, the MDM2-MDMX 
complex is required for p53 polyubiquitination[53]. Thus, 
the stoichiometry of  the p53-MDM2-MDMX complex 
is critical for the determination of  whether targeting p53 
for polyubiquitination or monoubiquitination. 

The p53-MDM2-MDMX axis is among the most 
highly regulated pathways. Enormous molecules regulate 
the interplay among the three proteins in response to 
diverse stressors, leading to p53 stabilization and conse-
quent activation. These include various post-translational 
modifications of  all three proteins. Ubiquitination plays 
a key role in controlling the protein stability and activity 
of  all three proteins. Under stress conditions, p53 ubiq-
uitination mediated by MDM2/MDMX is crippled as a 
result of  either dissociation of  MDM2/MDMX from 
p53 or suppression of  MDM2/MDMX activity towards 
p53. For example, DNA damage-mediated phosphoryla-
tion of  both p53 and MDM2 disrupts their interaction, 
resulting in p53 stabilization[54-57]. DNA damage also trig-
gers phosphorylation and degradation of  MDMX, allevi-
ating its suppressive effect on p53[58-63]. Oncogenic stress 
induces p53 via suppression of  MDM2 by ARF[64-68], 
whereas ribosomal stress induces p53 via suppression of  
MDM2 by a number of  ribosomal proteins[69-85]. Again, 
ARF also promotes MDM2-mediated MDMX degra-
dation[40] and ribosomal stress-induced p53 activation 
requires MDM2-mediated MDMX degradation[86]. Thus, 
barricading the inhibition of  p53 imposed by MDM2 and 
MDMX is centrally important for p53 activation in re-
sponse to most, if  not all, stressors. Indeed, both MDM2 
and MDMX bind to p53 at its target gene promoters and 
suppress its transactivation activity[87-89]. Thus, p53 activa-
tion is thought to involve the release of  such repression, 
called anti-repression under stress conditions, through 
diverse posttranslational modifications[90]. In addition, 
p53 is also ubiquitinated by a number of  other ubiquitin 
ligases such as ARF-BP1[91], PIRH2[92], COP1[93], etc.[94,95]. 
For example, p53, under certain cellular levels, is thought 
no longer regulated by the MDM2/MDMX complex. In-
stead, the basal level of  p53 is mainly regulated by ARF-
BP1. Deletion of  ARF-BP1 completely activates p53 in 
the presence of  MDM2[91]. Adding to the complexity of  
the ubiquitination regulation of  the p53 pathway, deubiq-
uitination regulation has recently emerged as an equally 
important mechanism for p53 control.

REGULATION OF THE P53-MDM2-MDMX 
PATHWAY BY DEUBIQUITINATING 
ENZYMES 
Like other posttranslational modifications, ubiquitination 
of  p53, MDM2 and MDMX can be reversed through 
a process called deubiquitination, which is catalyzed 
by a different class of  enzymes called deubiquitinating 
enzymes (DUBs). The human genome encodes ap-
proximately 95 predicted DUBs that are classified into 
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5 families: ubiquitin-specific proteases (USPs), ubiquitin 
C-terminal hydrolases (UCHs), ovarian tumor associated 
proteases (OTUs), Machado-Joseph disease (or Josephin 
domain) proteins (MJDs), and JAB1/MPN/MOV34 pro-
teins (JAMMs). Except that the JAMMs are zinc metal-
loproteases, all other DUBs are cysteine proteases[96,97].

Recently, several DUBs from the USP family have 
been shown to regulate the p53-MDM2-MDMX loop 
(Figure 1). USP7, also called herpesvirus associated USP 
(HAUSP), is the first DUB reported to be a bona fide 
p53 deubiquitinase[98-100]. Overexpression of  USP7 stabi-
lizes and activates p53[99]. Intriguingly, MDM2 seems to 
be a better substrate of  USP7 compared to p53 under 
physiological circumstances, as substantial knockdown of  
USP7 results in destabilization of  MDM2 and activation 
of  p53[98,101]. Further, USP7 also deubiquitinates MDMX 
in cells and in vitro and depletion of  USP7 results in de-
stabilization of  the otherwise stable MDMX[100]. DNA 
damage triggers ATM-dependent phosphorylation of  
MDMX, which disrupts its binding to USP7 and leads to 
the consequent increase of  ubiquitination and degradation 
of  MDMX[100], whereas the interaction between p53 and 
USP7 is increased following DNA damage. Thus USP7 
scrutinizes the homeostatic levels of  p53, MDM2, and 
MDMX under both normal and stress conditions. The 
second p53 DUB, USP10, has also been shown to play a 
critical role in p53 activation following DNA damage[102]. 
Unlike USP7, USP10 is a cytoplasmic DUB and specifi-
cally deubiquitinates p53, but not MDM2 and MDMX[102], 
reversing MDM2-mediated ubiquitination, nuclear export, 
and cytoplasmic degradation of  p53. Following DNA 
damage, ATM phosphorylates USP10 at Thr42 and 
Ser337, resulting in not only the stabilization of  USP10, 
but also the translocation of  a fraction of  USP10 into 
the nucleus to deubiquitinate and activate p53. Consistent 
with its function in regulating p53, USP10 expression is 
down-regulated in high percentage of  clear cell carcino-
mas[102]. Recently, USP42 was reported to be another DUB 
that positively regulates p53 stability and activity. Interest-
ingly, USP42 deubiquitinates p53 only during the early 
stages of  stress response, without significant effect on p53 

regulation under unstressed conditions. Despite of  this, 
it has been shown that USP42 is required for rapid p53 
activation and cell cycle arrest in response to mild or tran-
sient DNA damage stress[103]. In addition, Liu et al[104] has 
shown that USP29 positively regulates p53 stability and 
function following oxidative stress. This is achieved by the 
increased transcription of  USP29 induced by oxidative 
stress, which in turn cleaves polyubiquitinated p53, leading 
to p53-dependent apoptosis in cells. 

In contrast to above USPs positively regulating p53, 
USP2a and USP4 were reported to destabilize p53 and 
suppress p53 function, albeit via targeting different p53 
E3s. USP2a destabilizes p53 by deubiquitinating and sta-
bilizing both MDM2[105] and MDMX[106], whereas USP4 
destabilizes p53 by deubiquitinating and stabilizing ARF-
BP1[107]. Consistently, USP2a is overexpressed in a subset 
of  prostate cancers[108,109], whereas USP4 is overexpressed 
in a broad range of  human cancers[107]. Thus, USP2a and 
USP4 are likely oncogenic DUBs. 

Together, these studies demonstrate that deubiquitina-
tion plays a crucial role in finely tuning the normal ho-
meostasis of  the p53-MDM2-MDMX loop as well as its 
response to stress. They also imply that different DUBs 
could regulate the p53 pathway via different mechanisms 
within different cellular compartments following differ-
ent stress. However, whether p53 is regulated by DUBs 
other than USP family members is previously unknown. 
We recently identified that the OTU domain-containing 
ubiquitin aldehyde-binding proteins 1 (Otubain 1, Otub1 
thereafter), an OTU family DUB, controls p53 stability 
and activity via a novel non-canonical mechanism[110].   

OTUB1: A UNIQUE MEMBER OF OTU 
DUB FAMILY
Otub1 was identified along with its close homolog Otub2 
by affinity purification using the DUB-specific inhibitor, 
Ub aldehyde[111]. Subsequent studies, including our own, 
revealed that Otub1 possesses in vitro deubiquitinating en-
zyme activity preferentially towards K48-linked polyubiq-
uitin chains[110,112,113]. Like other cysteine proteases, Otub1 
contains a catalytic triad consisting of  Cys (C) 91, His (H) 
265, and Asp (D) 268[112]. However, crystal structure stud-
ies demonstrated that Otub1 possesses unique structure 
features wherein H265 is located distantly from the cata-
lytic C91 and D268 and the access of  C91 to ubiquitin is 
blocked by Glu (E) 214 residue, forming a conformation 
incompatible with catalysis by typical cysteine proteases[112], 
implying that the activity of  Otub1 may be highly regulated 
in cells and its activation may be subjected to conforma-
tional change (See below).  Otub1 is ubiquitously expressed 
in tested human tissues. A longer isoform called Otub1 
ARF (alternative reading frame)-1, resulting from alternative 
splicing and start codon, is predominantly expressed in pe-
ripheral blood mononuclear cells, lymph nodes, spleen, and 
the tonsils[114]. The function of  Otub1 ARF-1 is thought to 
antagonize the function of  Otub1 in cells[114].

Functionally, Otub1 has been implicated in the regula-
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Figure 1  Diagram of the regulation of the p53 pathway by deubiquitinating 
enzymes. Arrows indicate activation and bars indicate inhibition. USP7, USP10, 
USP29, and USP42 deubiquitinate and activate p53, whereas USP2 destabilizes 
p53 by deubiquitinating MDM2 and MDMX and USP4 destabilizes p53 by deu-
biquitinating and stabilizing ARF-BP1. Otub1 stabilizes and activates p53 via non-
canonical suppression of the MDM2 cognate E2 UbcH5, thereby inhibiting MDM2-
mediated p53 ubiquitination and degradation. USP: Ubiquitin-specific protease



tion of  immune response, estrogen signaling, DNA dam-
age response, as well as pathogen biology. Soares et al[114] 
first reported that Otub1 regulates CD4+ T cell clonal 
anergy by enhancing degradation of  the ubiquitin ligase 
called GRAIL (gene related to anergy in lymphocytes) and 
promoting interleukin 2 production following antigenic 
stimulation, whereas the Otub1 ARF-1 has an opposite 
effect. Interestingly, the effect of  Otub1 does not depend 
on its catalytic activity. As a matter of  fact, the role of  
Otub1 in degrading GRAIL is opposite to its predicted 
role as a DUB[114]. A possible explanation is that Otub1 
forms a ternary complex with GRAIL and USP8, another 
USP family DUB, thereby suppressing the deubiquitina-
tion of  GRAIL by USP8. In this case, Otub1 may act as 
an ubiquitin editing protease[114]. Li et al[115] reported that 
Otub1 (and Otub2) mediate virus-induced deubiquitina-
tion of  TNF receptor-associated factor 3 (TRAF3) and 
TRAF6, two ubiquitin ligases required for virus-induced 
Interferon regulatory factor 3 (IRF3) and NF-kB activa-
tion, leading to the inhibition of  viral-induced produc-
tion of  INFβ. However, whether this effect requires the 
DUB enzymatic activity of  Otub1 is not clear[115]. Further, 
Otub1 has recently been shown to enhance TGFβ sig-
naling by inhibiting ubiquitination and degradation of  
SMAD2/3[116]. Otub1 also plays a role in pathogen inva-
sion of  the host cells. The Yersinia-encoded virulence fac-
tor YpkA interacts with and phosphorylates Otub1[117] and 
recruits the small GTPase RhoA, leading to the stabiliza-
tion of  the active RhoA[118]. Consequently, overexpression 
of  wild-type, but not the C91S mutant, Otub1 increased 
the susceptibility of  host cells to the Yersinia evasion[118]. 
Otub1 has been shown to deubiquitinate and stabilize 
ERα in chromatin[119], albeit this stabilization results in the 
inhibition of  ERα-mediated transcription. Adding to the 
complexity, the catalytic mutant Otub1, C91S in which 
the catalytic C91 is mutated to S, did not abolish Otub1-
mediated suppression of  ERα activity[119]. Otub1 has been 
shown to inhibit DNA-damage-induced chromatin ubiq-
uitination, which is also independent of  its DUB activity. 
Instead, Otub1 suppresses RNF168-dependent chroma-
tin polyubiquitination by binding to and inhibiting the 
RNF168 cognate E2 enzyme UBC13[120]. Recently, Otub1 
has been shown to regulate apoptosis by deubiquitinating 
the cellular inhibitor of  apoptosis (c-IAP1)[121]. 

Together, Otub1 has been implicated in multiple 
biological processes. In most cases, the effects of  Otub1 
do not require its DUB activity, such as the regulation of  
DNA damage-induced chromatin ubiquitination[120], T-cell 
anergy[114], ERα[119], and SMAD2/3[116], implying a unique 
model of  ubiquitination regulation by a DUB: suppres-
sion of  the ubiquitin-conjugating enzyme (E2) (see be-
low). Because of  this and the fact that it is expressed in 
most tissues, Otub1 may have a broad function in cells. 

OTUB1 IS A NOVEL POSITIVE P53 
REGULATOR
We recently found that Otub1 positively regulates the sta-

bility and activity of  p53[110]. Overexpression of  Otub1, 
but not its close homolog Otub2, markedly stabilizes and 
activates p53 and induces p53-dependent apoptosis and 
cell growth inhibition. Interestingly, Otub1 regulation 
of  p53 does not require its catalytic activity, as mutat-
ing C91 to either A or S did not abolish the activity of  
Otub1 to block MDM2-mediated p53 ubiquitination and 
degradation, to stabilize and activate p53, and to induce 
p53-dependent cell growth inhibition[110]. Mechanistically, 
Otub1 suppresses MDM2-mediated p53 ubiquitination 
by binding to and inhibiting the MDM2 cognate E2 en-
zyme UbcH5s[110]. This is consistent with the non-canon-
ical role for Otub1 in suppressing DNA damage-induced 
chromatin ubiquitination by inhibiting UBC13[120]. There-
fore, our study further supports that the suppression of  
substrate ubiquitination through inhibiting cognate E2s 
by Otub1 represents a unique noncanonical mode of  
DUB regulation compared to classical cysteine proteases 
and this may be a general mechanism for Otub1 to regu-
late the substrate protein ubiquitination and stability. 

Consistent with the noncanonical mode of  regulation, 
mutating C91 to either A or S did not abolish the activity 
of  Otub1 to bind to and suppress UbcH5[110]. However, 
a point mutation of  Asp 88 to Ala (Otub1D88A) abolished 
the function of  Otub1 to suppress p53 ubiquitination 
and degradation and this mutant interacts with p53 
stronger than wild-type Otub1, indicating this mutation 
might create a dominant-negative effect. D88 is located 
closely to the donor ubiquitin-binding surface and thus 
its mutation would affect the binding of  Otub1 to donor 
ubiquitin conjugated to UbcH5. Although D88 is not 
located directly in the E2 binding surface, our experimen-
tal data revealed that this mutation clearly disrupted the 
Otub1-E2 interaction in cells[110]. This might be due to 
the overall structure change after D88 mutation. Support-
ing this conformational change is that D88A mutant also 
results in the loss of  Otub1’s DUB activity. 

Our functional studies of  the endogenous Otub1 
suggest that Otub1 plays an important role in p53 stabili-
zation and activation following DNA damage induced by 
diverse agents. This is consistent, but not completely, with 
the observation that Otub1 suppresses DNA damage-
induced chromatin ubiquitination, thereby suppressing 
DNA repair pathway[120]. One explanation is that upon 
DNA damage, Otub1 might target UbcH5-MDM2 to 
stabilize p53, while it may dissociate from the RNF168-
Ubc13 complex, allowing RNF168 to catalyze K63-linked 
chromatin ubiquitination and subsequent DNA repair re-
sponse. Whether DNA damage-induced posttranslational 
modification plays a role in this functional switch remains 
unclear. However, phosphorylation of  Otub1 has been 
observed at several residues such as T134. Further, it has 
been shown that the phosphorylation mimicking Otub1 
mutant T134E, but not T134A, failed to rescue the DNA 
damage response in Otub1-depleted cells[122]. Thus it is 
interesting to examine the signaling pathways involved 
in the phosphorylation of  Otub1 and how this phos-
phorylation plays a role in regulating Otub1 function in 
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response to DNA damage stress.

MECHANISTIC INSIGHTS INTO THE NON-
CANONICAL SUPPRESSION OF E2 BY 
OTUB1
Recent biochemical and structural studies have shed a 
light on how Otub1 suppresses E2s[122-124]. It has been 
shown that Otub1 preferentially binds to ubiquitin-
charged E2[120,122]. Otub1 contains two ubiquitin-binding 
motifs: a distal site that binds to free ubiquitin and a prox-
imal site that binds to donor ubiquitin conjugated to the 
active site of  an E2 (e.g., Ubc13 or UbcH5). The structure 
of  two ubiquitin binding to Otub1 is reminiscent of  that 
of  K48-linked di-ubiquitin[122]. Interestingly, the binding 
of  a free ubiquitin to the distal site allosterically causes the 
conformational change of  Otub1, allowing the formation 
of  a N-terminal ubiquitin-binding helix where the E2-
charged donor ubiquitin then binds[122,124]. Consequently, 
this binding limits the donor ubiquitin interaction with 
the backside of  another E2 and the attack on the thioes-
ter bond by an acceptor ubiquitin, a step important for 
ubiquitin transfer[122,124]. On the other hand, Otub1 also 
makes contacts with E2 and the Otub1-binding surface 
in E2 (UbcH5 and Ubc13) overlaps with the E3-binding 
surface. Thus this Otub1-E2 interaction may also attenu-
ate the E2-E3 engagement[122,124]. Collectively, Otub1 is a 
potential inhibitor of  the E2 enzymes. Further support-
ing this notion, Otub1 has recently been shown to be a 
major DUB that interacts with the D and E classes of  E2 
as well as UbcE2N[125]. Thus disruption of  the Otub1-E2 
interaction or donor ubiquitin-Otub1 interaction would 
theoretically abolish Otub1’s activity to suppress E2. This 
could distinguish Otub1’s E2 suppressing activity from its 
DUB enzyme activity. Indeed, several mutants involved in 
the E2-contacting surface of  the Otub1, such as F133A, 
T134R, F138A, have been shown to lack the E2-suppress-
ing activity but retain the DUB activity[122,124]. Therefore, 
it is interesting to examine whether these mutants could 
fail to stabilize and activate p53 in cells. On another note, 
we recently found that Otub1 can be monoubiquitinated 
by UbcH5 and this monoubiquitination in turn plays a 
critical role in the Otub1’s E2 suppressing activity. We 
further found that UbcH5 preferentially binds to monou-
biquitinated Otub1, through the ubiquitin interaction 
with the backside ubiquitin-interacting surface of  E2[126]. 
This binding could potentially disrupt the formation of  
self-assembled ubiquitin-charged UbcH5 (UbcH5-Ub) 
conjugates that is critical for ubiquitin transfer, polyubiq-
uitin chain formation and efficient polyubiquitination of  
substrates[127,128], suggesting another novel mechanism of  
Otub1 suppression of  E2. 

CONCLUSION
Recent studies have convincingly demonstrated Otub1 
as a unique DUB that executes diverse biology functions 
by non-canonically suppressing E2 enzymes. Therefore 

it is expected that Otub1 may play broad functions in 
cells. One question would be how these broad functions 
coordinate with each other in cells. We also do not know 
how Otub1’s activity is regulated in cells. Interestingly, a 
recent observation showed that Otub1 DUB activity can 
be regulated by UbcH5, which stimulates the binding of  
the Lys48-linked polyubiquitin substrate by stabilizing 
the folding of  the N-terminal ubiquitin-binding helix of  
Otub1, thereby promoting its deubiquitinating enzyme 
activity[129]. It is interesting to know how these mutually 
regulatory functions are controlled in cells. It is also im-
portant to test how Otub1’s activity and levels are regu-
lated in cells under physiologic and stress conditions. As 
Otub1 is a potent activator of  p53[110] and plays a role in 
DNA damage repair[120], Otub1 may act as a tumor sup-
pressor. Thus it is important to determine whether Otub1 
is deregulated in human cancers. Gene targeting in mice 
could provide further information regarding the function 
of  Otub1 and whether Otub1 indeed possesses tumor 
suppression function in vivo. Further characterization of  
mechanistic insights into the Otub1 suppression of  E2 
could also be useful for developing strategies that target 
the E2 enzymes for cancer therapy, e.g., small molecule 
compounds that resemble Otub1 interaction with E2.

Together, p53 is ubiquitinated by MDM2/MDMX 
and several other E3s whereas it is deubiquitinated by a 
number of  DUBs, including USP7, USP10, USP29 and 
USP42. One obvious question is how these multiple DUBs 
are coordinated to ensure the tight, precise, and dynamic 
control of  p53 stability and activity.  Different DUBs may 
regulate the p53 pathway in response to different cellular 
stress (e.g., USP29 deubiquitinates p53 in response to oxida-
tive stress[104] whereas USP10 deubiquitinates p53 following 
DNA damage[102]). Different DUBs may also regulate p53 
in different cellular compartments (e.g., USP7 regulates p53 
in the nucleus whereas Otub1 regulates p53 in the cyto-
plasm[110] and USP10 relocates from the cytoplasm to the 
nucleus to regulate p53 in response to DNA damage[102]). 
It is interesting to examine whether different DUBs may 
cooperate with each other to synergistically regulate p53 
stability and activity in future studies. 

Nevertheless, efforts have been made towards target-
ing the ubiquitin-proteasome system (UPS) for reactivat-
ing p53 in cancer therapy. For example, compounds have 
been developed to target the p53-MDM2 interaction 
such as Nutlin-3s[130], the p53-MDMX interaction such 
as WK298[131], or both such as RO-2443[132]. Targeting 
DUBs has promising potential as well. For example, the 
cyano-indenopyrazine derivatives small molecule com-
pounds HBX 41108, HBX 19818, and HBX 28258[133] 

and P22077[134] were discovered as USP7 inhibitors. For 
further details about targeting the UPS for cancer therapy, 
please refer our recent review[135]. Future directions will 
aim to discover more potent and specific DUB inhibitors 
that can be used for cancer treatment.
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