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Abstract

This study evaluates the durability of a novel tissue engineered blood vessel (TEBV) created by 

seeding a natural vascular tissue scaffold (decellularized human saphenous vein allograft) with 

autologous adipose-derived stem cells (ASC) differentiated into endothelial-like cells. Previous 

work with this model revealed the graft to be thrombogenic, likely due to inadequate endothelial 

differentiation as evidenced by minimal production of nitric oxide (NO). To evaluate the 

importance of NO expression by the seeded cells, we created TEBV using autologous ASC 

transfected with the endothelial nitric oxide synthase (eNOS) gene to produce NO. We found that 

transfected ASC produced NO at levels similar to endothelial cell (EC) controls in vitro and 

capable of causing vasorelaxation of aortic specimens ex vivo. TEBV (n=5) created with NO-

producing ASC and implanted as interposition grafts within the aorta of rabbits remained patent 

for two months and demonstrated a non-thrombogenic surface compared to unseeded controls 

(n=5). Despite the xenograft nature of the scaffold, TEBV structure remained well-preserved in 

seeded grafts. In sum, this study demonstrates that up-regulation of NO expression within adult 

stem cells differentiated towards an endothelial-like cell imparts a non-thrombogenic phenotype 

and highlights the importance of NO production by cells to be used as endothelial cell substitutes 

in vascular tissue engineering applications.
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1. Introduction

Given the limited availability of autologous saphenous vein (Conte et al., 1998; Campbell et 

al., 2007) and inferior durability of synthetic conduits (McLarty et al., 1998; Szilagyi et al., 
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1979) for small-diameter arterial bypass surgery, stem cell-based tissue engineering may 

offer an alternative for patients with coronary or peripheral arterial disease. Several cell 

types have been identified as endothelial cell substitutes to line the luminal surface of a 

tissue engineered blood vessel including circulating endothelial progenitor cells (EPC) 

(Sreerekha et al., 2006; Bu X et al., 2010; Vartanian et al., 2009; Serrano et al., 2008; 

Shirota et al., 2003) and bone marrow-derived mesenchymal stem cells (BMSC) (Lim SH et 

al., 2008; Wu et al., 2008; Hjortnaes et al., 2010). While several groups report success with 

these cell types, decreased availability with advanced in age and co-morbidity, along with 

harvest difficulties detract from their use in clinical applications (Hoetzer et al., 2007; 

Dragoo et al., 2003; Siddiq et al., 2009; Magri et al., 2007).

Adipose tissue provides a source of autologous stem cells in large quantity via a minimally 

invasive procedure with low donor discomfort (DiMuzio et al., 2006; DiMuzio et al., 2007; 

Schaner et al., 2004; Zhang et al., 2010; McIlhenny et al., 2010; Harris et al., 2010; Harris 

et al., 2011; Miranville et al., 2004; Planat-Benard et al., 2004; Cao et al., 2005). Human 

adipose-derived stem cells (ASC) acquire various endothelial characteristics following 

culture in Endothelial Cell Growth Supplement (ECGS) and exposure to fluid shear stress. 

Specifically, these cells align in the direction of fluid flow, take up acetylated low density 

lipoproteins (Ac-LDL), form tube-like structures when plated on extra-cellular matrix 

proteins (Matrigel), and express endothelial proteins such as Platelet-Endothelial Cell 

Adhesion Molecule (PECAM-1, or CD31) (Fischer et al., 2009; Zhang et al., 2010). 

Additionally, EC-differentiated ASC have been used create a tissue engineered blood vessel 

(TEBV): following seeding onto a decellularized vascular scaffold and flow conditioning up 

to physiologic arterial shear stress, ASC form a neointima with alignment of cells in the 

direction of flow (McIlhenny et al., 2010).

Despite the efforts of several groups, there has been limited to no success in promoting ASC 

to express endothelial nitric oxide synthase (eNOS), a molecule important to the function of 

the endothelium. Endothelial NOS catalyzes the production of nitric oxide (NO) via 

enzymatic oxidation of L-arginine to L-citrulline (Sessa 2004). Nitric oxide promotes 

vasodilation (Furchgott et al., 1980; Vallance et al., 1989), protection against intimal 

hyperplasia via inhibition of smooth muscle cell proliferation (Garg et al., 1989), and 

inhibition of platelet adhesion/aggregation (Azuma et al., 1986; Radomski et al., 1987). 

Previous report by our group demonstrated differentiation of ASC towards the EC-

phenotype, but with variable and/or minimal eNOS expression; in vivo evaluation of these 

cells revealed that they were mildly thrombogenic, possibly related to the lack of eNOS 

expression (Fischer et al., 2009). Given these critical properties, we hypothesize that eNOS 

expression by the differentiated stem cell would improve its success as an endothelial cell 

substitute in vascular tissue engineering.

In this report, we demonstrate successful expression of eNOS in ASC following adenoviral 

transfection. Transfection initiates eNOS mRNA production, yielding eNOS protein which 

generates functional NO gas. This gas is bioactive, as evidenced by induction of vascular 

smooth muscle relaxation. Finally, a TEBV lined with eNOS-expressing ASC differentiated 

to an EC-like phenotype implanted in vivo demonstrates a non-thrombogenic phenotype and 

preserved graft structure.
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2.0 Materials and Methods

2.1. Stem Cell Isolation and Culture

Adipose tissue was obtained via peri-umbilical liposuction of patients undergoing elective 

vascular surgery at Thomas Jefferson University Hospital. All patients were consented and 

donations conducted under an Institutional Review Board-approved protocol. ASC were 

isolated from a total of 25 human donors and characterized as previously described 

(DiMuzio et al., 2006; Fischer et al., 2009) yielding an adult stem cell population with a 

CD13+29+90+31−45-phenotype. Isolated ASC were differentiated by culture in M199 media 

(Mediatech, Herndon, VA) containing 10% fetal bovine serum (Gemini BioProducts, West 

Sacramento, CA), HEPES buffer (1M, Fisher; Pittsburgh, PA), heparin (Elkins-Sinn, Cherry 

Hill, NJ), antibiotic/antimycotic solution (Mediatech), and Endothelial Cell Growth 

Supplement (ECGS, 6μg/mL, BD Biosciences, San Jose, CA) for a period of two weeks. 

Human umbilical vein endothelial cells (HUVEC) and human dermal microvascular 

endothelial cells (HDMEC) were used as positive controls.

2.2. Adenoviral Vector Construction

Adenoviral vectors were created using the ViraPower Adenoviral Expression System 

(Invitrogen, Carlsbad, CA) as per manufacturer’s instructions. The ViraPower system allows 

for the creation of a virus which lacks the entire E1 region resulting in an adenovirus which 

is replication incompetent and does not integrate into the host genome. These properties 

result in a transient expression. Two adenoviral vectors were created; an eNOS-containing 

(experimental) and GFP-containing (control) vector. Full length eNOS cDNA (Accession 

BC069465) was contained within a pPCR-Script Amp SK (+) plasmid (Open Biosystems, 

Item MHS1768-9144029). The phrGFP-1 plasmid was obtained from the laboratory of 

Vickram Srinivas, Thomas Jefferson University, and Department of Orthopaedic Research.

2.3. Adenoviral transfection

Prior to transfection, ASC were washed with PBS and fresh media was added. Adenovirus 

expressing eNOS gene (Ad-eNOS) was added directly to cell cultures at the indicated 

multiplicity of infection (MOI). The MOI indicates the ratio of target cells to viral plaque-

forming units. Cultures were incubated overnight followed by media exchange. The effects 

of transfection were evaluated at 12, 24, 48 and 72 hours post-transfection as well as up to 

3wk.

2.4. RT-PCR and qPCR

Total RNA was isolated from cultured cells using the RNeasy Mini Kit (Qiagen, Valencia, 

CA) and quantified using spectrophotometry. Reverse Transcription Polymerase Chain 

Reaction (RT-PCR) was executed in a one-step method utilizing Illustra Ready-To-Go RT-

PCR Beads (GE Healthcare, Piscataway, NJ). Electrophoresis was performed on 2% agarose 

gel treated with ethidium bromide and visualized using ultraviolet light.

Quantitative-PCR was performed using TaqMan Fast Universal PCR Master Mix (Applied 

Biosystems, Foster City, CA) with Applied Biosystems 7500 Fast System. PCR primers 
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targeting human eNOS and Taq-Man probes were also obtained from Applied Biosystems. 

The housekeeping gene GAPDH was amplified to normalize for variance in input RNA.

2.5. Flow cytometry

Following transfection, cells were characterized for expression of eNOS by flow cytometry. 

The cells were fixed with Cytofix (BD Biosciences), washed twice in Perm/Wash Buffer 

(BD Bioscience) and then stained with 2μg/ml of either FITC-anti NOS3 (Santa Cruz 

Biotechnology, Inc) or isotype control FITC-anti IgG1 (BD Bioscience). Quantitative 

analysis was performed using FACScalibur flow cytometer (BD Bioscience) and FlowJo 

software.

2.6. Western Blot

Experimental cell cultures were harvested with EDTA (50mM, Promega) to preserve 

integrin integrity. Cell pellets were treated with RIPA buffer containing protease and 

phosphatase inhibitors (Thermo Scientific, Waltham, MA). Cell debris was removed via 

centrifugation. Protein concentration was quantified with a bicinchoninic acid (BCA) 

colorimetric protein assay (Thermo Scientific). Protein was size separated on 8% Tris-

Glycine gels (Invitrogen) and transferred to PVDF membranes (Invitrogen). Blots were 

blocked in fat-free milk for 1h. Primary antibodies were diluted in fat-free milk and 

incubated overnight with agitation at 4°C. Antibodies were purchased from Santa Cruz: 

NOS3 (C-20), 1:1000, α-tubulin (B-7), 1:1000. HRP-conjugated secondary antibodies were 

used at a concentration of 1:10000. Blots were developed with a chemiluminescent detection 

system (Immobilon Western/Millipore).

2.7. Nitric Oxide Production

Nitric oxide production was measured using a Model 280i Nitric Oxide Analyzer (NOA) 

(Sievers Instruments, GE Analytical, Boulder, CO). The NOA is a high-sensitivity detector 

which measures nitric oxide via a gas-phase chemiluminescent reaction between NO and O3. 

The instrument was used as per manufacturer’s instructions. Cell monolayers were treated 

with 10uM bradykinin acetate (Sigma) in serum free M199 to induce NO production. NO 

generation was measured as a function of bradykinin treatment time (t=0, 0.5, 1, 2, 3, 5, 

10min), Ad-eNOS MOI (0, 0.1, 1, 3, 10, 30, 100, 1000), and bradykinin dose (1, 10, 

100μM).

2.8. Bioassay Measurements

Rat abdominal aorta was removed following euthanasia by carbon dioxide asphyxiation. 

Tissue was dissected free of adherent tissue and cut into ring segment segments 3mm in 

length. The dissection was carried out in an oxygenated physiological saline solution (PSS) 

containing (mM): NaCl, 118.1; KCl, 3.0; CaCl2, 1.8; MgSO4, 1.2; KH2PO4, 1.0; NaHCO3, 

27.3; glucose, 10.0; and pyruvic acid, 2.5, pH 7.4. Host endothelial cells were denuded 

mechanically from the aortic lumen to prevent endogenous NO-mediated relaxation. To 

measure vascular reactivity, three ring segments were mounted for isometric tension studies 

on a wire myograph (two were used to test relaxation in response to conditioned medium 

from eNOS-transfected cells, one for control). The ring segments were mounted horizontally 
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in separate muscle chambers on two stainless steel pins (127 μm radius); one pin attached to 

a movable support and the other to a stationary support. The water-jacketed chambers were 

filled with PSS (10 mL), maintained at 37°C and continuously aerated with 95% O2/5% 

CO2. Before experimentation, each ring segment was stretched to optimal passive tension 

and equilibrated in PSS for 1h. Passive tension was achieved by mounting the ring and 

stretching it until the force began to increase. During preconditioning, if the force dropped to 

zero, additional strain was added. Isometric force was measured with Grass FT .03 force 

transducers and recorded on a Macintosh (G4) PC using A/D conversion provided by a 

MacLab interface.

Smooth muscle contraction was achieved through the use of norepinephrine (1 nM −10μM). 

ASC cultured in 6-well plates seven days following eNOS transfection (MOI=1000) were 

washed three times with PBS. 1mL of 10uM bradykinin in serum free M199 was added to a 

well of ASC and allowed to incubate with gentle swirling for 2min. 250uL of conditioned 

media was removed from the well and added to the organ bath to induce smooth muscle 

relaxation. Nontransfected ASC served as negative control.

2.9. Matrigel tube formation assay

ASC cultured for 2 weeks in EGM-2 medium were plated on top of Matrigel substrate (BD 

Biosciences) and incubated at 370C in a 5% CO2 for up to 12 h. Formation of cord-like 

structures was observed by phase-contrast microscopy.

2.10. TEBV construction and in vivo testing

Rabbit autologous ASC were isolated from dorsal fat pads harvested under general 

anesthesia and processed as described above for human tissue. A total of five animals were 

used, and each harvest resulted in a viable cell line that was used for the creation of a TEBV 

(n=5). Following one week of culture in ECGS-containing media, rabbit ASC were 

transfected with Ad-eNOS (MOI=1000) and incubated for 24h. TEBV were created by 

seeding ASC upon the luminal surface of decellularized human saphenous vein scaffolds, as 

previously reported (McIlhenny et al., 2010). The TEBV underwent one week of flow 

conditioning, where upon shear was increased linearly (1.5dynes/cm2 at 0.2 Pa/day) until 

physiologic shear was achieved. Grafts were transported from the lab in sterile containers to 

the animal operating facility.

Five engineered vessels were tested in vivo utilizing a rabbit abdominal aortic interposition 

graft model. All procedures were conducted under Thomas Jefferson University Institutional 

Animal Care and Use Committee approved protocols which conformed to NIH animal use 

standards. In 10 male New Zealand White rabbits, we implanted five TEBV and five control 

(non-seeded) grafts. Following induction of general anesthesia, the infrarenal abdominal 

aorta was carefully dissected from surrounding structures through a mid-line incision. 

Intravenous heparin (100U/kg) was administered and the aorta was clamped proximally and 

distally. Interposition grafts were sutured in place with end-to-end anastomoses performed 

with running 7-0 Prolene (Monofilament polypropylene, Ethicon, Inc., Somerville, NJ) 

suture. Integrity of the graft anastomoses was assured and the abdomen was closed in layers.
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Grafts were visualized at two week intervals with duplex ultrasound. Eight weeks post-

implant, grafts were re-exposed and pressure-fixed (100mmHg) with 4% paraformaldehyde 

(250cc over 30min) and harvested en bloc. All of the five engineered graft (TEBV) and five 

control graft were analyzed. Grafts were imaged with high resolution photography to 

evaluate the luminal surface for gross thrombin formation. The luminal surface was further 

imaged with scanning electron microscopy (SEM) and laser confocal microscopy, as 

previously described (McIlhenny et al., 2010). Tissue was paraffin embedded, sectioned (8 

μm), and histologically prepared using hematoxylin and eosin (H&E) as well as 

phosphotungstic acid hematoxylin (PTAH) staining.

2.11. Laser confocal microscopy

To evaluate cell retention in TEBV luminal surface, grafts were opened longitudinally, 

stained with Cell Tracker Green, Alexa Fluor 488 phalloidin, and/or propidium iodide 

(Invitrogen, Carlsbad, CA), as per manufacturer’s instructions, and visualized by laser 

confocal microscopy (488nm, 543nm).

2.12. Statistical analyses

Data are expressed as mean ± standard deviation. In vitro experiments were compared for 

statistical difference using a two-tailed Student’s t-test. Differences were considered 

significant if P<0.05 level.

3. Results

3.1. Efficiency of Ad-eNOS transfection in human ASC

ASC expression of eNOS mRNA following adenoviral transfection correlated with 

increasing multiplicity of infection and time following transfection (up to 72h) (Figure 1A). 

Quantification of eNOS mRNA by real-time RT-PCR showed maximal message expression 

with an MOI of 1000; further increasing the MOI to 3000 did not yield increased expression 

(Figure 1B). Maximum eNOS message expression remained less than endothelial controls, 

as HUVEC and HDMEC expressed 2- and 3-fold more mRNA than transfected ASC, 

respectively. Western blot also confirmed that protein expression correlated with increasing 

MOI and time following transfection (up to 96h) (Figure 1C). As expected following 

adenoviral transfection, eNOS expression was transient, with peak mRNA expression at 1wk 

and complete loss of message by 3wk (this corresponded to three cell doublings in culture) 

(Figure 1D). FACS analysis determined that transfection efficiency at an MOI of 1000 

following 1wk of culture was approximately 50% (range = 49-55.3%, n=3; data not shown). 

Total of 25 human donors ASC were isolated and cultured for use in all of the in vitro 

experiments. On ASC isolation, in this and our other two studies (Zhang, et al.; Harris, et 

al.), we found that isolations are essentially 100% efficacious in delivering viable cultures of 

adipose-derived stem cells.

3.2. Effect of eNOS transfection on NO production in human ASC

While the expression of eNOS protein from ASC represents significant improvement in the 

ASC endothelial-like profile, the production of NO (the functional aspect of transfection) is 

not guaranteed. To evaluate NO production, ASC transfected with eNOS were stimulated 
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with bradykinin acetate. Figure 2A reveals NO production by ASC 1wk after transfection as 

a function of the MOI. At a MOI of 1000 (which corresponded to peak eNOS message 

expression), ASC interestingly produced NO (247±10nM) more than HUVEC (107±42nM) 

controls, and similar to HDMEC (288±29nM) controls (n=3 cell lines; P<0.05). Further 

characterization of NO production by eNOS-transfected ASC reveals that the cells continue 

to produce NO over 10min past stimulation with a single dose of bradykinin (10uM; n=3 

cell lines; Figure 2B). Additionally, NO production appeared dependent on the dose of 

bradykinin (n=3 cell lines; Figure 2C).

To determine the bioactivity of NO produced by transfected ASC, a denuded arterial ring 

contraction assay was performed (Figure 2D). Freshly harvested rat aortic rings (3mm in 

length) were denuded of endothelium (to remove influence of native EC-derived NO), 

mounted onto a wire myograph, and stimulated with norepinephrine to produce smooth 

muscle cell contraction. After stimulation with bradykinin (10uM x 2min), conditioned 

medium from eNOS-transfected ASC cultures added to the muscle bath resulted in 

relaxation of the aortic rings (n=2). Subsequent doses of conditioned medium produced 

similar results. Addition of conditioned media from control GFP-transfected ASC failed to 

produce relaxation (n=1; Figure 2E).

3.3. Differentiation of ASC and vascular graft creation in the rabbit model

After demonstrating effectiveness of eNOS transfection in human ASC in vitro, we then 

developed our animal model. All five autologous rabbit stem cell (rASC) isolations were 

successful, and transfected with Ad-eNOS (MOI=1000); subsequent eNOS mRNA 

expression was confirmed by RT-PCR (Figure 3A). After differentiation in ECGS-

containing medium and transfection, rASC newly demonstrated the endothelial 

characteristics of alignment in the direction of applied shear stress (1.5 dynes/cm2 at 0.2 Pa, 

48h) (Figure 3B) and cord formation upon plating on Matrigel (Figure 3C). TEBV were 

created by seeding the lumen of a natural vascular tissue scaffold (decellularized human 

saphenous vein) with rabbit ASC transfected with eNOS, as previously described by us 

(Schaner et al., 2004; Fischer et al., 2009; McIlhenny et al., 2010; and above). After flow 

conditioning within bioreactor (0-9dynes at 0.1 Pa over 5d), confocal microscopy revealed 

complete luminal coverage of the graft surface and alignment of ASC in the direction of 

flow (Figure 3D). This TEBV, composed of the vascular scaffold seeded with differentiated 

and transfected autologous rabbit ASC, was then evaluated in vivo by implantation into the 

donating rabbit’s aorta as an interposition graft.

3.4. In vivo transplantation

Previous in vivo evaluation of a TEBV composed of autologous ASC (but not transfected 

with eNOS, and hence not NO-producing) revealed that the lumen of the graft was not 

adequately anti-thrombogenic (Fischer et al., 2009). Building upon this work, we now tested 

the effect of eNOS transfection of the seeded, autologous ASC in vivo. TEBV seeded with 

autologous ASC differentiated and transfected with eNOS (n=5) and unseeded controls 

(n=5) were implanted as interposition grafts into the infra-renal abdominal aorta of rabbits. 

Duplex ultrasound performed bi-weekly demonstrated that all grafts (TEBV and controls) 

remained patent throughout the two month observation period and were well-incorporated 
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into the surrounding tissue (Figure 4A). No graft ruptures or anastomotic false aneurysms 

were observed.

Gross examination of the explants revealed that the luminal surface of each TEBV (n=5) 

was smooth, without evidence of thrombosis, and visually congruent with adjacent native 

aorta (Figure 4B); conversely, each control graft, despite remaining patent, demonstrated 

thrombin staining and/or gross thrombus formation within the lumen.

Visualization of the graft lumens en face via scanning electron (SEM) revealed a confluent 

lining of cells within the TEBV; conversely, the luminal surfaces of the unseeded controls 

were devoid of significant cell coverage (Figure 4C). Further, the cells resident upon the 

luminal surface of the TEBV aligned in the direction of arterial blood flow, similar to EC 

resident within the native aorta (Figure 4D).

Histological examination of the TEBV showed an intact luminal cell layer without evidence 

of fibrin formation; conversely, the presence of fibrin was confirmed on the luminal surface 

of unseeded grafts (Figures 4E). Both the TEBV and unseeded control scaffolds appeared 

thickened compared to the native arterial structure; unfortunately, quantification of 

hyperplasia was not possible as the margins of the control grafts were indistinct with the 

surrounding tissue layers.

4. Discussion

The main findings of this study suggest the importance of NO production within the luminal 

surface of a tissue-engineered blood vessel. Herein, we demonstrated the successful 

transfection of ASC with the eNOS gene, with subsequent expression of the gene products at 

the message and protein levels. Second, transfection also produced significant amounts of 

NO, which was demonstrated to be responsive to receptor-mediated stimulation (bradykinin) 

and bioactive (as evidenced by its relaxation of vascular smooth muscle). Finally, we 

demonstrated the use of these cells as endothelial cell substitutes in vivo. Taken together, 

these data demonstrate a method for creation and improved success of a tissue-engineered 

blood vessel composed of autologous adult stem cells.

Our group recently demonstrated differentiation of ASC towards the EC-phenotype, but 

with variable and/or minimal eNOS message or protein expression (Fischer et al., 2009). 

Other investigators have demonstrated the acquisition of EC traits by ASC (Miranville et al., 

2004; Planat-Benard et al., 2004). With specific regards to eNOS, Cao et al (Cao et al., 

2005) reported the expression of eNOS message within ASC following three days of culture 

in VEGF and bFGF-containing medium; however, protein expression or the generation of 

NO were not reported. Similarly, while Ning et al (Ning et al., 2009) exhibited eNOS 

immunofluorescent eNOS staining in ASC following culture in bFGF-containing medium, 

they did not corroborate these results with transcript level or functional analyses. Overall, 

despite several investigations, it appears that the expression of eNOS and its product NO has 

been difficult to achieve reliably in ASC.

In this report, we evaluated the function of ASC as endothelial cell substitutes after 

differentiation in ECGS-containing medium and following adenoviral transfection with 
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eNOS, circumventing the shortcomings of prior attempts to impart eNOS expression in 

ASC. The described methods successfully promoted eNOS message and protein expression. 

Although quantification of eNOS message revealed ASC expression to be less than 

endothelial controls, the production of NO gas was equal to or in excess of endothelial 

controls, suggesting that only moderate amounts of eNOS protein may be necessary for EC-

comparable amounts of NO to be produced by stem cells.

In 2006, both Kanki-Horimoto and Zhang demonstrated effective adenoviral transfection of 

bone marrow-derived stem cells with eNOS (Kanki-Horimoto et al., 2006; Zhang et al., 

2006). The results indicate NOS activity via the enzymatic conversion of L-[3H] arginine 

to L-[3H] citrulline; however, eNOS message, protein and NO gas production were 

unreported. This group also explored the use of these cells in seeding the lumen of an ePTFE 

graft with success, yet reported no in vivo data to date. In 2007, Bivalacqua et al also 

transfected bone marrow-derived stem cells with eNOS using an adenoviral vector with 

success (Bivalacqua et al., 2007); in vivo data suggested that eNOS expressing stem cells 

improved penile function of rats when injected into the corpra cavernosum. Herein, we 

report for the first time the successful transfection of eNOS into adipose-derived stem cells, 

with documented eNOS message and protein expression and most importantly the 

generation of significant concentrations of biologically active NO.

Nitric oxide plays a pivotal role in the maintenance of normal vascular homeostasis and the 

regulation of systemic blood pressure (Vallance et al., 1989). In addition, it is clear that NO 

has a number of other important functions in the vessel wall, including inhibition of platelet 

aggregation and adhesion molecule expression, prevention of smooth muscle proliferation 

and modulation of vascular growth, and prevention of coagulation and thrombosis 

(Freedman et al., 1997; Jeremy et al., 1999; Loscalzo, 2001). Thus, given NO’s anti-

thrombogenic properties, we hypothesized that the successful expression of bioactive NO by 

ASC may contribute positively to their role as an endothelial cell substitute in the creation of 

a TEBV.

Several lines of evidence support this hypothesis. Previous implantation TEBV with 

autologous ASC that did not express eNOS demonstrated luminal thrombosis (Fischer LJ, et 

al., 2009). In this report, grafts implanted with eNOS-producing cells were subsequently 

demonstrated to have a non-thrombogenic, confluent monolayer of cells upon their luminal 

surface. These cells are presumed to be those seeded at the time of graft creation, as 

unseeded control grafts did not demonstrate significant luminal cell coverage. The 

monolayer of cells on the TEBV, while aligned in the direction of flow similar to 

endothelium, was morphologically different from native endothelial cells, further supporting 

the notion that their represent the seeded ASC. Given that the cells on the TEBV were likely 

the seeded, eNOS-producing ASC, the lack of thrombus observed on these grafts compared 

to unseeded grafts (and historically to non-transfected ASC grafts) is directly due to the 

expression of NO secondary to transfection.

The in vitro data suggested that eNOS expression was limited to the first three weeks 

following transfection. At least two possibilities exist as to why transfection conferred a 

protective effect beyond this time point. First, we have observed up-regulation of other 
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endothelial cell genes after eNOS transfection including CD31 (PECAM-1), KDR (Flk-1/

VEGF receptor 2), and Flt-1 (VEGF receptor 1) that suggest that the presence of this 

enzyme, or NO itself, may further improve endothelial differentiation of ASC and 

subsequent function in vivo (unpublished results). Second, it is likely that the in vivo 

environment, one mainly characterized by fluid shear stress, improved endothelial 

differentiation of ASC. We have previously demonstrated in vitro the positive effect of shear 

on ASC, consistent with this mechanism (Fischer et al., 2009; Zhang et al., 2010). In sum, it 

is possible that forced NO expression was important for prevention of thrombosis early on, 

after which intrinsic endothelial characteristics of differentiated ASC took over. We do 

acknowledge that an important control in the current experiments to help elucidate this 

mechanism would have been the inclusion of a non-transfected (but EC-differentiated) ASC 

graft; as noted, we previously performed these experiments (Fischer et al., 2009) and in the 

interest of animal use reduction, we elected to compare the current results with these 

controls historically.

Given the atheroprotective and anti-hyperplastic properties of NO (Dias RG et al., 2011; Cui 

B, et al., 2011), it was originally hoped that NO production by the seeded stem cells might 

reduce graft hyperplasia. Although the graft scaffolding was decellularized to remove 

foreign antigen and significantly reduce immunogenicity (Meyers RL et al. 2006; Madden 

R, et al. 2002), our model ultimately employed a xenograft scaffold (human vein scaffold 

implanting into rabbit aorta) prone to hyperplasia. Hyperplasia did not appear to be 

significantly altered by eNOS-transfected ASC seeding. Unfortunately, histological 

evaluation of this important graft healing property was precluded by our inability to identify 

a clear graft edge within the control group. The observation of hyperplasia within the TEBV 

suggests that protection may require a more long-lasting production of NO (in contrast to the 

non-thrombogenic properties of the neointima). Possible mechanisms for any protective 

effect afforded by the seeded cells against hyperplasia, at least perhaps within the first three 

weeks, might include inhibition of cell migration by NO as well as reduced growth factor 

and cytokine production secondary to confluent coverage of the scaffold basement 

membrane.

In summary, although our group and others have demonstrated the acquisition of endothelial 

characteristics by ASC in response to various growth factors and shear force, consistent 

expression of eNOS message, protein or function is lacking. In this study, the forced 

expression of eNOS, and production of bioactive NO, within ASC appeared to improve their 

function as endothelial cell substitutes, highlighting the importance of eNOS expression in 

the creation of a successful tissue-engineered blood vessel.
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Figure 1. Efficiency of Ad-eNOS transfection in human ASC
(A) RT-PCR analysis of eNOS mRNA expression in ASC after Ad-eNOS transfection. 

Increasing adenoviral multiplicity of infection (MOI) yielded increased eNOS mRNA 

expression through the 72h time point. (B) Quantification RT-PCR analysis of eNOS mRNA 

level in Ad-eNOS transfected ASC versus endothelial controls. (*: P< 0.05 vs. HUVEC and 

HDMEC control, n = 3 individual experiment per condition; Mean ± SD are reported). (C) 

Western Blot analysis of eNOS protein expression in ASC 72 and 96h after Ad-eNOS 

transfection. (D) RT-PCR analysis of eNOS mRNA expression in ASC 3wk following 

eNOS transfection.
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Figure 2. Effect of eNOS transfection on NO production in human ASC
(A) NO production in ASC 1wk following Ad-eNOS transfection as a function of increasing 

adenoviral multiplicity of infection (MOI) (*: p<0.05 vs. HUVEC control, n=3). (B) 

Production of NO by eNOS-transfected ASC (MOI=1000) following bradykinin (10uM) 

stimulation demonstrates that gas production over 10min (n=3 individual experiment per 

condition; Mean ± SD are reported). (C) Production of NO by eNOS transfected ASC 

(MOI=1000) is related to bradykinin concentration (n=3 individual experiment per 

condition; Mean ± SD are reported). (D) The NO produced by the transfected ASC 

(MOI=1000) is bioactive. Shown is a representative graph of aortic rings (n=2) denuded of 

EC contract after stimulation with norepinephrine (double arrow, early time point). 

Norepinephrine was added after stretching the rings to optimal passive tension. The rings 

appeared to contract maximally approximately 2min after the addition of norepinephrine. 

During this time period, bradykinin was added to the ASC cultures; after two minutes of 

bradykinin culture, the conditioned medium from the eNOS-transfected ASC cultures was 

serially applied to the rings (four times), producing relaxation of the rings denuded of 

endothelium. (E) In a parallel control experiment (n=1), conditioned media from GFP-

transfected ASC failed to produce relaxation (second arrow).
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Figure 3. Characterization of ASC and vascular graft creation within the rabbit model
(A) RTPCR analysis of eNOS mRNA expression rabbit ASC differentiated towards and EC 

lineage before (control, C) and after (Ad-eNOS) eNOS transfection. (B) Phase contrast 

photomicrograph of rabbit ASC differentiated towards an EC lineage after application of 

shear stress (1.5 dyne/cm2 at 0.2 Pa, 48h) demonstrating alignment of the cells in the 

direction of shear. (C) Phase contrast photomicrograph of EC-differentiated rabbit ASC 

following seeding onto Matrigel demonstrating cord formation indicative of angiogenic 

potential. (D) Laser confocal micrograph of the luminal surface of a vascular scaffold 

seeded with differentiated and transfected autologous rabbit ASC and flow conditioned for 

5d demonstrates the adherence and alignment of the seeded cells (Cell Tracker Green).
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Figure 4. Characterization of TEBV in vivo
(A) Duplex ultrasound of TEBV and control grafts (CTRL) 2wk following implantation as 

interposition grafts within rabbit infra-renal aorta. (B) Representative gross examination of 

TEBV and control graft 8wk after implantation (views of the mid-graft cut transversely and 

the entire graft splayed open longitudinally). (C) Scanning electron micrograph of the 

luminal surface of an ASC-seeded TEVB and unseeded control graft (CTRL) 8wk after 

implantation. (D) Laser confocal micrograph (actin stain, green; nuclear stain, red) of a 

TEVB 8wk after implantation demonstrates the presence of a confluent, aligned layer of 

cells on the luminal surface of the graft. For comparison, staining of the adjacent native 

aorta is shown. (E) Photomicrographs of grafts 8wks after implantation (H&E, left; PTAH, 

right). The TEBV is free of significant fibrin formation on its luminal surface (fibrin stains 

red upon staining with PTAH). Representative results are shown from one TEBV and one 

control graft. Similar results were obtained from another 4 animals.
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