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PErsPECtiVE

The mRNA is co-transcriptionally 
bound by a number of RNA-bind-

ing proteins (RBPs) that contribute to its 
processing and formation of an export-
competent messenger ribonucleoprotein 
particle (mRNP). In the last few years, 
increasing evidence suggests that RBPs 
play a key role in preventing transcrip-
tion-associated genome instability. Part 
of this instability is mediated by the 
accumulation of co-transcriptional R 
loops, which may impair replication 
fork (RF) progression due to collisions 
between transcription and replication 
machineries. In addition, some RBPs 
have been implicated in DNA repair and/
or the DNA damage response (DDR). 
Recently, the Npl3 protein, one of the 
most abundant heterogeneous nuclear 
ribonucleoproteins (hnRNPs) in yeast, 
has been shown to prevent transcrip-
tion-associated genome instability and 
accumulation of RF obstacles, partially 
associated with R-loop formation. Inter-
estingly, Npl3 seems to have additional 
functions in DNA repair, and npl3Δ 
mutants are highly sensitive to geno-
toxic agents, such as the antitumor drug 
trabectedin. Here we discuss the role of 
Npl3 in particular, and RBPs in general, 
in the connection of transcription with 
replication and genome instability, and 
its effect on the DDR.

Introduction

In eukaryotic cells, transcription and 
translation occur in different cellular 

compartments. Whereas DNA is tran-
scribed to mRNA in the nucleus, protein 
synthesis takes place in the cytoplasm, 
implying that the mRNA has to be 
exported for translation. This export 
occurs through a macromolecular com-
plex embedded in the nuclear membrane 
termed the nuclear pore complex (NPC).1 
Transcription and export are coupled 
with the processing of pre-mRNAs into 
mRNAs, which includes 5′-end cap-
ping, splicing, and 3′-end cleavage and 
polyadenylation. During these processes, 
the mRNA is co-transcriptionally pack-
aged by a number of RNA-binding pro-
teins (RBPs) leading to the formation of 
an export-competent messenger ribonu-
cleoprotein particle (mRNP).2 The most 
abundant classes of RBPs in eukaryotes 
are the heterogeneous nuclear ribonucleo-
proteins (hnRNPs) and the mammalian 
serine-arginine-rich (SR) proteins. Both 
protein families carry out different func-
tions from pre-mRNA packaging to splic-
ing, mRNA export and translation.3,4

One of the most abundant hnRNPs in 
Saccharomyces cerevisiae is Npl3, which is 
also an SR-like protein and shares struc-
tural homologies with both protein fami-
lies.5,6 Npl3 is a multifunctional protein 
that participates in a variety of RNA-
related processes, including transcription, 
splicing, mRNA export, and transla-
tion.7-10 Additionally, a recent report has 
provided evidence of an Npl3 role in pre-
venting genome instability.11 The function 
of Npl3 at transcribed genes is neces-
sary to avoid R-loop formation between 
the nascent mRNA and the transcribed 
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DNA strand, thus protecting the genome 
against harmful transcription–replication 
collisions. The sensitivity of npl3Δ cells 
to double-strand break (DSB)-inducing 
genotoxic agents, including the antitumor 
drug trabectedin, suggests a role of Npl3 
in the DNA damage response (DDR) and 
provides new evidence on the importance 
of RBPs in the maintenance of genome 
integrity and cancer prevention that we 
discuss here from a global perspective.

Npl3, a Multifunctional Protein 
Mediating RNA Export

Npl3 was initially identified as a 
protein required for the localization of 
nuclear proteins (nuclear protein localiza-
tion 3) and for pre-rRNA processing.12,13 
However, it was soon described for its role 
as an mRNA export factor and its ability 
to shuttle between the nucleus and the 
cytoplasm together with the mRNAs.8,14 
Npl3 shares structural homologies with 
hnRNPs and SR proteins. It has 2 RNA-
recognition motifs (RRMs), a conserved 
RNA-binding domain shared by a number 
of RBPs from yeast to humans (Fig. 1), and 
an N-terminal domain composed of RGG 
tripeptides and RS dipeptides that confer 

to Npl3 a high RNA-binding capacity.5 
There are 2 other SR-like proteins in 
Saccharomyces cerevisiae, Gbp2 and Hrb1, 
which also function in mRNA export. In 
contrast to Npl3, Gbp2 and Hrb1 physi-
cally associate with the THO complex, a 
key nuclear RNA binding factor connect-
ing transcription, mRNP biogenesis, and 
genome instability.15 In addition, Npl3 
promotes pre-mRNA splicing, while 
Gbp2 and Hrb1 are involved in quality 
control of spliced mRNAs.9,16

Npl3 binds to genes in a transcription-
dependent manner by its physical interac-
tion with the C-terminal domain (CTD) 
of RNA polymerase II (RNAPII) at the 
phosphorylated Ser2,7,17 which is a mark 
of transcription elongation. Binding of 
Npl3 to RNAPII promotes transcription 
elongation and inhibits termination by 
competing with the CF1A cleavage and 
polyadenylation complex.18 This mecha-
nism is believed to avoid premature ter-
mination at cryptic termination sites and 
serves as a self-regulation mechanism 
of Npl3 due to the existence of a weak 
alternative poly-A site downstream of 
the NPL3 gene.19 The anti-termination 
activity of Npl3 is progressively reduced 
during transcription elongation by casein-
kinase Cka1-dependent phosphorylation, 

allowing the action of termination factors.7 
Then, mRNA 3′-end processing stimu-
lates Npl3 dephosphorylation by Glc7 
phosphatase, which causes Npl3 binding 
to the nascent mRNA and promotes its 
export to the cytoplasm.20 Consistent with 
this model, Npl3 is distributed genome-
wide throughout the length of transcribed 
ORFs in an increasing gradient toward the 
3′ end and decreasing again around the 
poly-A site,11 not easily observed in another 
study.21 The increasing accumulation of 
Npl3 toward the 3′ end of genes correlates 
with that of Ser2P of the RNAPII CTD, 
with which Npl3 physically interacts.7,22,23 
Indeed, the THO complex and several 
transcription elongation factors also bind 
to active genes in a 5′ to 3′ gradient.23-25 
Therefore, it is possible that the RNAPII 
CTD participates in recruiting Npl3 dur-
ing transcription elongation.

After export to the cytoplasm, Npl3 
is phosphorylated by Sky1 and released 
from the mRNA.26 Indeed, purifica-
tion of the mRNPs by pull down with 
different RNA-binding tagged-proteins 
has revealed that Npl3 is a component 
of the nuclear mRNPs, but not of the 
cytoplasmic mRNPs, such as the Cap-
binding complex (CBC) proteins Cbp20 
and Cbp80, the THO subunit Thp2, the 
RNA export factor Yra1, the export recep-
tor Mex67, the NPC-associated THSC/
TREX-2 subunit Sac3, and the nucleopo-
rin Mlp1.27,28 These observations indicate 
that Npl3 is bound to the mRNA at early 
stages of mRNP biogenesis and remains 
associated until it reaches the cytoplasm, 
where it is dephosphorylated and reim-
ported to the nucleus.

A Role of Npl3 in the 
Maintenance of Genome 

Integrity

Improper mRNP biogenesis and 
export leads to defects in transcription and 
mRNA export and transcription-associ-
ated genome instability.29 Part of this insta-
bility is mediated by the accumulation of R 
loops, consisting on a DNA–RNA hybrid 
and the displaced non-template DNA 
strand. R loops form naturally during spe-
cific cellular processes, such as Escherichia 
coli plasmid replication, mitochondrial 

Figure  1. rNa-binding domains in different eukaryotic rBPs. rrM, rNa-recognition motif; 
H,  hinge domain; rs, arg-ser-rich; rGG, arg-Gly-Gly-rich; rK, arg-Lys-rich; Hs, Homo sapiens; 
Mm, Mus musculus; Gg, Gallus gallus; Ce, Caenorhabditis elegans; sc, Saccharomyces cerevisiae; 
sp, Schizosaccharomyces pombe.
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DNA replication, and immunoglobulin 
class switching. However, they can also be 
generated as transcriptional by-products 
that compromise genome integrity.30 This 
has been shown for cells from yeast to 
humans depleted of a number of proteins 
involved in RNA metabolism, including 
the THO complex of yeast, Caenorhabditis 
elegans, and human cells,31-33 the ASF/
SF2 splicing factor of chicken and human 
cells,34 the yeast and human topoisom-
erase I,35,36 the yeast DNA-RNA heli-
case Sen1/Senataxin,37 and the yeast 
non-canonical polyA-polymerase Trf4.38 
In addition, several screenings in yeast 
and human cells have revealed a number 
of RNA-processing factors preventing 
R-loop-mediated genome instability.39-41 
Interestingly, absence of Npl3 leads to 
genome instability, as npl3Δ cells accumu-
late DSBs and have high levels of recom-
bination.11 This hyperrecombination is 
dependent on transcription and partially 
suppressed by overexpression of RNase 
H1. Therefore, these results strongly sup-
port a model suggesting that an improper 
mRNP assembly may lead to R-loop accu-
mulation in cells lacking Npl3.

Interestingly, the hyperrecombina-
tion phenotype of npl3Δ cells, as well as 
their sensitivity to genotoxic agents and 
lethality at 37 °C, is suppressed by over-
expression of several hnRNP genes.11 This 
includes the THO-associated protein Sub2 
and the polyA-binding proteins Nab2 and 
Tho1. Complete suppression of hyperre-
combination by SUB2 overexpression may 
indicate a function of Npl3 related to that 
of THO/TREX, at early steps of mRNP 
biogenesis. Despite their different struc-
tures (Fig. 1), both Nab2 and Npl3 share 
functional similarities. They bind poly-A 
RNA, function as Mex67 adaptors, shuttle 
between the nucleus and the cytoplasm, 
and participate in pre-ribosomal subunits 
export.8,20,42-44 Whereas Nab2 associates 
with mRNAs encoding transcription-
related proteins, Npl3 preferentially binds 
to transcripts encoding ribosomal proteins 
and other highly transcribed mRNAs,45 
suggesting specific functions for Nab2 
and Npl3 in alternative mRNP biogen-
esis pathways. Conversely, overexpression 
of NPL3 reduces the hyperrecombination 
phenotype of the THO mutant hpr1Δ, 
suggesting the existence of partially 

overlapping functions of Npl3 and THO. 
In this sense, it is worth noting that NPL3 
overexpression per se is able to increase 
recombination in wild-type cells, so that 
Npl3 cellular levels has to be tightly reg-
ulated. However, a contribution to this 
phenomenon of late transcription termi-
nation caused by excess of Npl3 cannot be 
discarded.18

Coordination of Transcription, 
mRNA Export, and Replication  
to Prevent Genome Instability

Transcription may become an obstacle 
for replication progression, so that a tight 
coordination is required for the RF to 
traverse transcribed DNA sequences.46 
In addition, transcription may occur in 
close contact to the NPC, according to 
the “gene gating” hypothesis, thanks to 
the participation of a number of mRNA 
export factors and components of the 
NPC, as shown in yeast, worms, flies, and 
mammals.47,48 In this sense, a mechanism 

has been proposed by which the DNA 
damage checkpoint releases transcribed 
genes from the NPCs to facilitate RF 
progression.49 A non-proficient transcrip-
tion and/or mRNA export may lead to 
replication impairment, as shown by 
the genome-wide analysis of the replica-
tive Rrm3 helicase distribution in yeast. 
As Rrm3 is required for the RF to pass 
through obstacles,50 its accumulation at 
specific genomic regions has been used 
to identify RF pauses or stalls. Indeed, 
Rrm3 binding sites highly correlate with 
transcribed areas.51 Deletion of NPL3 
increases the genome-wide accumulation 
of Rrm3 to the highest transcribed genes.11 
Interestingly, Rrm3 accumulation is sup-
pressed by RNase H1 overexpression, sug-
gesting that R loops constitute an obstacle 
to RF progression in npl3Δ cells. Mutants 
of the THO component Hpr1 also show 
R-loop-mediated Rrm3 accumulation 
at highly transcribed genes,24 suggesting 
that co-transcriptional R-loops may lead 
to genome instability by interfering with 
RF progression.

Figure 2. Model illustrating the role of Npl3 coupling mrNP biogenesis and export. in wild-type 
cells (top), the mrNa is properly assembled into an export-competent mrNP with the collaboration 
of rNa-binding factors such as Npl3, tHO/trEx, Nab2, and Mex67-Mtr2. this facilitates rF pro-
gression through transcribed DNa regions. However, in npl3Δ cells (bottom) the mrNa packaging 
is defective, and the nascent mrNa may hybridize with the transcribed DNa strand, leading to 
r loops that favor the accessibility of DNa damaging agents to the non-transcribed single-stranded 
DNa and that constitute an obstacle for rF progression. antitumor drug trabectedin (Et-743) might 
act similarly to an r loop.
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Taking into account the reported effects 
of Npl3 on transcription, replication, and 
genome integrity, our current view is that 
Npl3 is a key player preventing conflicts 
between these processes. Npl3 stimulates 
transcription elongation and is highly 
abundant at the nascent mRNPs, helping 
prevent transcription–replication conflicts 
and R-loop accumulation (Fig. 2). In the 
absence of Npl3, transcription elongation 
is slower and the mRNAs would not be 
properly assembled into export-competent 
mRNPs, enhancing the probability of 
R-loop accumulation and transcription-
associated genome instability.

A Possible Role of Npl3 in the 
DNA Damage Response

Although a direct role of RBPs in DNA 
repair and the DDR has not yet been estab-
lished, several reports have revealed new 
functions of specific RBPs in DNA repair 
in higher eukaryotes.52 In yeast, different 
mRNA export mutants, including THO 
mutants hpr1Δ and tho2Δ and THSC/
TREX-2 mutant thp1Δ, show increased 
sensitivity to genotoxic agents, such as 
4NQO, UV, or MMS.53 Interestingly, the 
npl3Δ mutant is sensitive to MMS, HU, 
phleomycin, and UV, agents causing DNA 
lesions that can result in stalled RFs and/
or DSBs, indicating a role of Npl3 pre-
venting DNA damage accumulation.11 
Importantly, simultaneous deletion of 
NPL3 and RAD52 or YKU80, 2 key com-
ponents of the homologous recombination 
(HR) and non-homologous end-joining 
(NHEJ) pathways of DSB repair, respec-
tively, induces increased sensitivity to 
MMS, suggesting a connection between 
Npl3 and DSB repair. Although npl3Δ 
cells proficiently repair DSBs by sister-
chromatid recombination, the main HR 
mechanism, they show a mild defect in the 
repair by NHEJ. This suggests the possi-
bility that Npl3 had a role in DNA repair 
consistent with that reported for other 
RBPs, as in the case of the human p54nrb/
NONO, which binds to DSBs sites and 
favors their repair by NHEJ over HR.54 On 
the other hand, sensitivity of npl3Δ cells 
to UV may imply a connection of Npl3 
with the nucleotide excision repair (NER) 
pathway, which repairs bulky adducts 

in the DNA, such as those induced by 
UV. Consistently, several mRNA export 
mutants (hpr1Δ, tho2Δ, sub2Δ, and thp1Δ) 
have been involved in transcription-
coupled NER (TC-NER), the RNAPII-
dependent NER sub-pathway.55 However, 
this phenotype may also be the conse-
quence of an increase in the collisions 
between transcription an replication pro-
moted by UV lesions occurring during the 
S phase, which would lead to DNA breaks 
that would demand DSB repair functions 
for their repair and RF restart.

DNA repair genes are not downregu-
lated in npl3Δ cells,11 so that it seems clear 
that Npl3 does not specifically control 
the expression of DNA repair genes that 
could explain their repair phenotypes. 
Interestingly, however, Npl3 was identi-
fied in a proteomic screening for Mec1/
Tel1- and Rad53-dependent phosphoryla-
tion sites, together with components of the 
nuclear basket of the NPC.56 Therefore, 
it is possible that Npl3 also plays a role in 
the DDR. Extensive work will be required 
to understand the molecular mechanisms 
underlying the connection of yeast RBPs 
and DNA repair.

One important observation in our 
study is the hypersensitivity of npl3Δ 
cells to the antitumor drug trabectedin. 
The mechanism of action of this drug 
has been proposed to be dependent on 
the NER machinery both in fission yeast 
and humans.57,58 Binding of trabectedin 
to the DNA would form an adduct rec-
ognized by the NER machinery, leading 
to the stabilization of a complex with the 
fission yeast/human nuclease Rad13/XPG 
(Rad2 in budding yeast). The Rad13–
DNA–trabectedin ternary complex would 
block the repair by NER, leading to DSBs 
and DNA damage checkpoint activa-
tion.57,59 A similar situation was reported 
for the rad3–102 mutant in budding 
yeast, which encodes a defective Rad3/
XPD allele that blocks NER repair in a 
post-incision step and requires HR for RF 
restart.60 Consequently, npl3Δ cells treated 
with trabectedin could over-accumulate 
DSBs, mimicking the effect of MMS or 
phleomycin.

An additional, but a non-excluding 
possibility, to explain trabectedin hyper-
sensitivity could be related to the fact that 
trabectedin binding to the DNA generates 

an R-loop-like structure.61 According to 
this, Npl3 could be required to prevent or 
solve this sort of structure, thus explain-
ing the R-loop-mediated genome instabil-
ity and replication impairment of npl3Δ 
cells. Given the importance of the Npl3 
resistance to trabectedin anti-tumor drug, 
and that genome instability is a common 
hallmark of cancer cells,62,63 these obser-
vations open the possibility of exploring 
the use of specific RBPs as new targets for 
anti-cancer drug designs.

Concluding Remarks

Transcription-associated genome insta-
bility is a common hallmark of mRNA 
processing defects from yeast to human 
cells. Depletion of proteins involved in 
mRNP biogenesis and processing leads to 
an increase in DNA breaks in a transcrip-
tion-dependent manner, in part due to 
R-loop formation, and as a consequence of 
replication impairment. Finding that the 
yeast SR-like protein Npl3, one of the most 
abundant RNA-binding proteins in yeast, 
prevents genome instability and R-loop 
formation as the major trigger of tran-
scription-associated instability provides 
strong evidence of the key importance of 
proper mRNA biogenesis and assembly in 
preventing the nascent RNA from inter-
acting with the template DNA and from 
compromising genome integrity. Thus, 
Npl3 is a multifunctional protein acting 
from transcription to mRNA processing 
and export with a function in preventing 
genome instability. Interestingly, it seems 
to have additional roles in DNA repair, 
as is the case of other RBPs from mam-
malian cells, although this is still poorly 
understood. Thus, RBPs constitute a con-
served group of nuclear factors that safe-
guard genome integrity in many different 
ways. Defining the specific functions of 
Npl3 and other RBPs in genome integ-
rity, as well as their involvement in DNA 
repair, the DDR, and cancer is important 
to understand the role of RNA and RNA-
binding factors in genome dynamics and 
in the origin of cancer.
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