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Introduction

The ability of cells and organisms to maintain genome integ-
rity is essential for cellular and organismal function. Chromosome 
instability, particularly gain or loss of whole chromosome(s) dur-
ing mitosis, termed aneuploidy, is the hallmark of most solid 
tumors. A high degree of chromosome instability, on the other 
hand, often leads to apoptosis, thus suppressing tumor progres-
sion.47 Aneuploid germ cells (eggs or sperms) derived from chro-
mosome segregation errors during meiosis produce aneuploid 
embryos. With rare exceptions, aneuploid embryos die during 
various stages of embryonic development. In mice, the only via-
ble aneuploidies are X chromosome monosomy3 and trisomy 19.9 
In humans, only X monosomy (Turner syndrome) and very few 
trisomies can be viable, but inevitably carry major birth defects 
(e.g., trisomy 21 or Down syndrome).14

Aneuploidies are produced during anaphase of cell division 
when one or more chromosomes are mis-segregated, resulting in 
chromosome gain in one daughter cell (hyperploid) and the cor-
responding loss in another (hypoploid). Given the vital impor-
tance of chromosome segregation fidelity, nature has evolved a 
surveillance mechanism, namely spindle assembly checkpoint 
(SAC), to control the onset of anaphase during cell division.33 
SAC prevents anaphase initiation until all chromosome pairs 
have achieved bipolar attachment and aligned at the metaphase 
plate of the spindle. SAC is thought to be activated by “naked 
kinetochores” (kinetochores unoccupied by microtubules)39,40 
and by the lack of tension between the sister chromatids when 

both are attached to the same pole (monoploar attachment).27 
In prometaphase, major SAC proteins Mad2 (mitotic arrest defi-
cient 2), Bub1B (budding uninhibited by benzimidazoles 1B), 
and Bub3 form mitotic checkpoint complex (MCC) at kineto-
chores. Kinetochore-associated MCC binds and sequesters 
Cdc20, a key activator of anaphase-promoting complex (APC; 
an E3 ligase). Cdc20 sequestration at kinetochores prevents APC 
activation. At metaphase when sister kinetochores are fully occu-
pied by kinetochore microtubules and are bipolar attached, MCC 
dissociates from kinetochores, releasing Cdc20, which, in turn, 
activates APC.33 APC targets cyclin B and securin, among many 
other protein substrates, for proteolysis.37 Securin degradation 
leads to activation of separase and removal of cohesin, thus releas-
ing sister chromatids. Degradation of cyclin B results in the inac-
tivation of cyclin-dependent kinase 1 (CDK1), allowing mitotic 
exit with ensuing anaphase and cytokinesis.37

Meiosis I in animal oocytes is fundamentally different from 
mitosis of somatic cells. Meiosis I has the unique task of segre-
gating homologous chromosomes. Unlike in somatic cells, where 
homologous chromosomes are independently segregated, in germ 
cells, homologous chromosomes are linked due to lengthwise sis-
ter chromatid cohesion (by a protein complex named cohesin) and 
non-sister crossover (homologous recombination), established 
before birth in mammals. In meiosis I in adult females, the 2 sis-
ters are segregated together (to the first polar body or the mature 
egg) after the loss of cohesin in chromosome arms. Centromeric 
cohesin remains until after fertilization, when anaphase II seg-
regates the 2 sisters (to second polar body and the haploid egg 
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the spindle assembly checkpoint, SAC, is a surveillance mechanism to control the onset of anaphase during cell divi-
sion. SAC prevents anaphase initiation until all chromosome pairs have achieved bipolar attachment and aligned at the 
metaphase plate of the spindle. In doing so, SAC is thought to be the key mechanism to prevent chromosome nondis-
junction in mitosis and meiosis. We have recently demonstrated that Xenopus oocyte meiosis lacks SAC control. this 
prompted the question of whether Xenopus oocyte meiosis is particularly error-prone. In this study, we have karyotyped 
a total of 313 Xenopus eggs following in vitro oocyte maturation. We found no hyperploid egg, out of 204 metaphase II 
eggs with countable chromosome spreads. therefore, chromosome nondisjunction is very rare during Xenopus oocyte 
meiosis I, despite the lack of SAC.
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respectively).22 Meiosis I in human oocytes is error-prone primar-
ily due to premature separation of sister chromatids (PSSC) (as 
appose to whole chromosome non-disjunction)1,23 caused by pre-
mature loss of centromeric cohesin,8 an error not likely recognized 
by SAC, which surveys kinetochore–microtubule interaction 
and tension.33 In addition, animal oocytes lack centrosomes and 
assemble a bipolar spindle from multiple microtubule-organizing 
centers;11,41,44 in acentrosomal spindles, kinetochore microtubules 
are entirely absent in some species45,48 or, in other species, are rela-
tively scarce and only discernable after experimental destruction 
of non-kinetochore microtubules.2,6,12,18,20,36,44 Finally, the essence 
of SAC is the ability of the spindle to control the biochemistry 
of cytoplasmic proteins (Cdc20, cyclin B, securin, etc.). It seems 
that the mechanism would be quite different in somatic cells and 
large animal eggs, where the spindles are similar in size but the 
cytoplasm volumes are different by thousands- to millions-fold.

It is therefore not surprising that the presence of SAC and 
its function in animal eggs has been controversial.29 Complete 
disruption of spindle microtubules by nocodazole in mouse 
oocytes causes reversible metaphase I arrest, suggesting the pres-
ence of a functional SAC.2 Moreover, deficiency of SAC proteins 
increases mouse egg aneuploidies in vivo12,24,31 and in vitro.17,26 
On the other hand, incorporating chromosome monovalents into 

meiosis I spindle causes obligatory monopo-
lar attachment, and yet mouse oocytes with 
many misaligned chromosomes proceed to 
anaphase and polar body emission without 
delay.4,25,34,42 Finally, older mice exhibit sig-
nificantly higher egg aneuploidy rates due 
to age-related cohesin loss5,16,28,38 and the 
consequent PSSC during meiosis I or meio-
sis II,5,46,49 with no evidence that SAC func-
tion in these oocytes are compromised.7,28

In contrast to mouse oocytes, complete 
disruption of microtubules by nocodazole 
in Xenopus oocytes does not cause meta-
phase I arrest. Similarly, monopolar spin-
dle, which causes SAC-mediated metaphase 
arrest in mitotic cells, does not cause meta-
phase I arrest in frog oocytes.43 In this 
study, we have asked the question whether 
Xenopus meiosis I is error-prone, given the 
lack of SAC.

Results and Discussion

The classical chromosome spread 
method suitable for mammalian eggs10 is 
not directly applicable to the much larger 
Xenopus eggs. We have recently developed 
a karyotyping method that has enabled us 
to analyze chromosome morphology during 
Xenopus oocyte meiosis.43 In this method, 
we first excise a mini-cell containing the 
meiotic spindle including all chromo-

somes, reducing the cytoplasmic volume by >5000-fold (Fig. 1A 
and B). We then subject the mini-cell to chromosome spread. 
This method produces intact meiotic chromosome arrays, with 
chromosome-associated proteins, such as the centromere-bound 
Aurora B, at all stages of meiosis: 18 bivalents at prometaphase 
I and metaphase I, 2 sets of 18 dyads (monovalents) at anaphase 
I, 18 dyads at metaphase II with or without the partially de-con-
densed first polar body chromosomes, and, following partheno-
genetic activation, 2 sets of sister chromatids (without Aurora B) 
at anaphase II.43

We performed karyotype analyses of Xenopus eggs follow-
ing in vitro oocyte maturation, shortly after first polar body 
emission, when individual metaphase II chromosomes have 
relatively short arms and are therefore easily identified.43 In 15 
experiments using 10 females between 14–32 months of age, 
we subjected 313 eggs to the karyotype procedure. Of the 256 
spreads which contained chromosomes, we obtained 204 count-
able metaphase II spreads, summarized in Table 1. The majority 
(140/204) had a euploid karyotype, with 18 chromosome dyads 
(Fig. 1C). The next most abundant karyotype is of 17 dyads 
(29/204). The remaining 34 have various numbers of dyads, 
from 16 to less than 12. Most significantly, we did not find any 
hyperploid eggs (19 or more dyads). Only one egg (1/204) was 

Figure 1. (A) Narishige IM-9A microinjector (far left) with a glass needle attached (under the scope 
and above the dish). (B) See text for details. the scale bar in panel i applies to panels i–v, and that 
in panel vi applies to panels vi–viii. the white patch in some images (iii–v) is an artifact of uneven 
lighting. (C) A typical euploid metaphase II egg with 18 chromosome dyads. the numbers (1–18) 
are used to facilitate chromosome counting and do not imply chromosome identities. Among the 
204 metaphase II spreads, 82 were in the presence of the first polar body (1st pB) chromosomes, 
suggesting that abscission had not completed in these eggs at the time of karyotyping.43 DNA in 
green and Aurora B in red.
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found to contain an unpaired sister (plus 17 dyads; 17.5). Only 2 
eggs (both from the same batch of oocytes) were found in meta-
phase I with 18 intact bivalent chromosomes. In addition, 7 eggs 
(all 7 from the same batch of oocytes) contained chromosomes 
at anaphase I.43 The remaining 43 eggs were at metaphase II, but 
the chromosomes were not spread well enough to be counted 
accurately.

Finding 0 hyperploid metaphase II eggs in 204 countable 
metaphase II spreads indicates that the maximal frequency of 
hyperploid eggs, with 95% confidence, is less than 2%. The 
occurrence of “hypoploid” eggs (≤17 dyads) was likely the result 
of technical loss of chromosomes during the procedure.21 The 
ratio of euploid karyotypes over “hypoploid” karyotypes is very 
similar to those reported in experiments on mice,21,46 indicating 
that our method for karyotyping Xenopus eggs is as efficient as 
that for mouse eggs. These results therefore indicate that chro-
mosome nondisjunction (i.e., hyperploidy) in Xenopus oocyte 
meiosis I is very rare. The rare occurrence (1/204) of unpaired 
sister chromatids in metaphase II Xenopus eggs suggest that the 
time lapse (8–26 mo) from sexual maturity (6-mo-of-age19) had 
little effect on the occurrence of PSSC, in contrast to the signifi-
cant aging-dependent increase of PSSC found in mice.21,46 While 
it is thought by most that mammalian females are born with a 
finite number of prophase-arrested oocytes, fish and amphibian 
ovaries may contain germ line stem cells capable of replenishing 
the oocyte pool after every spawning.19,35

The chromosome nondisjunction rate (hyperploidy) in 
Xenopus meiosis I, as reported here, is no greater than that in 
oocyte meiosis I in young mice,21,46 suggesting that the lack of 
SAC in Xenopus oocyte meiosis does not render it error-prone. 
Like meiosis in Xenopus oocytes, early mitoses in Xenopus 
embryos similarly lack checkpoint control.13,32 These embryonic 
mitoses are rapid (every 30 min in Xenopus, but even faster in 
other organisms, such as Drosophila). One might argue that the 
lack of SAC in early embryos of these species is necessary for 
the rapid and synchronous cleavage divisions, since a checkpoint 
delay in some cells will disrupt the synchronicity with deadly 
outcome. Speedy embryonic development is clearly important for 
these immobile and unprotected embryos. But is chromosome 
segregation fidelity compromised in these early mitoses? This 
remains to be determined.

Materials and Methods

Sexually mature and oocyte-positive Xenopus laevis females 
(10–12 mo of age) were purchased from Nasco and maintained 

in XenopLus Housing System (Tecniplast), with water tempera-
ture set at 19 °C. For this project, the frogs were used 4–20 mo 
after arrival (14–32 mo of age). Each female was primed with 
100 IU PMSG (Sigma-Aldrich) and sacrificed 3–10 d after 
hormone injection. Oocytes were isolated by manual defollicu-
lation30 and kept at 18 °C in oocyte cultural medium (OCM; 
60% of L-15 medium [Sigma-Aldrich], supplemented with 1.07 
g BSA per liter, mixed with 40% autoclaved water, and 50 μg/ml 
gentamicin [Gibco]). Oocytes were incubated in OCM with 1 
μM progesterone and monitored for germinal vesicle breakdown 
(GVBD; indicated by the appearance of a depigmented spot at 
the animal pole) every 10 min. GVBD oocytes were transferred 
individually into fresh OCM without progesterone.

Two and half (2.5) hours after GVBD, oocytes were trans-
ferred to OR2 medium (83 mM NaCl, 2.5 mM KCl, 1 mM 
Na

2
HPO

4
, and 5 mM Hepes, pH 7.8) containing 10 μg/ml 

cytochalasin B and 1 mg/ml BSA. After 5 min incubation, the 
vitelline membranes (depicting as fuzzy egg outline) were torn 
off partially, using 2 pairs of fine forceps, at the animal pole to 
expose the maturation spot (Fig. 1B, ii). A glass needle of ~70 μm 
inner diameter at the tip (prepared as described below) attached 
to an IM-9A microinjector (Narishige; Fig. 1A), was placed over 
the plasma membrane at the spindle anchoring site, evident as a 
translucent spot at the center of a larger depigmented maturation 
spot (Fig. 1B, i and ii). A negative pressure was applied manually 
through the Narishige injector to aspirate the translucent spot 
into the needle (Fig. 1B, iii and iv). The oocyte was moved away 
slowly (Fig. 1B, v), severing a mini-cell inside the needle (Fig. 1B, 
vi). The mini-cell was immediately expelled by applying a posi-
tive pressure (Fig. 1B, vii and viii). Mini-cells were immediately 
transferred into water (as hypotonic solution) containing 1 mg/
ml BSA. Ten (10) minutes later, the mini-cells were transferred 
individually, with minimum solution, onto a glass slide pre-wet 
with fixative (1% paraformaldehyde in water, containing 0.15% 
Triton X-100 and 3 mM dithiothreitol, pH 9.2).15 The slides were 
kept in humid box for overnight before air drying for 1 h. The 
slides were rinsed in 0.5% photoflo (Kodak) in water for 1 min 
and then rinsed 3 times with PBS and subjected to immunostain-
ing with antibodies against Aurora B50 and sealed with mounting 
solution containing 1.5 μg/ml 4’, 6-diamidino-2-phenylindole 
(DAPI) for DNA counterstaining. The slides were imaged in a 
Zeiss Axiovert 100 scope with a 63× oil objective. The images 
were pseudo-colored using Volocity (Improvision), followed by 
karyotype determination.

The needles were made by pulling the glass micropipettes 
(30 μL Microcaps, Drummond Scientific Company) with 
Micropipette Puller (Model P-97, Sutter Instrument Co; Settings: 

Table 1. Karyotypes of in vitro-matured Xenopus laevis eggs

 Karyotype MI AI Uncertain 18 (Euploid) 17 16 15 14 13 ≤12 PSSC (17.5) Hyperploid

# of eggs 2 7 43
140

29 13 7 6 3 5
1 0

63

204

total 256
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