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The kinase suppressor of Ras 2 (KSR2) is a scaffold protein for the extracellular signal-regulated
protein kinase (ERK) signaling pathway. KSR2 mediates germline mpk-1 (Caenorhabditis elegans
ERK) phosphorylation in C. elegans and has been implicated the regulation of meiosis. KSR2~/~ mice
exhibit metabolic abnormalities and are reproductively impaired. The role of KSR2 in meiosis and

fertility in mice has yet to be elucidated. Here, we describe a novel truncated KSR2 mRNA identified
in mouse testes (T-KSR2). Further analysis demonstrates T-KSR2 is specific to mouse testes
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and mature sperm cells. The detection of T-KSR2 may enhance our understanding of mechanisms

controlling spermatogenesis and fertility.

© 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Kinase suppressor of Ras 1 and 2 (KSR1 and KSR2) are scaffold
proteins for the Raf/MEK/ERK Mitogen Activated Protein Kinase
(MAPK) signaling pathway [1-3]. KSR1~/~ mice are overtly normal
but resistant to Ras-induced tumors [4,5]. KSR2~/~ adult mice are
profoundly obese and insulin resistant [6,7]. Similarly, humans
with KSR2 mutations have early onset obesity and severe insulin
resistance [8]. The extent of murine KSR1 and KSR2 homology is
contained within five conserved areas (CA). The N-terminus con-
tains the CA1 domain, a domain unique to the KSR family; the
CA2 domain is proline-rich and contains a Src homology 2 (SH2)
domain; the CA3 domain is cysteine-rich and responsible for medi-
ating the translocation of KSR protein to the plasma membrane;
the CA4 is a serine/threonine-rich domain that contains the ERK
binding motif; and the CA5 domain, which is located in the C-ter-
minus end of KSR proteins, is a kinase-like domain and mediates
the interaction with MEK [1]. In Caenorhabditis elegans, ksr1 and
ksr2 are required for Ras-mediated signaling [3]. Although the
two members coordinately regulate Ras signaling, these genes
have distinct effects on fertility in C. elegans. Disruption of ksr1 in
C. elegans results in fertile offspring while ksr2 disruption causes
sterility. ksr2 is specifically required for Ras-mediated signaling

Abbreviations: KSR, kinase suppressor of Ras; ERK, extracellular signal-regulated
protein kinase; T-KSR2, testes-kinase suppressor of Ras 2; MAPK, mitogen activated
protein kinase; CA, conserved area; SH2, Src homology 2; RACE, rapid amplification
of cDNA ends; NDK-1, nucleoside diphosphate kinase 1
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during germline meiotic progression in C. elegans. Without KSR2,
oogenesis is arrested at the pachytene stage [3]. Proteins that
interact with and phosphorylate KSR1 and KSR2 regulate
Ras/MAPK activity to regulate C. elegans development. Nucleoside
diphosphate kinase, NDK-1, regulates vulva development in
C. elegans by direct physical interaction with KSR1 and KSR2
[9-11].

KSR1~/~ mice are also fertile and develop normally, but do exhi-
bit enlarged adipocytes, altered hair follicles, and modest defects in
T cell activation [4,5,12]. However, KSR2 plays a larger role in
reproduction, as male and female KSR2~/~ mice exhibit impaired
fertility [6]. KSR2~/~ females begin estrous cycles later than WT
females and have impaired mammary development, while
KSR2~/~ males have reduced sex drive and copulate infrequently
(unpublished observations). These studies suggest KSR2 plays an
important role in regulating fertility and metabolism in mamma-
lian animals.

KSR1 protein is expressed in the brain, spleen, bladder, ovary,
testis, and lung. However, a variant form of KSR1, B-KSR1, has been
identified in brain tissue [13,14]. KSR1 functions in mediating
Ras-induced cell proliferation, cell transformation, and survival.
B-KSR1, which has a longer CA4 domain and a truncated C-termi-
nus relative to KSR1, is critical in mediating Ras-dependent signal-
ing to promote neurite growth and to maintain neuronal
differentiation [14]. The paralog ksr2 gene was first discovered in
C. elegans and was found to have two alternative spliced forms,
with one variant having shorter CA1 and CA4 domains [3]. Human
KSR2 was also found to have two alternative spliced forms that
varied from the full-length 950 amino acids. One variant lacks
the first 29 amino acids (hKSR2AN29) and the second identified
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variant (hKSR2ACA1) lacks the CA1 domain. The hKSR2ACA1 cDNA
clones were obtained from kidney and testes cDNA libraries.
Northern blot analysis revealed hKSR2ACA1 mRNA expression in
human brain and kidney tissue [15]. hKSR2ACA1 has been
described as a regulator of proto-oncogene Cot-induced MAPK
signaling. In mice, KSR2 protein is detected in the brain and
pancreas [6,16]. A murine homolog of hKSR2ACA1 cDNA was
detected in a mouse kidney cDNA library [15]. These data suggest
that mouse KSR2 can be alternatively spliced and variant KSR2
expression is tissue-dependent.

In this study, we describe and characterize a truncated KSR2
mRNA in mouse testis. This variant form of KSR2 lacks the CA1
and CA2 domains, encoding a predicted 598 amino acids. We
determined that this truncated mRNA leads to stable protein
expression in vitro.

2. Materials and methods
2.1. Animals and tissue collection

Mice were housed in pathogen-free conditions and experiments
were carried out under a protocol approved by the University of
Nebraska Medical Center Institutional Animal Care and Use Com-
mittee (University of Nebraska Medical Center, Omaha, NE). Mice
were maintained on a 12 h light/dark schedule with free access
to laboratory chow (ad libitum) and water. Mice were sacrificed
by the administration of CO, followed by cervical dislocation. Tis-
sues from 8 to 12 week old C57BL/6] mice were dissected, frozen
on dry ice, and stored at —80 °C until used.

2.2. Sperm purification

Sperm were collected as previously described [17]. Briefly, the
caudal epididymis was minced and the sperm were allowed to
swim out in phosphate buffered saline (PBS). The sperm-containing
PBS was gently aspirated and collected by centrifugation at 800xg
for 5min at room temperature. Sperm were then lysed in TRI
reagent (Molecular Research Center Ins, TR118). Sperm were 99%
pure as assessed by light microscope. To remove any potential
somatic cells, the sperm were centrifuged at 800xg for 5 min and
the pellet was treated with a hypotonic buffer (0.1% SDS, 0.5% Triton
X100 in deionised water) for half hour, as previously described [18].
The sample was centrifuged at 600xg for 15 min at 4°C. The
supernatant was removed and the sample washed twice with PBS,
then centrifuged at 600xg for 5 min at 4 °C.

2.3. RNA isolation and cDNA synthesis

Total RNA from mouse tissues was isolated with an RNeasy mini
kit (Qiagen) according to the manufacturer’s protocol with modifi-
cation on the lysis step as previously described [19]. Blood samples
were lysed in Tri reagent BD (MRC, TB126). Due to the low level of
RNA in hypotonic buffer-treated sperm, yeast tRNA was added as
carrier RNA during lysis. RNA was treated with DNase I (Ambion,
AM1906) before cDNA synthesis. cDNA from total RNA was pro-
duced with M-MLYV reverse transcriptase (Ambion, AM2043). PCR
was done with Herculase II DNA polymerase (Agilent, 600675-5).

2.4. Rapid amplification of cDNA 5' ends (5’ RACE)

Ten micrograms of total RNA was used as template for the First-
Choice RLM-RACE kit (Ambion, AM1700). Briefly, RNA was treated
by Calf Intestine Alkaline Phosphatase (CIP), followed by Tobacco
Acid Pyrophosphatase (TAP) and adaptor ligation. A no TAP (-TAP)
control was used to ensure the 5’ RACE products are from full-length

mRNA. A primary and a nested PCR were performed with 5 RACE
adapter primers provided by the kit (modified by changing the
BamH1 restriction enzyme site into an EcoR1 site) and gene specific
reverse primers. The PCR products were cloned into the vector
pcDNA3.1(-) and several clones were isolated for sequencing.

Primer sequences (Kpnl and EcoR1 sites in bold, PYO tag in
Italic):

Gene-specific RACE inner primer R460: 5'-GAT TAT CCA CAG
AGG AGA CCC GGT ACC GG-3’

Gene specific RACE outer primer R490: 5'-GTC AGA CTC TCC
CCA AAA CC-3

KSR2 F610: 5'-CC GAA TTC CAA CCT CCG AGA ACG AAG AG-3'
KSR2 Rstop: 5'-GC GGT ACC TCA CAG CTC TGC AGA CTT CCA
GAA ATG TCC-3'

T-KSR2 5UTR: 5'-CG GAA TTC AAT GTA TCA GGC GCT TTG CCG
AAC AC-3’

KSR2 F9: 5'-CGA AAA GCG AAG AGC AGC AAC-3'

KSR2 R207: 5-CG GAA TTC GGC TGG TAG GAC AGA AGT GC-3'
GAPDH F: 5-AGG CCG GTG CTG AGT ATG TC-3'

GAPDH R: 5-TGC CTG CTT CAC CAC CTT CT-3'

PYO-KSR2 R: 5'-GC GGT ACC TCA CTC CAT TGG CAT GTA CTC CAT
CTC CAT TGG CAT GTA CTC CAT CAG CTC TGC AGA CTT CCA GAA
ATG TCC-3'

Protamine-1 F: 5'-AGC AAA GCA GGA GCA GAT G-3'
Protamine-1 R: 5-GGC GAG ATG CTC TTG AAG TC-3’
E-cadherin F: 5'-CAG CTC CTT CCC TGA GTG TG-3’

E-cadherin R: 5'-TGC ACC CAC ACC AAG ATA CC-3’

c-kit F: 5'-AAC GAT GTG GGC AAG AGT TC-3’

c-kit R: 5'- CCT CGA CAA CCT TCC ATT GT-3'

2.5. Cell culture and transfection

HEK293T cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal bovine serum. Cells were
passaged every 2-3 days. Both T-KSR2 and full-length KSR2 were
infused with polyoma virus-derived (PYO) epitope tag and were
cloned into pcDNA3(-) vectors. Two copies of the PYO epitope
tag (amino acids MEYMPME) were included in the 3’ primer imme-
diately upstream of the stop codon. Transfections were performed
utilizing Lipofectamine 2000 (Life Technologies) according to the
manufacturer’s protocol.

2.6. Western blots

Western blots were done as described previously [20] with
slight modifications. Briefly, cells were lysed in buffer containing
1% Igepal, 20 mM Tris (pH 8), 137 mM Nacl, 10% glycerol, 10 pg/
ml aprotinin, 20 nM leupeptin, 0.5 mM sodium orthovanadate,
2 mM EDTA, 10 mM sodium fluoride, and 1 mM phenylmethylsul-
fonyl fluoride (PMSF). Equal amounts of protein were resolved
using sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to nitrocellulose membranes. Primary
PYO antibody was obtained from cultured hybridoma cells as
described previously [21]. Proteins were detected using Odyssey
imaging system (LI-COR Biosciences).

3. Results
3.1. A truncated KSR2 transcript in testes

By analyzing a number of 5" RACE products from testes, an alter-
nate KSR2 mRNA (T-KSR2) (GenBank: KJ719253) was detected

exclusively in testes (Fig. 1A). The predicted first exon of T-KSR2
(exonlt) resides within intron 5 of full-length KSR2, contains a
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Fig. 1. T-KSR2 is expressed in testes. (A) RT-PCR from the nested PCR with 5'RACE inner primer and R460. NT, no temperature control; NRT, No reverse transcriptase control;
testes, testes RNA sample; -TAP ct, no Tobacco Acid Pyrophosphatase (TAP) control. (B) RT-PCR with T-KSR2 using F5UTR and Rstop from testes RNA. (C) The genomic
structure of mouse KSR2, T-KSR2, human KSR2, human testes specific KSR2b. Truncated human testes KSR2b sequence is from NCBI gene bank AK098831.1. (D) The sequence

of the 5'UTR and exon1t of T-KSR2. The initiation codon is in bold large font.

predicted 62 base pair (bp) 5’ UTR region, and is followed by a start
code and a predicted novel 55 bp coding sequence in the same
reading frame as the full-length KSR2 mRNA (Fig. 1C and D). Using
the exonlt-specific forward primer (T-KSR2 5UTR) and a reverse
primer targeting the last exon of KSR2 (Rstop), the T-KSR2 was
confirmed by PCR and sequencing to contain exons 6-20 of
full-length KSR2 mRNA (Fig. 1B). In a search of NCBI databases,
no human genomic sequences identical to the unique exonlt of
T-KSR2 were found. However, we did detect an alternative human
KSR2 RNA (KSR2b) expressed specifically in testes (Fig. 1C)
(GenBank: AK098831.1). The first two exons of human KSR2b are
located in intron 4, and the last exon located in intron 14. This
RNA encodes sequences similar to T-KSR2, but with a shorter
predicted CA5 kinase-like domain (Fig. 3B).

3.2. T-KSR2 transcript is expressed only in testes and sperm

Since KSR2 mRNA is also detected in other tissues such as kid-
ney and ovary (Fig. 2B), we sought to identify other tissues in
which T-KSR2 might be expressed. Primers targeting sequences
encoding the N-terminus of KSR2 (F9 and R207), the C-terminus
of KSR2 (F610 and R860), and T-KSR2 (F5UTR and 3R) were used
to probe for full-length KSR2 only, both forms, and T-KSR2 RNA
only respectively in 16 different tissues (Fig. 2A). T-KSR2 RNA
expression was only detected in testes (Fig. 2B). These data suggest
that T-KSR2 RNA expression is limited to testes.

We next assessed whether T-KSR2 mRNA expression extended
to other tissues of the male reproductive system including the epi-
didymis, preputial gland, seminal vesicle, and sperm duct. Mature
sperm were isolated from the epididymis by cutting the epididy-
mis caudally and allowing the sperm to swim out. RNA was puri-
fied from the above tissues and the RT-PCR results show that in
addition to the testes, mature sperm also express T-KSR2 mRNA
(Fig. 2C). The epididymis shows a low level of T-KSR2 mRNA, which
may result from residual sperm left contaminating the epididymal

tubes. However other tissues within the male reproductive tract do
not express T-KSR2 mRNA.

Since somatic cells have much higher RNA content than the
sperm cells, trace amount of contamination may affect the results.
Contamination of sperm preparations consists of fat cells, blood
cells, and round germ cells [22]. To test for contamination of the
sperm samples, E-cadherin (detected in all three cell types) and
c-kit (detected in round germ cells) were used as markers of
somatic cells and round germ cells. E-cadherin contamination
was detected, but c-kit was not be detected (Fig. 2C). Our results
suggest that the sperm sample may contain blood and fat cell,
but do not have round germ cell contamination. T-KSR2 is not
expressed in fat tissue (Fig. 2A). We further tested RNA purified
from blood. As Fig. 2D shown, RNA purified from blood does not
contain T-KSR2. These observations indicate that T-KSR2 is
expressed selectively in mature sperm. To further confirm that
T-KSR2 is expressed in mature sperm cells, we treated collected
sperm with hypotonic buffer to remove any somatic cells. As
shown in Fig. 2E, purified sperm (p-Sperm) does not have somatic
cell contamination, as E-Cadherin is not detected. Protaminel, one
of the abundant RNAs in sperm is readily detected with T-KSR2 in
purified mature sperm cells.

3.3. T-KSR2 transcript can be expressed in vitro

Since T-KSR2 mRNA is expressed in testes and mature sperm,
we next asked if the transcript could be translated into protein.
To determine protein expression, HEK293T cells were transfected
with a PYO-tagged in-frame fused T-KSR2. After cell lysis, western
blot analysis was performed using an antibody that recognizes the
PYO tag to detect a protein of the size predicted for T-KSR2
(Fig. 3A). We assessed the expression of KSR2 protein in mouse tes-
tes. Western blot analysis was performed in whole cell lysates with
a KSR2 polyclonal antibody whose antigen encompasses a region in
between the CA3 and CA5 domain of full-length KSR2 and T-KSR2.
Using this antibody, we did not detect T-KSR2 protein expression
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Fig. 2. T-KSR2 is expressed exclusively in testes and mature sperm. (A) Primer pairs used for detecting KSR2 mRNA. F9 and 207R selectively detect full-length KSR2. FSUTR
and R490 primer pairs selectively detect T- KSR2. F610 and Rstop primer pairs detect both mRNAs. T-KSR2 exon1t which can be recognized only by FSUTR primer is in gray.
(B) RT-PCR was performed with primers described in panel A. RNA was isolated from the indicated tissues from 8 to 12 week old wild type C57BL/6 mice. BAT: brown adipose
tissue, WAT: white adipose tissue, MUS: Quadriceps muscle. (C) Male reproductive tracts were dissected from 12 week old mice. RNA was purified and RT-PCR was done with
the primer pairs illustrated in panel A. (D) RT-PCR was performed with primers detecting somatic cell marker E-cadherin and round germ cell marker c-kit. NRT: no reverse
transcriptase control for the previous sample. (E) Blood samples were tested for T-KSR2 expression. (F) RT-PCR was performed with purified sperm (p-Sperm) treated with
hypotonic buffer for detecting T-KSR2, protamine-1, and E-cadherin expression. Yeast tRNA was used as a negative control. NRT: no reverse transcriptase control for testes.

in mouse testes (data not shown). These data suggested that
T-KSR2 is either not expressed in testes or is expressed at levels
below the sensitivity of available antibodies, which is the case
for expression of KSR2 in tissues other than brain [6]. The predicted
protein of the known human and mouse KSR2 alternative spliced
mRNA is shown in Fig. 3B.

4. Discussion

We reveal a novel truncated RNA of KSR2, T-KSR2, which is
specifically expressed in mouse testes and mature sperm.
Humans also have a similar truncated form of KSR2 (KSR2b)
expressed in testes. Instead of containing exon1t, KSR2b contains
2 extra exons from intron 4 of full-length human KSR2, and the last

exon of KSR2b is from intron 14 of full-length human KSR2.
Despite the differences between human KSR2b and mouse
T-KSR2 RNA at the 3’- and 5'-terminal sequences, they contain
similar domains as predicted proteins, with KSR2b having a
shortened CA5 domain.

Based on the conserved structural similarity to KSR1 and a
KSR2/MEK co-crystal structure [23], the KSR2 CA5 domain consti-
tutively binds MEK and regulates MEK activity [23]. After growth
factor stimulation, KSR1 and KSR2 are recruited to the plasma
membrane, where KSR proteins interact with B-Raf mediated by
the CA5 domain [24,25]. The B-Raf/KSR interaction will promote
MEK and ERK phosphorylation, activating the kinase cascade. To
ensure temporal regulation of ERK signaling, ERK phosphorylates
KSR1 at T260, T274, S320, S443 localized in the region between
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Fig. 3. T-KSR2 can be expressed as protein in vitro. (A) Pyo-tagged full-length mouse KSR2, T-KSR2, and vector only were overexpressed in HEK293T cells and examined for
protein expression by blotting with Pyo tag antibody. (B) Schematic illustration of the human and mouse KSR2 homologs. Five conserved domains (CA1-CA5) are represented
in black. The novel domains of T-KSR2 and human testes KSR2 are in gray. hKSR2: human KSR2; mKSR2: mouse KSR2.

CA1 and CA2 to CA4 domains to promote B-Raf/KSR dissociation,
which leads to pathway inactivation [24]. The phosphorylated
KSR proteins will promote the dissociation of KSR protein from
the plasma membrane and translocation to the cytosol. The pre-
dicted T-KSR2 protein lacks 3 of the 4 ERK phosphorylation sites,
which may affect the localization and change the duration and
intensity of the ERK pathway. However, this hypothetical mecha-
nism will only apply if T-KSR2 binds MEK and ERK, and translo-
cates to the plasma membrane, T-KSR2 lacks the Coiled Coil-
Sterile o Motif (CC-SAM), located between the CA1 and CA2
domains, and found to be necessary for localization to the plasma
membrane [25]. It is also possible that T-KSR2 functions as an
inhibitor to full-length KSR2 by occupying MEK and prevents the
localization of full-length KSR2 to the plasma membrane.

Nucleoside diphosphate kinase 1 (NDK-1) was reported to
involve vulva development by interacting with KSR2 in C. elegans
[9]. T-KSR2 was detected in mouse testes and sperm. We do not
know if C. elegans also expresses a truncated KSR2. T-KSR2 contains
sites phosphorylated by NDK-1 homolog, NM23-H1, and NDK-1
was reported to be involved in vulva development by interacting
with KSR2. However, our inability to detect T-KSR2 in ovary and
uterus suggests T-KSR2 is not related to female infertility.

Messenger RNA in mature spermatozoa is low in humans and is
thought to be a remnant of untranslated mRNA during spermato-
genesis [26]. However, accumulated mRNA in mature human
ejaculates constitute stable transcripts that are consistently
expressed from individual men. Most spermatozoan RNAs encode
proteins participating in signal transduction, oncogenesis, and cell
proliferation, in which KSR2 and its related pathway also function
[27]. Selective retention of particular RNA species has been
proposed and may suggest the function of these mRNAs [28]. The
observation that sperm RNA was detected in zygotes at 30 min
and 3 h post-fertilization further support that sperm RNA may
have important roles in early zygotic and embryonic development
[22,29]. T-KSR2 mRNA can be translated into protein in HEK293T
cells, where cells have active translation. Although we cannot
detect the T-KSR2 protein in testes, the presence of T-KSR2 mRNA
in mature sperm may imply T-KSR2 mRNA is translated during
early zygotic development, when translation is active. KSR2
mediates Ras-to-ERK signaling due to calcium influx. Calcium
influx promotes the dephosphorylation of Ser471 on KSR2 by
calcineurin, which promotes the translocation of KSR2 to the
plasma membrane [16]. The predicted murine T-KSR2 protein
contains the calcineurin LXVP binding motif and it is predicted to
interact with calcineurin. Therefore, it is conceivable that T-KSR2
affects Ca**-induced ERK signaling in the germline.

In summary, we identified a translatable truncated KSR2
mRNA in mouse testes and mature sperm. The data suggest
that this variant of KSR2 may play a unique role in male reproduc-
tion. Identifying the specific RNA expressed in spermatozoa may
facilitate investigation into the mechanisms that cause infertility
by using high throughput methods such as microarray technology.
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