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A measured magnetozone sequence defined by 24 sampling sites
with normal polarity and 28 sites with reverse polarity character-
istic magnetizations was established for the heretofore poorly
age-constrained Los Colorados Formation and its dinosaur-bearing
vertebrate fauna in the Ischigualasto–Villa Union continental rift
basin of Argentina. The polarity pattern in this ∼600-m-thick red-
bed section can be correlated to Chrons E7r to E15n of the Newark
astrochronological polarity time scale. This represents a time in-
terval from 227 to 213 Ma, indicating that the Los Colorados For-
mation is predominantly Norian in age, ending more than 11 My
before the onset of the Jurassic. The magnetochronology confirms
that the underlying Ischigualasto Formation and its vertebrate
assemblages including some of the earliest known dinosaurs
are of Carnian age. The oldest dated occurrences of vertebrate
assemblages with dinosaurs in North America (Chinle Formation)
are younger (Norian), and thus the rise of dinosaurs was diachro-
nous across the Americas. Paleogeography of the Ischigualasto and
Los Colorados Formations indicates prolonged residence in the aus-
tral temperate humid belt where a provincial vertebrate fauna
with early dinosaurs may have incubated. Faunal dispersal across
the Pangean supercontinent in the development of more cosmo-
politan vertebrate assemblages later in the Norian may have been
in response to reduced contrasts between climate zones and low-
ered barriers resulting from decreasing atmospheric pCO2 levels.
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The leading candidate for the oldest known occurrence of
dinosaurs is the tetrapod assemblage of the Ischigualasto

Formation of Argentina (1–4) where a preferred recalculated
40Ar/39Ar date of 231.4 ± 0.3 Ma (1σ analytical uncertainty as
reported) (5) on the Herr Toba tuff from near the base of the
formation points to a Carnian age for the dinosaur-bearing fauna.
However, two recent studies of high-precision U-Pb zircon dates
from the Chinle Formation in the American Southwest, practically
the only other Late Triassic strata with radioisotopic age con-
straints on vertebrate assemblages, arrive at very different
interpretations of the timing of the dispersal of dinosaurs
depending on the accepted degree of total uncertainty for the
Ischigualasto 40Ar/39Ar data.
The study by Irmis et al. (6) advocated a diachronous rise of

dinosaurs, starting in the Ischigualasto Formation of Argentina
in the Southern Hemisphere and appearing only later in the
Chinle Formation. They pointed to a new U-Pb zircon date of
211.9 ± 0.7 Ma (2σ uncertainty as conventionally reported for
U-Pb dates) for a dinosaur-bearing vertebrate assemblage in Hay-
den Quarry at Ghost Ranch, New Mexico, that was considerably
younger than the nominal dates from the Ischigualasto Forma-
tion. The Placerias Quarry in northeastern Arizona apparently
contains even older dinosaurs from the Chinle Formation (7),
and although it was not dated directly, Irmis et al. (6) suggested
that a new U-Pb zircon date of 218.1 ± 0.7 Ma from presumably
age-correlative strata in New Mexico would make even the

Placerias assemblage much younger than the Ischigualastian
fauna if the Herr Toba date is taken at face value.
In contrast, Ramezani et al. (8) suggested that the rise of di-

nosaurs may have occurred at about the same time across the
Americas. Their new U-Pb zircon dates for seven tuffaceous
horizons in the Chinle Formation at Petrified Forest National
Park, Arizona, indicated that the entire succession spans from
∼225.0 to 207.8 Ma (or younger), with the Adamanian–Revueltian
faunal transition (9) between 219 and 213 Ma. More pertinently,
their assessment of the full dating error envelope for the Ischi-
gualasto Formation, including 40Ar/39Ar data in a thesis (10), sug-
gested that an age of ∼218 Ma (or younger) cannot be excluded for
its contact with the overlying Los Colorados Formation. Such a
younger age would allow a closer temporal correspondence
between the geographically separated assemblages, signifying
that the Adamanian was effectively the age equivalent of the
Ischigualastian (11) and thus that there was virtually parallel
development of early dinosaurs across the Americas. Olsen et al.
(12) also expressed doubts about the reliability of the dating of
the Ischigualastian vertebrate assemblages that would necessarily
make them of Carnian age.
There are only two dated levels to formally constrain the nu-

merical age of the Late Triassic epoch: a 230.1 ± 0.06 Ma U-Pb
zircon date on a volcanic ash in late Carnian marine strata from
southern Italy (13) and an age of 201.3 ± 0.18 Ma calculated for

Significance

Uncertainties in reported 40Ar/39Ar dates from the Ischigua-
lasto Formation of Argentina allow its dinosaur-bearing fauna
to be Norian in age and possibly contemporaneous with some
of the older U-Pb dated dinosaur-bearing units in the Chinle
Formation of the American Southwest. Our magnetochronology
of the previously undated Los Colorados Formation, which also
contains a diverse dinosaur assemblage, constrains its age to the
interval from 227 to 213 Ma (Norian) and thereby largely restricts
the underlying Ischigualasto Formation to the Carnian. Rise of
early dinosaurs was thus diachronous across the Americas with
their dispersal from the austral temperate belt blocked until later
in the Norian. The breakout may have resulted from critically
lowered climatic barriers associated with decreasing atmospheric
pCO2 levels.
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the Triassic–Jurassic boundary from U-Pb zircon dates on volcanic
ashes bracketing the boundary in ammonite-bearing sediments
from Peru (14). In the current absence of other reliable radio-
isotopic age controls on fossiliferous marine strata that are the
basis for a global chronostratigraphy, correlations to the Newark
astrochronological polarity time scale [APTS (15)] have provided
important constraints on ages for standard subdivisions of the
Late Triassic (16–18), which have largely been adopted in re-
cently published geologic time scales (19, 20). High-precision
U-Pb geochronology on earliest Jurassic volcanics of the Central
Atlantic Magmatic Province (CAMP) interbedded with sediments
in the upper part of the Newark continental rift sequence
strongly affirms the astrochronological methodology (21).
Over the entire ∼35-My-long Late Triassic epoch, there are

only four land vertebrate biozones recognized in North America
and just two in South America (11). The low temporal resolution
combined with endemism of faunas for the Late Triassic make it
difficult to disentangle temporal and spatial components gov-
erning the distribution of dispersed vertebrate assemblages and
for progress requires age control aside from biostratigraphy. In this
regard, dating of the Los Colorados Formation would help de-
termine if the underlying Ischigualasto Formation extends into the
Norian or is confined to the Carnian and if the temporal range of
the dinosaur-bearing Coloradian fauna actually extends to the end
of the Triassic as sometimes supposed (e.g., 11). The apparent
absence of volcanic ash layers suitable for radioisotopic dating in the
Los Colorados Formation motivated this magnetostratigraphic
study of the unit and enabled us to address these objectives.

Magnetochronology of the Los Colorados Formation
The ∼600-m-thick Los Colorados Formation occurs in the upper
part of the more than 3,500 m of continental deposits in the
Triassic Ischigualasto–Villa Union basin of western central
Argentina and consists of red-colored, fine- to medium-grain–
size fluvial sandstones together with siltstones and ancillary
floodplain mudstones with early calcisol development (22, 23)
(Fig. 1). The lower contact of the Los Colorados Formation is
delineated by a gradational transition from the gray, green, and
purple floodplain and fluvial sandstones and overbank mudstones
of the underlying ∼700-m-thick Ischigualasto Formation (25–27)
(Fig. S1). The age of the Ischigualasto Formation and its associ-
ated Ischigualastian fauna (28) is bracketed by 40Ar/39Ar dates on
two volcaniclastic layers: the Herr Toba tuff from near the base of
the formation at 231.4 ± 0.3 Ma (1, 5) and an unnamed tuff
(sample ISCH-6-611) from its uppermost part at 225.9 ± 0.9 Ma
(5). There are no radioisotopically dated horizons in the con-
formably overlying Los Colorados Formation, whose faunal as-
semblage (28) is usually considered Norian and even thought to
contain elements of both Late Triassic and Early Jurassic aspects
(29–31). Fluvial and eolian deposits and interbedded conglom-
erates of the overlying Cerro Rajado Formation are in erosional
contact with the Los Colorados Formation and, although barren
of fossils, regarded as Cretaceous or even younger in age (32, 33).
A magnetostratigraphic profile for the entire Los Colorados

Formation at the La Sal section was constructed from 52 sites
with acceptable data (Table S1) and is delineated by a sequence
of 15 geomagnetic polarity intervals labeled LC1r to LC8n in
ascending order from the base of the measured section (Fig. 2).
Magnetozones LC1 and LC4/LC5 include polarity intervals
based on single sites that should thus be regarded as tentative.
Nevertheless, available age constraints, including that the 14
polarity intervals should collectively represent roughly 5–15 My
according to long-term polarity reversal rates for the Late Tri-
assic (15), lead us to correlate Los Colorados magnetozones
LC1r–LC8n to Newark APTS chrons E7r–E15n (Fig. 2). This
magnetic correlation requires that only the two shortest chrons
in this interval (E11n and E13n.1r) are not represented in the La
Sal section dataset, plausibly because of small sampling gaps or

depositional hiatuses. With these caveats, and taking the single-
site polarity intervals at face value, our magnetic correlation
produces a remarkably linear plot of sediment thickness versus
age for the Los Colorados Formation (Fig. 3). The correlation
indicates an overall sediment accumulation rate of approxi-
mately 35 m/My over a total duration of ∼14 My from around
227 to 213 Ma. Given that the Carnian–Norian boundary in
Tethyan marine sections has been correlated to Newark
Chron E7r (16, 17), the base of the Los Colorados Formation
in correlative chron LC1r would essentially correspond chro-
nostratigraphically to the Carnian–Norian boundary. The mag-
netochronological age estimate of ∼227 Ma for the base of the
Los Colorados Formation is in reasonable agreement with the
40Ar/39Ar date of 225.9 ± 0.9 Ma for the tuff (sample ISCH-6-
811) in the uppermost Ischigualasto Formation (5), which
becomes more strongly constrained to be predominantly Carnian in
age. The top of the Los Colorados Formation in the La Sal
section extends to latest Norian (chron E15n, ∼213 Ma), a few
million years before the Rhaetian–Norian boundary that has
been correlated to chron E16n (18). Accordingly, the ∼600-m-
thick sampled section of the Los Colorados Formation falls en-
tirely within the Norian.

Late Triassic Biochronology
The vertebrate fauna in the lower part of Ischigualasto Forma-
tion includes a taxonomically diverse group of dinosaurs consti-
tuting about 11% of recorded specimens (5). The La Esquina
fauna from the upper third of the Los Colorados Formation also
contains dinosaurs that are taxonomically diverse, making up
about 1/3 of recorded vertebrate taxa (5). Projecting laterally
from the La Sal section (Fig. S2), the La Esquina fauna is most
probably no younger than ∼213 Ma (latest Norian), or ∼11 My
before the Triassic–Jurassic boundary. This unexpected result,
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Fig. 1. Columnar section of rock formations (Left) and location and geo-
logic sketch map (Right) of the Ischigualasto–Villa Union basin where map
patterns for formations in the basin are keyed to the columnar section (with
basalts near Morado Hill shown as gray fill). The Valle Fertil megafault
represents Neogene tectonic inversion activity that exhumed the Mesozoic
basin (24). Paleomagnetic sampling sites for the La Sal section are shown by
filled circles and listed in Table S1. The starting point of the Gallinita section
of the Ischigualasto Formation (25) is indicated by a purple square. The La
Esquina fauna of the upper Los Colorados Formation (22) comes from the
northern part of the basin as labeled (see also Fig. S2). The dated tuffs from
near the base and toward the top of the Ischigualasto Formation (5) are
indicated by purple stripes in the stratigraphic column.
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which needs to be verified by direct magnetostratigraphic study
of the La Esquina section (30 km along-strike to the northwest
traced by cliff exposures; Fig. 1 and Fig. S2), is at variance with
some interpretations of the faunal assemblage as transitional,
containing Late Triassic and Early Jurassic elements (e.g., 30).
We can now compare this record with geochronologic data

from the Chinle Formation to address the question of a dia-
chronous (6) versus simultaneous (8) rise of dinosaurs across the
Americas. Although the Chinle Formation is one of the richest
and best studied terrestrial records of Late Triassic biota, dino-
saurs are a rare component of most faunas (36). The oldest di-
rectly dated dinosaur fauna from the Chinle Formation (or
apparently anywhere else outside the Ischigualasto–Villa Union
basin) is Hayden Quarry at Ghost Ranch in New Mexico. This is
where Chindesaurus, the only known example of a herrerasaurid
theropod dinosaur from outside South America, has been de-
scribed (37, 38). U-Pb zircon dating at Hayden Quarry places

a maximum age of 211.9 ± 0.7 Ma for Chindesaurus (6), consistent
with its occurrence in the Petrified Forest Member in the northern
part of Petrified Forest National Park in Arizona (39) whose age is
constrained between ∼210 and 214 Ma by U-Pb zircon dating (8).
There may be older dinosaurs at Placerias Quarry in Arizona,

regarded as the oldest Adamanian strata (40) and currently
assigned to the upper part of the Blue Mesa Member (39). Irmis
et al. (6) obtained a U-Pb zircon date of 218.1 ± 0.7 Ma from
a tuffaceous sandstone in the upper part (although previously
reported in various abstracts as at the base) of the Blue Mesa
Member in the Six Mile Canyon area of New Mexico (39). At
about the same time, Ramezani et al. (8) published a signifi-
cantly older U-Pb zircon date of 223.036 ± 0.027 Ma from the
upper part of the Blue Mesa Member at its type locality in
Petrified Forest National Park. The discrepancy points to the
difficulty in making correlations based on lithology in such widely
distributed but discontinuously exposed deposits. Nevertheless,
because the Adamanian–Revueltian transition is placed in the
upper part of the overlying Sonsela Member (9), the Chinle U-Pb
geochronology of Ramezani et al. (8) would place the faunal
transition sometime between 219 and 213 Ma, which is not in-
consistent with the results of Irmis et al. (6) for the Adamanian.
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The earliest documented dinosaur occurrences in North
America (Chinle Formation) according to these data are thus
demonstrably younger and thus diachronous with respect to
those in South America (∼231 Ma, basal Ischigualasto For-
mation) by around 13 My (using ∼218 Ma for the Placerias
Quarry) and as much as 19 My if the more secure ∼212-Ma
date for Chindesaurus from Hayden Quarry ends up as the
operative oldest age of Chinle dinosaurs.

Late Triassic Paleogeography
The confirmed earlier rise of dinosaurs in the Ischigualasto
Formation and the subsequent provinciality between the abun-
dant and diverse dinosaur fauna from the overlying Los Colo-
rados Formation (5, 30) compared with the very sparse and
species-poor dinosaur fauna of the nominally coeval (Norian)
Chinle Formation (6) may be related to contrasting paleogeo-
graphic settings. Most of the world landmasses in the Late Tri-
assic were assembled in the supercontinent of Pangea with no
major internal seaways to act as barriers to dispersal of land
vertebrates. So what could have impeded by millions of years the
rise of dinosaurs in North America and accounted for the large
disparity in their diversity and abundance between South and
North America when dinosaurs become more widespread in the
Norian? We suggest that an important contributing factor was
climate zonation and spatiotemporal changes with continental
drift modulated by varying concentrations of greenhouse gases.
Pangea can be reconstructed from relative fits of the now

dispersed continental elements (41). However, positioning in
latitude requires control from paleomagnetic pole positions in
the context of the geocentric axial dipole (GAD) hypothesis. We
use the 220-Ma reference pole of the global composite apparent
polar wander path (APWP) of Kent and Irving (42), which is
based on the mean of eight entries from igneous rocks and
sedimentary rocks corrected for inclination error ranging in age
from 211 to 227 Ma. This age window coincides well with our
estimated age range of the Los Colorados Formation, and we
note that the 220-Ma–mean pole is one of the best defined (A95 =
2.3°) in the global composite APWP for the Mesozoic and early
Cenozoic (42). The predicted paleolatitude for the Ischigualasto
basin locality (∼30°S, 68°W) is 48.4°S, corresponding to a GAD
inclination of 68.0°. The characteristic remanent magnetization
(ChRM) mean inclination for the Los Colorados Formation
(60.4 ± 3.8°) is appreciably shallower (by 7.6 ± 4.7°). This is most
probably due to sedimentary inclination error as is often found
associated with early-acquired red-bed magnetizations with suf-
ficient data for direct analysis (43, 44).
Pangea was characterized by a nearly pole-to-pole extent of

landmass at 220 Ma (Fig. 4). There is no evidence of polar ice
caps in the Triassic, a period characterized by generally equable
climate (46) whereby latitudinal variations in the difference be-
tween precipitation and evaporation (P-E) may have been es-
pecially important in defining climate belts. As a leading-order
estimate of climate belts, we use the zonal-mean annual values of
P-E based on a general circulation model with idealized geog-
raphy, an annual-mean insolation, and a high (8× preindustrial
level) atmospheric pCO2 concentration (45). More elaborate
climate models (e.g., 47) give similar spatial patterns. In this
context, the Ischigualasto–Villa Union basin at 48°S paleo-
latitude would place it in the austral temperate humid belt (Fig.
4). At about the same time (220 Ma), the Chinle depocenter in
the American Southwest (as well as some other important fossil
localities like the Newark rift basin in eastern North America
and the Argana basin in northern Africa) was migrating into the
boreal tropical arid belt while the Keuper (Germanic) basin of
Europe and Jameson Land of Greenland had entered into the
boreal temperate humid belt. Local continental faunas and floras
would have become well-adapted to their particular climate
settings whose loci changed slowly as Pangea drifted northward

by ∼15° over the Late Triassic. At the same time, the terrestrial
assemblages would have differed markedly among the climate
belts, whose contrasting environments may have presented
effective hurdles to dispersal.
Prolonged residence within the austral temperate belt seems

to be associated with the development of terrestrial vertebrate
assemblages that included dinosaurs from their first appearance
in the Carnian Ischigualastian fauna to the Norian Coloradian
(La Esquina) fauna. In the latter, the first numerical dominance
of the herbivorous dinosaurs over other groups is documented
and seems to be correlated with their increase in taxonomic di-
versity and size (48). The breakout of dinosaurs from the austral
temperate humid belt to the tropics and beyond may have re-
quired lowering of climate barriers; for example, a reduction in
P-E contrasts whereby the vast zonal deserts became less arid
and perhaps at least intermittently more traversable. Reduced P-E
contrasts could have resulted from decreased concentrations of
atmospheric pCO2 (45, 49). Modeling (47) supported by sim-
ilarly age-registered paleosol carbon isotope analyses (50) points
to generally decreasing levels of atmospheric pCO2 over the Late
Triassic and into the Early Jurassic when terrestrial faunas be-
came much more cosmopolitan (51). Interestingly, an interval of
particularly low atmospheric pCO2 values has been reported in
the Ghost Ranch section of the Chinle Formation (52) where the
early dinosaur Chindesaurus was constrained to be no older than
∼212 Ma (6). This marked dip in atmospheric pCO2 speculatively
may coincide with a dispersal event of dinosaurs into tropical
regions like the Chinle depocenter.
Magnetic polarity stratigraphy of the Ischigualasto Formation

and especially the La Esquina section of the Los Colorados
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Fig. 4. Reconstruction of Pangea for the Norian based on continental ro-
tation parameters (41) and positioned in latitude using a 220-Ma–mean
global pole (42). Some key Late Triassic vertebrate fossil localities are in-
dicated by filled circles connected to their relative positions at 200 Ma by
open circles, with relative positions of localities at 230 and 210 Ma indicated
by crosses. Idealized zonal belts (45) of precipitation (P) relative to evapo-
ration (E) are indicated by darker green shading for P > E (more humid) and
lighter green shading for P < E (more arid).
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Formation and U-Pb zircon dating of tuffaceous layers in these
units as well as those more directly associated with dinosaur-bearing
levels in the Chinle Formation (and elsewhere) would be desir-
able to confirm the chronology of events outlined here.

Materials and Methods
The La Sal section was chosen for a sampling transect through the Los Col-
orados Formation on the basis of fresh exposures in a stream cut through
the cliff outcrop of strata that are in clear structural continuity and strati-
graphic superposition with the Ischigualasto Formation (Fig. 1 and Fig. S1).
The La Esquina section with its rich tetrapod fauna from the upper part of
the Los Colorados Formation [La Esquina local fauna or Upper Coloradense
(30, and references therein)] is about 30 km along-strike to the northwest
and linked by essentially continuous cliff exposures; the Los Colorados For-
mation may be somewhat thicker there than in the La Sal section, but the
lower part of the formation is virtually inaccessible at La Esquina to make
a complete reference section there. In contrast to the Ischigualasto Formation,
which forms a badlands landscape triggered by its drab clay-rich floodplain
deposits, the more indurated red siltstones and sandstones of the Los Colo-
rados Formation crop out as prominent cliffs. We attempted to obtain three
oriented samples at each site using a cordless drill with a water-cooled 2.5-cm-

diameter diamond bit and a magnetic compass for orienting the cores. The
finer-grained red mudstone and siltstone facies were preferentially sampled,
whereas the coarser-grained sandstones were avoided after measurements
on the first sample collection showed that this lithology tended not to yield
interpretable results. The various sampling campaigns produced nearly 150
oriented samples from 58 sites that represent most of the lithologic intervals
suitable for paleomagnetic analysis in this section.

Thermal demagnetization data from a dozen or more treatment steps up
to 685 °C using a 2G cryogenic magnetometer and large-capacity ovens in
a shielded room were used to identify the ChRM component of each sam-
ple’s natural remanent magnetism. After removal of generally small spuri-
ous or overprint components, demagnetization trajectories typically revealed
a high unblocking temperature magnetization that converged toward the
origin directed either northerly and up or southerly and down from site to site
(Fig. 5 A and B). Principal component analysis (53) of the last six or more
treatment steps between 300 and 600° up to 685 °C anchored to the origin
was used to estimate the direction of the ChRM in each sample; component
estimates with a maximum angular deviation greater than 15° were rejected
as poorly defined except in a few cases where a demagnetization trend was
obvious and a stable end-point direction could be identified. We also excluded
results from a handful of samples with anomalously shallow directions that
may reflect undue influence of depositional processes, especially in the initially
sampled medium- to coarser-grained sandstones and a handful of samples
with widely aberrant directions that were most probably misoriented. As in-
dicated by the high unblocking temperatures that typically range to 685 °C,
the magnetizations are carried predominantly by hematite, which may be of
detrital or early diagenetic origin.

In all, 104 of the 142 samples analyzed, representing 52 (88%) of the 58
sites, provided acceptable paleomagnetic data (Table S1). With all directions
corrected for a regional stratal tilt with a strike of 320° and dip of 12° to the
northeast, the site-mean ChRM directions fall into two nearly antipodal
populations (Fig. 5C): 24 sites of normal polarity clustered around a mean of
Declination, D = 14.8°, Inclination, I = −58.7° (A95 = 5.0°) and 28 sites of
reverse polarity with a mean of D = 195.9°, I = 61.9° (A95 = 5.8°). The
populations are antipodal at 95% confidence (3.3° departure compared with
critical angle of 7.7°) giving a positive reversal test [Class B (54)]. Converted to
common (normal) polarity, the 52 ChRM site means are aligned along a mean
axis of D = 15.4°, I = −60.4° (A95 = 3.8°).

Virtual geomagnetic pole (VGP) latitudes calculated for the accepted 52
site-mean directions and gauged with respect to the mean (north) VGP
position (71.8 °N, 70.8 °E, A95 = 5.0°) delineate a magnetostratigraphic se-
quence of 14 polarity intervals, which are labeled LC1r to LC8n in ascending
order from the base of the measured section (Fig. 2).
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