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The cuprate high-temperature superconductors have been the
focus of unprecedentedly intense and sustained study not only
because of their high superconducting transition temperatures,
but also because they represent the most exquisitely investigated
examples of highly correlated electronic materials. In particular, the
pseudogap regime of the phase diagram exhibits a variety of
mysterious emergent behaviors. In the last few years, evidence
from NMR and scanning tunneling microscopy (STM) studies, as
well as from a new generation of X-ray scattering experiments,
has accumulated, indicating that a general tendency to short-range–
correlated incommensurate charge density wave (CDW) order is
“intertwined” with the superconductivity in this regime. Addi-
tionally, transport, STM, neutron-scattering, and optical experi-
ments have produced evidence—not yet entirely understood—of
the existence of an associated pattern of long-range–ordered
point-group symmetry breaking with an electron-nematic char-
acter. We have carried out a theoretical analysis of the Landau–
Ginzburg–Wilson effective field theory of a classical incommensurate
CDW in the presence of weak quenched disorder. Although the
possibilities of a sharp phase transition and long-range CDW order
are precluded in such systems, we show that any discrete sym-
metry-breaking aspect of the charge order—nematicity in the
case of the unidirectional (stripe) CDW we consider explicitly—
generically survives up to a nonzero critical disorder strength.
Such “vestigial order,” which is subject to unambiguous macro-
scopic detection, can serve as an avatar of what would be CDW
order in the ideal, zero disorder limit. Various recent experiments
in the pseudogap regime of the hole-doped cuprates are readily
interpreted in light of these results.

Because the spontaneous breaking of a continuous symmetry
is forbidden (1) in the presence of “random-field” disorder

in dimension d≤ 4, effects of disorder are significant for the
physics of incommensurate charge density wave (CDW) order-
ing, even in crystalline materials, such as the high-temperature
superconductor YBCO, which can in other respects be consid-
ered extremely well ordered. However, because d= 2 is the lower
critical dimension for breaking a discrete symmetry, as in the
random-field Ising model (1–3), if a putative CDW ground state
breaks a discrete symmetry (e.g., a point-group symmetry), a fi-
nite temperature transition at which this symmetry is broken will
persist in the presence of weak disorder in d= 3.
Here, with the case of the cuprates in mind, we study a model

of a layered system with tetragonal symmetry that in the absence
of disorder undergoes a transition to a unidirectional incommen-
surate CDW (stripe-ordered) phase. We thus express the density
at position~r in plane m as

ρ
�
~r;m

�
= ρ+

�
ψ x

�
~r;m

�
eiQx +ψ y

�
~r;m

�
eiQy +C:C:

�
+ . . . ; [1]

where Q is the magnitude of the CDW ordering vector, ψα
(with α= x; y) are the two components of a slowly varying com-
plex vector field, and the ellipsis refers to higher harmonics.
Broken symmetries are defined, as usual, by taking the asymp-
totic long-distance limit of the appropriate thermal ðhiÞ and

configuration averaged ð;Þ two-point correlation function,

lim��~R��→∞
hO†ð~r+~R;mÞOð~r;mÞi≡ h jOðmÞj2i: In a stripe-ordered

state, hψ xi≠ 0 and hψ yi= 0 (or vice versa) and N ≡ h jψ xj2i−
h ��ψ y

��2i≠ 0; in a checkerboard state hψ xi= hψ yi≠ 0, and N = 0,
whereas in an “Ising nematic” phase, hψ xi= 0, hψ yi= 0, andN ≠ 0.
For each of these states, the pattern of broken symmetry could,
depending on details of the interactions between neighboring
planes, propagate from plane to plane in different ways, thus
breaking the point-group symmetries as well as translation sym-
metry in the z (⊥ to the plane) direction in different ways.
In Eq. 6, below, we introduce an effective Landau–Ginzburg–

Wilson field theory expressed in terms of the above fields. For
simplicity, we assume that the interplane couplings (of magnitude
Vz) are weak compared with the in-plane interactions and favor
identical ordering in neighboring planes; however, it is straightfor-
ward to generalize this to cases in which more complex patterns of
interplane ordering are favored. The stripe state breaks a continuous
ðUð1Þ=Oð2ÞÞ symmetry (translations) and a discrete Z2 symmetry
associated with the choice of whether the stripes are modulated in
the x or y direction. In the nematic phase, translational symmetry is
preserved but the point-group (Z2) symmetry is still broken. We
obtain explicit results for the phase diagram and various correlation
functions of this model, using a saddle-point (mean-field) approxi-
mation and the replica trick. This approximation becomes exact in
an N→∞ limit of this in which ψα is taken to be an N-compo-
nent field, and the Oð2Þ×Oð2Þ×Z2 symmetry of the original
model is generalized to SOðNÞ× SOðNÞ×Z2. We also outline
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a procedure (explored in more detail in SI Text) to establish an
explicit correspondence between the effective field theory for the
nematic order parameter and a random-field Ising model (RFIM).

Principal Results
Because the general behavior of the system can be motivated
largely from symmetry considerations starting directly from the
assumption of a stripe-ordered state, we begin by presenting our
key results on the basis of qualitative arguments and then discuss
how these results follow from the systematic analysis of the ef-
fective field theory.
The structure of the phase diagram in the temperature (T) and

disorder (σ) plane is shown in Fig. 1. In the absence of disorder,
stripe order necessarily survives up to a nonzero critical tem-
perature, Tstr. Here, it is possible that there is a single transition
to a fully symmetric state, or it is possible, as displayed in Fig. 1,
for the symmetry to be restored in a sequence of two transitions,
resulting in the existence of an intermediate nematic phase for
Tstr ≤T <Tnem. (Both scenarios occur in the model defined in
Eq. 6, depending on the value of Vz; the situation shown in Fig. 1
pertains to the case Vz < 0:37J, whereas for larger Vz, there is
apparently a single first-order transition without an intermediate
nematic phase.) Assuming the transitions to be continuous, the
transitions at Tstr and Tnem are in the 3D-XY and 3D-Ising
universality classes, respectively. (Note that both Tstr and Tnem
remain nonvanishing in the limit Vz → 0, although for Vz = 0, the
stripe state would have only quasi–long-range order.
Nonzero disorder precludes the existence of long-range stripe

order; under some circumstances, for weak enough disorder, the
stripe order could give way to quasi–long-range stripe-glass order
(4–6), but this is not generic (7) and is not seen in our effective
field theory, at least at the level of the approximate solution we
have obtained. However, the nematic phase has Ising symmetry
so it survives as long as the disorder is less than a critical strength,
σc. This is an example of a more general phenomenon, which we
have named “vestigial order”; although the tendency toward stripe
order is the essential piece of microscopic physics, the nematic
phase is more robust as a phase of matter and can serve as an
avatar of stripe order that can be detected in macroscopic
measurements (8). Although σc necessarily vanishes as Vz → 0,
it does so (9) only as σc ∼ ½logjTnem=Vzj�−1=2, so it is typically
not very small even in highly anisotropic (quasi-2D) systems.
To obtain explicit expressions for measurable quantities re-

quires making approximations. One important quantity is the

structure factor, Sð~qÞ, which determines the X-ray scattering
cross section. For T >Tstr, invoking the fluctuation dissipation
theorem and linear response analysis, it is straightforward to
obtain expressions for S in terms of the susceptibility, G, of the
ideal (disorder-free) system to second order in σ. Specifically,
near the fundamental ordering vectors ðk2x + k2y � Q2Þ,

S
�
Q+ kx; ky; kz

�
=TG

�
kx; ky; kz; μ+N �

+ σ2
�
G
�
kx; ky; kz; μ+N ��2

;
S
�
kx;Q+ ky; kz

�
=TG

�
ky; kx; kz; μ−N �

+ σ2
�
G
�
ky; kx; kz; μ−N ��2

[2]

(see below for the definition of μ). Even in the limit of weak
disorder, this expression is invalid for T <Tstr, reflecting the
nonperturbative destruction of long-range CDW order by quenched
randomness. However, in the Gaussian approximation we define
below, which is exact in the previously mentioned large N limit,
an expression of precisely this same form is obtained that is
valid for all σ and T; however, with G replaced by an effective
susceptibility,

G
�
~k; μ

�
=
�
κkk2x + κ⊥k2y +VzezðkzÞ+ μ

�−1
: [3]

Here ezðkzÞ is the z-direction dispersion that depends on the
details of the interplane interactions, and N and μ are effective
couplings that are implicit functions of T and σ determined by
the self-consistency Eqs. 9 and 10, below. In the isotropic phase
N = 0, whereas in the nematic phase or in the presence of ex-
plicit orthorhombic symmetry breaking by the lattice, N ≠ 0.
Because there is an actual thermodynamic phase transition

involved, direct probes of the nematic phase should, in principle,
be possible and unambiguous. There are, however, two aspects of
the problem that make this less straightforward than it at first
seems. In the first place, the number of degrees of freedom per
unit cell involved in a nematic transition may be relatively small.
For instance, nematic order does not generically open gaps any-
where on the Fermi surface, leading to a relatively weak signature
in the specific heat (10), even when the nematic transition occurs
at low T; when the transition occurs at relatively high T, where
multiple contributions to the specific heat are large, the smallness
of the thermodynamic signal is still more of an issue. More im-
portantly, because the transition is in the universality class of the
RFIM, the intrinsic slow dynamics (3) imply that, starting at a
cooling-rate–dependent temperature strictly larger than Tnem,
the nematic ordering can no longer equilibrate and hence all
thermodynamic signatures will be dynamically rounded. This is
further exacerbated by the fact that any uniaxial strain will couple
linearly to the nematic order parameter, so uniaxial strain (or any
weak orthorhombicity of the host crystal) will round the transition
and random strains will broaden it.
There are, however, clear ways to detect nematic order. Al-

though this has been undertaken in various ways in the context
of the cuprates (11–21), the most successful strategy has been de-
veloped in the context of studies of the Fe-based high-temperature
superconductors (22). Several general observations underlie these
strategies:

i) Any quantity that is odd under C4 rotations (or the correspond-
ing element of the point-group symmetry that is broken in the
nematic phase) vanishes in the isotropic phase and grows line-
arly in proportion to N for small N and can thus be used as a
proxy for the nematic order parameter. Examples include the
resistivity anisotropy (14, 23, 24), ρxx − ρyy, any local density
that is odd under C4 rotation, or a structural (e.g., orthorhombic)
distortion (25). Consider, for instance, the bond-charge density
on x-directed and y-directed bonds from site ~R, ρxð~RÞ and
ρyð~RÞ, which for the cuprates (11) also corresponds to the

St
rip
e

Nematic

Homogeneous and Isotropic

T

2

c
2

Tstr

Tnem

0

Fig. 1. Schematic phase diagram of a highly anisotropic (quasi-2D) tetragonal
system as a function of the mean-squared disorder, σ2. The phase diagram is
computed from the solution of the self-consistency equations for the lattice
version of the model (Eq. 6) defined in SI Textwith Vz = 0:01κk,κ⊥ = 0:98κk, and
Δ= 0:25κk. σc is the critical disorder strength beyond which there is no nematic
transition.

Nie et al. PNAS | June 3, 2014 | vol. 111 | no. 22 | 7981

PH
YS

IC
S

SE
E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406019111/-/DCSupplemental/pnas.201406019SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406019111/-/DCSupplemental/pnas.201406019SI.pdf?targetid=nameddest=STXT


charge density on the corresponding in-plane O sites. A direct

measure of nematicity isQN ≡ h ρxð~RÞi− h ρyð~RÞi∝N . A differ-
ent measure, which is directly related to local CDW order, is

~QN ≡
D��δρxð~RÞ��2

E
−
D��δρyð~RÞ��2

E
, where

δρα ≡ ρα − hραi;D��δρx�~R���2
E
= σ2A2ðμ+NÞ;

D��δρy�~R���2
E
= σ2A2ðμ−NÞ;

[4]

and

ApðμÞ≡
Z

d~k

ð2πÞ3
h
G
�
~k; μ

�ip
=−

�
1

p− 1

�
∂Ap−1

∂μ
[5]

with Gð~k; μÞ given in Eq. 3. A quantity similar to QN , referred to
in ref. 17 as “intra-unit-cell-nematic” order, has been investi-
gated in scanning tunneling microscopy (STM) studies of cuprate
high-temperature superconductors with suitable surfaces. As has
been shown in ref. 11 (and discussed below), bulk NMR meas-
urements on cuprates can be performed to obtain QN and ~QN .

ii) The uniaxial volume preserving strain, beff ≡ exx − eyy, acts as
a symmetry-breaking field (Eq. 11) conjugate to N . Thus,
from the strain dependence of any of the electronic proxies
for N , it is possible to infer the differential susceptibility,
χ ≡∂N =∂beff . Less obviously, but equally importantly, the
ability to apply a symmetry-breaking field can, under appro-
priate circumstances, permit at least two real-world compli-
cations to be circumvented: (a) In an orthorhombic crystal,
there is an explicit symmetry-breaking field that rounds the
nematic transition and implies the existence of a nonzero N
even for T >Tnem; however, if the orthorhombicity is suffi-
ciently weak, it is possible (22) to measure χ at nonzero beff
and to extrapolate the result to beff = 0, thus correcting for the
presence of orthorhombicity. (b) Where macroscopic detec-
tion of symmetry breaking is precluded due to domain forma-
tion, cooling in the presence of a symmetry-breaking field can
orient the order parameter macroscopically, permitting mac-
roscopic measurements to detect its presence.

Explicit Model
To make the present considerations concrete, we consider the
simplest classical effective field theory (26–28) of an incommen-
surate CDW in a tetragonal crystal, with effective Hamiltonian

H=
κk
2

��∂αψα

��2 + κ⊥
2

��∂αψα

��2 − Δ
2N

h��ψ x

��2 − ��ψ y

��2i2

+
U
2N

h
jψ xj2 +

��ψ y

��2 −ΛN
i2

−Vz

h
ψ†
α

�
~r;m

�
ψα

�
~r;m+ 1

�
+C:C:

i

−
h
h†α
�
~r;m

�
ψα

�
~r;m

�
+C:C:

i
−
�
b†αψα +C:C:

�
+ . . . [6]

Here α= x, y is a spatial index for which the Einstein summation
convention is adopted, α signifies the complement of α, and each
ψα is a SOðNÞ vector, where in the case of the CDW, N = 2 with
the two components corresponding to the real and imaginary
parts of the amplitude—the generalization to arbitrary N permits
a controlled solution in the large N limit. In the following analysis,

we assume that Δ> 0, which is to say that stripe order is favored
over checkerboard. In the absence of disorder and significant
thermal fluctuations, one might focus on temperatures in the
neighborhood of the mean-field CDW transition temperature,
TMF , where Λ= 0 for T >TMF and Λ> 0 for T <TMF . Here, we
focus on the range of temperatures for which Λ> 0, where there
is a well-developed local amplitude of the CDW order parame-
ter, but in which the effects of weak random fields spoil the long-
range CDW ordering at long distances. We further assume that
all of the remaining coupling constants are positive. Finally, h is
a Gaussian random field,

hαi
�
~r;m

�
= 0;

hαi
�
~r;m

�
hβj

�
~r′;m′

�
= σ2δαβδijδm;m′δ

�
~r−~r′

�
;

[7]

with i; j= 1; . . . ;N, and b is an explicit symmetry-breaking field,
which is assumed to vanish unless otherwise stated. The ellipsis
represents higher-order terms in the usual Landau–Ginzburg
expansion.
It is convenient to introduce two scalar Hubbard–Stratonovich

fields, ζð~r;mÞ and ϕð~r;mÞ in place of the quartic terms in H,

U
2N

h��ψ��2 −NΛ
i2

−
Δ
N

	��ψ x

��2 − ��ψ y

��2
2

 →
ζ2

2U
+
ϕ2

2Δ
+

1ffiffiffiffi
N

p
h
iζ
	��ψ��2 −ΛN



+ϕ

	��ψ x

��2 − ��ψ y

��2
i; [8]

where jψ j2 = jψ xj2 +
��ψ y

��2. In the “hard-spin limit,”U→∞, ζ simply
enforces the constraint jψ j2 =ΛN, whereas ϕ is conjugate to the
nematic order parameter, N = 2hϕi= ffiffiffiffi

N
p

.

Approximate Solution
There are a number of approximate ways to analyze this effective
field theory. First, to carry out the configuration averages over
realizations of the random fields, we introduce n replicas of each
field. The replicated field theory can then be used directly to
generate the cumulant expansion (7) or, in the conventional
manner, by taking the n→ 0 limit when computing physical
properties.
Because the CDW never orders, it is also reasonable to treat

the fluctuations of ψ in a self-consistent Gaussian approximation—
this approximation becomes exact (at least in the loose sense
commonly used in the field) in the limit N→∞. The fluctuations
of ζ do not involve any broken symmetries, and so to the same
level of approximation, these can be treated in a saddle-point
approximation, yielding the self-consistency equation in terms of
μ≡ 2iζ=

ffiffiffiffi
N

p
, which in the hard-spin limit ðU→∞Þ becomes

Λ=T½A1ðμ+NÞ+A1ðμ−NÞ�+ σ2½A2ðμ+NÞ+A2ðμ−NÞ�; [9]

with Ap given in Eq. 5. Note that this constraint imposes a phys-
ically appropriate sum rule on the integrated scattering intensity,R
d~kSðêxQ+~kÞ+ R

d~kSðêyQ+~kÞ= ð2πÞ3Λ.
Although not necessary (see below), we can similarly evaluate

the nematic order parameter approximately directly from the
saddle-point equation for ϕ in the limit n→ 0:

N
ð2ΔÞ=T½A1ðμ−NÞ−A1ðμ+NÞ�+ σ2½A2ðμ−NÞ−A2ðμ+NÞ�:

[10]

This relates the nematicity to the difference in the integrated scat-
tering intensities, Nð2πÞ3 = 2Δ½R d~kSðêyQ+~kÞ−R d~kS ðêxQ+~kÞ�.
Fig. 1 was obtained by numerically solving the self-consis-

tency equations for a lattice version of the same model with
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Vz = 0:01κk; κ⊥ = 0:98κk. In the presence of stronger interplane
couplings, Vz > 0:37κk, the phase diagram has a different topology;
in the σ = 0 limit there is a single first-order transition from
a stripe-ordered phase to the disordered phase with no interme-
diate nematic phase, and whereas for nonzero σ the stripe phase is
again replaced by a nematic phase, for weak enough disorder the
nematic transition is now first order. As long as Vz ≠ 0, the solu-
tion obtained in this way is qualitatively reasonable; however,
whereas for nonzero σ, μ− jN j> 0, which rightly implies that
there is no stripe-ordered phase, we obtain a solution with non-
zero N for low enough T, even in the 2D limit Vz → 0 where such
a state is forbidden on general grounds. This is an artifact of the
mean-field, saddle-point approximation for the nematic field. In
SI Text, we treat the effective field theory for ϕ more accurately.
Specifically, we show that upon integrating out the CDW fluctu-
ations, the replicated field theory for ϕ is of the same form as the
replicated field theory of the RFIM. At T = 0 and in the limit of
weak disorder, we can similarly map a correspondence between
the two models by identifying the domain-wall energies and the
mean-square disorder strength. These two exercises make explicit
what is apparent by symmetry—that the problem of nematic or-
dering is equivalent to the ordering of the RFIM. The two qual-
itatively interesting aspects of this correspondence are that

beff ∼
��bx��2 − ��by��2  and  σeff ∼ σ2

ffiffiffiffiffiffiffiffiffiffiffiffi
A4ðμÞ

p
; [11]

where beff and σeff are, respectively, the uniform component and
the root mean-squared variations of the effective magnetic fields
that appear in the RFIM. Importantly, this means that if the
disorder is weak (σ is small), the effective disorder felt by the
nematic component of the order parameter is parametrically
smaller still. The mapping between the two models permits one
to connect problems of vestigial nematic ordering to the rich
and well-studied phenomenology of the RFIM (3).

Some Implications for Experiments in the Cuprates
Clear evidence of the growth of short-range correlated CDW
order in the pseudogap regime of the phase diagram has been
found in a large number of experiments in multiple families of
hole-doped cuprates. (For reviews see refs. 16 and 20; for an up-
date, see ref. 29.) Spectacular new evidence has come from NMR
(11, 30), STM (12, 13, 31, 32), and a new generation of X-ray
scattering experiments (33–37) concerning ubiquitous CDW or-
der and from transport (14, 15), STM (16, 17), neutron-scatter-
ing (18), and optical (8, 38–42) experiments indicating the
existence of an associated pattern of long-range–ordered point-
group symmetry breaking with an electron-nematic character.
To interpret their significance, one would extrapolate the results
to an “ideal hole-doped cuprate,” one without quenched disorder
and without structural peculiarities that lower the symmetry of
the problem. At least the existing observations make clear that
there is a ubiquitous tendency to charge order with a well-de-
fined period λ that is a few times the lattice constant. λ depends
on the doping concentration and certain structural details, pre-
sumably indicating that the electron–phonon coupling plays a role
in determining some aspects of the CDW order. The preferred
orientation of the CDW is always along the Cu-O bond (x and y)
directions. [In LSCO, the density wave-ordering vector is rotated
slightly from the x and y directions, but this is an unimportant
detail for the present purposes, which is a necessary corollary (27)
of the particular orthorhombic structure of that material.]
However, there is no consensus about whether, in the absence

of quenched randomness, the CDW order within each plane would
be dominantly striped ðΔ> 0Þ or checkerboard ðΔ< 0Þ; whether
the CDW order would be static (long-range ordered, Λ> 0) or
fluctuating (short-range correlated, Λ= 0); and indeed whether
the CDW phenomena seen in different cuprates are siblings or

distant cousins. As discussed previously in refs. 27 and 28 in the
context of STM studies of the cuprates, in the presence of sub-
stantial disorder (σ not small) the structure factor itself typically
does not differ greatly between a “failed” stripe phase (i.e., with
Λ> 0 and Δ> 0) and a failed checkerboard phase (i.e., with Λ> 0
and Δ< 0) nor show whether the disorder is pinning what would
otherwise be fluctuating order ðΛ= 0Þ or breaking up into
domains what would otherwise be long-range CDW order
ðΛ> 0Þ. To see this, consider the expression for the structure
factor in Eq. 2; it has no explicit dependence on either Λ or Δ,
but rather depends on them only implicitly through the self-
consistency equations for μ and N . Because quenched disorder
absolutely precludes long-range CDW order, μ> jN j indepen-
dent of Λ; only by approaching the limit of vanishing disorder
would it be possible to distinguish unambiguously whether the
correlation length, 1=ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðμ− jN jÞ

p ðκ⊥ = κk ≡ κÞ, is finite be-
cause of disorder or because of thermal or quantum fluctuations.
Moreover, even in the presence of orthorhombicity ð��beff��> 0Þ or
spontaneous nematic symmetry breaking (both of which result in
N ≠ 0), as long as ξ is not too long (or, more precisely, as long as
μ � jN j), the structure factor breaks C4 symmetry only weakly.
It has been suggested that stripe and checkerboard order can

be distinguished by studying the structure factor at harmonics of
the ordering vector; for example, whereas either a stripe- or a
checkerboard-ordered system with multiple macroscopic domains
would exhibit second harmonic peaks at 2Qx̂ and 2Qŷ, only the
checkerboard state would exhibit a second harmonic peak at
~Qxy =Qðx̂+ ŷÞ. This distinction does not pertain to an uncondensed
CDW: Peaks in Sð~qÞ at harmonics of the fundamental ordering
vector arise as composites of the fundamental fields. The leading
contribution near the second-harmonic ~Qxy =Qðx̂+ ŷÞ is given by

S
�
~Qxy +~k

�
∼

Z
d~q

ð2πÞ3 S
�
Qx̂+~q

�
S
�
Qŷ+~k−~q

�
: [12]

This does not distinguish between the two cases any better than
do the fundamentals.
Thus, even though CDW formation is probably the funda-

mental ordering phenomenon involved, the nature of the “ideal
phase diagram” may be more directly inferred by studying the
vestigial order. If, within the Cu-O planes, evidence can be ad-
duced for the existence of long-range nematic order, this likely
implies that the ideal system would have long-range stripe order
(Δ> 0 and Λ> 0), both because nematic order is a natural con-
sequence of the existence of a striped ground state and because,
even in the absence of quenched randomness, Tnem is never
much above Tstr. If, considering the effects of interplane inter-
actions, the striped ground state is gyrotropic (8) (analogous to
a cholesteric liquid crystal), for instance if the stripe orientation
defines a handed spiral from plane to plane, then experiments
that detect vestigial gyrotropic order can likewise be interpreted
as evidence of a stripe-ordered ground state in the ideal limit.
Compelling evidence of nematic order within the Cu-O plane

in BSCCO has been obtained from STM studies in refs. 13, 17,
and 19. (For a contrary opinion, see ref. 43.) In YBCO (in which
the native orthorhombicity of the lattice complicates the analysis),
evidence of nematic order has been inferred from transport an-
isotropy (14, 15), from a strongly T-dependent growth in the an-
isotropy of the magnetic structure factor measured in neutron
scattering (18) (although in a regime of doping below that in which
X-ray evidence of CDW correlations has been found), and, for
doping concentrations with the Ortho II structure, directly from
anisotropy in the charge structure factor itself (35, 36, 44). In
LBCO (45, 46), because the LTT crystal structure produces a
strong, explicit C4 symmetry breaking in each plane, it is possible
to unambiguously identify the charge order as consisting of stripes
that rotate by π=2 from plane to plane (46). Moreover, in all three
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of thesematerials, as well as inHg-1201, the onset of a spontaneous
Kerr signal (38–41) occurs below an onset temperature that cor-
relates with the onset of other measures of the growth of local
CDW correlations.
There are several sorts of experimental protocol that could

more unambiguously test for nematic order. As was done in the
case of the Fe-based superconductors in ref. 22, the ideal ex-
periments would involve measuring an electronic property that is
odd under C4 rotation (and hence proportional to N ) as a
function of uniaxial strain to look for evidence of a divergent
differential nematic susceptibility. Particularly interesting would
be NMR measurements of the quadrupolar broadening of the in-
plane O lines, following along the lines undertaken (in ortho-
rhombic YBCO in the absence of applied strain) in ref. 11 (where

a T-dependent difference
D��δρx��2 − ��δρy��2

E
was already noted in

ref. 11 as possible but inconclusive evidence of nematicity).
There are also numerous dynamical implications of the cor-

respondence between the nematic order parameter and the RFIM.
Characteristic features of the expected hysteresis and noise im-
plied by this correspondence (47, 48) have been reported in
mesoscale samples of YBCO (49). Repeating this same sort of
experiment, but with controlled manipulation of a uniaxial strain,
will likely open up other routes to study vestigial nematic order.
It is worth noting that the effect of quenched disorder differs

qualitatively if instead of being incommensurate, the CDW is
commensurate: Here, the ordered phase breaks translation sym-
metry discretely, so long-range CDW order survives up to a critical
disorder strength, σc, although naturally σc decreases rapidly with

the order of the commensurability. This observation may be relevant
in the context of recent high-magnetic-field studies of YBCO (50,
51) that have detected a field-driven phase transition to a charge-
ordered state that has been identified (50) as a commensurate
CDW. Although no direct (diffraction) evidence of commensurate
CDW order has been reported in any of the cuprates, the very fact
that a sharp transition to a commensurate CDW phase is possible
makes this an attractive identification of the high-field phase.
In light of the clear evidence of ubiquitous CDWcorrelations with

significant short-range order (i.e., a moderately large ξ) and the
growing evidence of nematic order, it is reasonable to suppose that,
absent quenched randomness, a state with long-range stripe order
would be found below a transition temperature, Tstr, which is in the
neighborhood of that at which X-rays see an onset of short-range
CDW order in the actual materials. There is also significant evi-
dence supporting the notion that important fluctuation effects in the
cuprates are associated with the existence of a quantum critical point
(of a still to be agreed upon nature) under the superconducting
dome; a corollary of the above analysis is that, given that disorder is
always relevant, this quantum critical point cannot be associated
with the onset of a putative translation symmetry-breaking transi-
tion, but could still be related to the onset of nematic order.
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