Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 17;70(Pt 6):o670. doi: 10.1107/S160053681401085X

N′-[(E)-3-Bromo-5-chloro-2-hy­droxy­benzyl­idene]furan-2-carbohydrazide

A Sundar a, S Ranjith b, G Rajagopal a,*
PMCID: PMC4051112  PMID: 24940251

Abstract

In the title compound, C12H8BrClN2O3, the furan ring makes a dihedral angle of 17.2 (2)° with the six-membered ring. An intra­molecular O–H⋯N hydrogen bond stabilizes the mol­ecular conformation. In the crystal, N–H⋯O hydrogen bonds connect the mol­ecules into chains running along the c-axis direction. The crystal packing is additionally stabilized by C—H⋯O inter­actions into a three-dimensional supramolecular architecture.

Related literature  

Heterocyclic carbohydrazides form stable metal chelates which find applications in mol­ecular sensing, see: Bakir & Brown (2002). For the biological activity of hydrazones derived from isoniazid (systematic name: isonicotinohydrazide), see: Rollas & Kucukguzel (2007). For related structures, see: Prabhu et al. (2011); Bikas et al. (2010); Prasanna et al. (2013).graphic file with name e-70-0o670-scheme1.jpg

Experimental  

Crystal data  

  • C12H8BrClN2O3

  • M r = 343.56

  • Monoclinic, Inline graphic

  • a = 16.7237 (9) Å

  • b = 7.7455 (4) Å

  • c = 10.1868 (5) Å

  • β = 93.557 (2)°

  • V = 1316.99 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker AAPEXII CCD Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.324, T max = 0.435

  • 13728 measured reflections

  • 2996 independent reflections

  • 2029 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.085

  • S = 1.02

  • 2996 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681401085X/bt6980sup1.cif

e-70-0o670-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401085X/bt6980Isup2.hkl

e-70-0o670-Isup2.hkl (144KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401085X/bt6980Isup3.cml

CCDC reference: 1002445

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.14 2.953 (2) 157
C3—H3⋯O1ii 0.93 2.44 3.324 (3) 159
C6—H6⋯O2i 0.93 2.50 3.263 (3) 139
O3—H3A⋯N2 0.82 1.84 2.564 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

1. Comment

Heterocyclic carbohydrazides are compounds with a wide spectrum of biological and analytical applications. They form stable metal chelates which find applications in molecular sensing (Bakir & Brown, 2002). A number of hydrazones derived from isoniazid were reported to be active antitubercular agents and were found to be less toxic than isoniazid (Rollas & Kucukguzel, 2007). Against this background, and in order to obtain detailed information on the molecular conformation in the solid state, an X-ray study of the title compound was carried out.

The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The molecule exists in a E configuration with respect to the C6=N2 bond, with the C7—C6—N2—N1 torsion angle of 179.1 (2)°. The bond lengths and angles in the carbohydrazide group of the title compound can be compared with the related structures (Prabhu et al., 2011; Bikas et al., 2010). The furan ring makes a dihedral angle of 17.2 (2)° with the six-membered ring. The N2—N1—C5—O2 torsion angle of -0.1 (4)° indicates the cis configuration of the O2 atom with respect to the hydrazine nitrogen atom N2. The bond distances C6═N2 [1.275 (3) Å] and C5═O2 [1.224 (3) Å] are very close to the formal double C═N and C═O bond lengths (Prasanna, et al., 2013) confirming that the carbohydrazide exists in solid state as an amido tautomer. An intramolecular O–H···N hydrogen bond stabilized the molecular conformation. Intermolecular N–H···O hydrogen bonds connect the molecules to chains running along the c axis. The crystal packing is further stabilized by C–H···O hydrogen bonds.

2. Experimental

N'-[(E)-(3-bromo-5-chloro-2-hydroxyphenyl)methylidene]furan-2-carbohydrazide, ligand was synthesized by Schiff-base condensation furan-2-carbohydrazide and 3-bromo-5-chlorosalicylaldehyde as shown in Scheme-1. 3-bromo-5-chloro salicylaldehyde (3.0 mmol) in methanol (0.75 g) was stirred in a round bottom flask followed by drop wise addition of methanolic solution of furan-2-carbohydrazide (3.0 mmol). The reaction mixture was stirred for 3 h. The resulting white solid was removed by filtration and washed with cold ethanol and dried in vacuum over anhydrous CaCl2·M.p:180°C, yield: 80%. Single crystals suitable for the X-ray diffraction are obtained by slow evaporation of a solution of the title compound in DMF at room temperature.

3. Refinement

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93 Å, O—H = 0.82 Å) and refined as riding on their carriers with Uiso(H)= 1.2Ueq(C,N,O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal structure showing the R22(10) motif and also the formation of bifurcated R12(6) ring motif. For the sake of clarity, the H atoms not involved in the motif have been omitted.

Crystal data

C12H8BrClN2O3 F(000) = 680
Mr = 343.56 Dx = 1.733 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4049 reflections
a = 16.7237 (9) Å θ = 2.8–24.5°
b = 7.7455 (4) Å µ = 3.33 mm1
c = 10.1868 (5) Å T = 293 K
β = 93.557 (2)° Block, yellow
V = 1316.99 (12) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker AAPEXII CCD Diffractometer 2996 independent reflections
Radiation source: fine-focus sealed tube 2029 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω and φ scan θmax = 27.4°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −21→21
Tmin = 0.324, Tmax = 0.435 k = −10→8
13728 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.5776P] where P = (Fo2 + 2Fc2)/3
2996 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.30900 (18) 0.0948 (4) 0.5312 (4) 0.0704 (9)
H1 0.2756 0.0562 0.5947 0.084*
C2 0.28824 (18) 0.1059 (4) 0.4065 (3) 0.0678 (8)
H2 0.2389 0.0761 0.3657 0.081*
C3 0.35486 (17) 0.1718 (4) 0.3450 (2) 0.0558 (7)
H3 0.3579 0.1954 0.2560 0.067*
C4 0.41272 (14) 0.1937 (3) 0.4394 (2) 0.0386 (5)
C5 0.49358 (14) 0.2608 (3) 0.4308 (2) 0.0388 (5)
C6 0.66294 (15) 0.3109 (3) 0.6435 (2) 0.0410 (6)
H6 0.6461 0.2574 0.7187 0.049*
C7 0.74492 (14) 0.3741 (3) 0.6395 (2) 0.0377 (5)
C8 0.76987 (14) 0.4658 (3) 0.5306 (2) 0.0383 (5)
C9 0.84795 (15) 0.5274 (3) 0.5343 (2) 0.0467 (6)
C10 0.90118 (15) 0.4977 (3) 0.6409 (3) 0.0516 (7)
H10 0.9531 0.5410 0.6421 0.062*
C11 0.87656 (16) 0.4041 (3) 0.7446 (2) 0.0484 (6)
C12 0.79961 (15) 0.3424 (3) 0.7459 (2) 0.0458 (6)
H12 0.7839 0.2796 0.8178 0.055*
N1 0.53833 (11) 0.2682 (3) 0.54589 (17) 0.0418 (5)
H1A 0.5194 0.2354 0.6184 0.050*
N2 0.61464 (12) 0.3296 (2) 0.54270 (18) 0.0410 (5)
O1 0.38640 (12) 0.1475 (3) 0.55681 (17) 0.0626 (5)
O2 0.51905 (11) 0.3068 (3) 0.32640 (15) 0.0575 (5)
O3 0.72099 (10) 0.4955 (2) 0.42286 (14) 0.0485 (4)
H3A 0.6769 0.4528 0.4330 0.073*
Cl1 0.94376 (5) 0.36440 (11) 0.87885 (8) 0.0748 (2)
Br1 0.881917 (19) 0.65331 (5) 0.38959 (3) 0.07798 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0489 (18) 0.075 (2) 0.090 (2) −0.0171 (16) 0.0222 (16) 0.0091 (18)
C2 0.0467 (18) 0.069 (2) 0.086 (2) −0.0055 (15) −0.0126 (16) −0.0198 (17)
C3 0.0533 (17) 0.081 (2) 0.0322 (12) 0.0000 (15) −0.0055 (11) −0.0015 (12)
C4 0.0414 (14) 0.0433 (14) 0.0314 (11) −0.0011 (11) 0.0038 (10) −0.0031 (10)
C5 0.0415 (14) 0.0453 (14) 0.0299 (11) 0.0020 (11) 0.0034 (10) −0.0031 (10)
C6 0.0397 (14) 0.0484 (15) 0.0350 (12) 0.0023 (11) 0.0024 (10) 0.0026 (10)
C7 0.0378 (13) 0.0383 (13) 0.0367 (12) 0.0038 (10) −0.0010 (9) −0.0033 (10)
C8 0.0379 (13) 0.0399 (14) 0.0369 (11) 0.0030 (11) −0.0006 (10) −0.0007 (10)
C9 0.0444 (15) 0.0466 (15) 0.0493 (13) 0.0000 (12) 0.0038 (11) 0.0031 (11)
C10 0.0383 (15) 0.0494 (16) 0.0663 (17) −0.0004 (12) −0.0044 (12) −0.0011 (13)
C11 0.0464 (15) 0.0478 (15) 0.0487 (14) 0.0079 (12) −0.0145 (11) −0.0041 (12)
C12 0.0480 (15) 0.0473 (15) 0.0411 (13) 0.0043 (12) −0.0045 (11) 0.0035 (11)
N1 0.0348 (11) 0.0605 (13) 0.0302 (9) −0.0051 (10) 0.0035 (8) 0.0000 (9)
N2 0.0353 (11) 0.0491 (12) 0.0385 (10) −0.0011 (9) 0.0028 (8) −0.0032 (9)
O1 0.0529 (12) 0.0929 (15) 0.0428 (10) −0.0065 (11) 0.0091 (8) 0.0075 (9)
O2 0.0502 (11) 0.0906 (14) 0.0323 (9) −0.0104 (10) 0.0073 (8) 0.0032 (9)
O3 0.0406 (10) 0.0673 (12) 0.0368 (8) −0.0025 (8) −0.0027 (7) 0.0072 (8)
Cl1 0.0626 (5) 0.0837 (6) 0.0734 (5) 0.0051 (4) −0.0337 (4) 0.0057 (4)
Br1 0.0531 (2) 0.1004 (3) 0.0810 (2) −0.01171 (17) 0.00947 (15) 0.03418 (18)

Geometric parameters (Å, º)

C1—C2 1.299 (4) C7—C12 1.396 (3)
C1—O1 1.367 (4) C7—C8 1.403 (3)
C1—H1 0.9300 C8—O3 1.347 (3)
C2—C3 1.407 (4) C8—C9 1.388 (3)
C2—H2 0.9300 C9—C10 1.380 (3)
C3—C4 1.332 (3) C9—Br1 1.885 (2)
C3—H3 0.9300 C10—C11 1.366 (4)
C4—O1 1.348 (3) C10—H10 0.9300
C4—C5 1.456 (3) C11—C12 1.373 (4)
C5—O2 1.224 (3) C11—Cl1 1.743 (2)
C5—N1 1.352 (3) C12—H12 0.9300
C6—N2 1.275 (3) N1—N2 1.364 (3)
C6—C7 1.459 (3) N1—H1A 0.8600
C6—H6 0.9300 O3—H3A 0.8200
C2—C1—O1 111.1 (3) O3—C8—C9 119.1 (2)
C2—C1—H1 124.5 O3—C8—C7 122.4 (2)
O1—C1—H1 124.5 C9—C8—C7 118.5 (2)
C1—C2—C3 106.7 (3) C10—C9—C8 121.6 (2)
C1—C2—H2 126.6 C10—C9—Br1 119.4 (2)
C3—C2—H2 126.6 C8—C9—Br1 119.00 (18)
C4—C3—C2 106.6 (2) C11—C10—C9 119.1 (2)
C4—C3—H3 126.7 C11—C10—H10 120.5
C2—C3—H3 126.7 C9—C10—H10 120.5
C3—C4—O1 110.1 (2) C10—C11—C12 121.3 (2)
C3—C4—C5 129.7 (2) C10—C11—Cl1 119.3 (2)
O1—C4—C5 120.2 (2) C12—C11—Cl1 119.3 (2)
O2—C5—N1 122.5 (2) C11—C12—C7 120.0 (2)
O2—C5—C4 122.0 (2) C11—C12—H12 120.0
N1—C5—C4 115.4 (2) C7—C12—H12 120.0
N2—C6—C7 119.3 (2) C5—N1—N2 117.55 (19)
N2—C6—H6 120.4 C5—N1—H1A 121.2
C7—C6—H6 120.4 N2—N1—H1A 121.2
C12—C7—C8 119.4 (2) C6—N2—N1 119.2 (2)
C12—C7—C6 119.4 (2) C4—O1—C1 105.5 (2)
C8—C7—C6 121.2 (2) C8—O3—H3A 109.5
O1—C1—C2—C3 −0.8 (4) C7—C8—C9—Br1 −179.23 (17)
C1—C2—C3—C4 0.9 (4) C8—C9—C10—C11 0.7 (4)
C2—C3—C4—O1 −0.7 (3) Br1—C9—C10—C11 −179.00 (19)
C2—C3—C4—C5 −178.9 (3) C9—C10—C11—C12 −1.5 (4)
C3—C4—C5—O2 −0.6 (4) C9—C10—C11—Cl1 179.38 (19)
O1—C4—C5—O2 −178.7 (2) C10—C11—C12—C7 0.4 (4)
C3—C4—C5—N1 179.5 (3) Cl1—C11—C12—C7 179.61 (18)
O1—C4—C5—N1 1.4 (3) C8—C7—C12—C11 1.4 (4)
N2—C6—C7—C12 −175.3 (2) C6—C7—C12—C11 −178.7 (2)
N2—C6—C7—C8 4.6 (3) O2—C5—N1—N2 −0.1 (4)
C12—C7—C8—O3 177.6 (2) C4—C5—N1—N2 179.77 (19)
C6—C7—C8—O3 −2.3 (3) C7—C6—N2—N1 179.1 (2)
C12—C7—C8—C9 −2.1 (3) C5—N1—N2—C6 −167.9 (2)
C6—C7—C8—C9 178.0 (2) C3—C4—O1—C1 0.2 (3)
O3—C8—C9—C10 −178.6 (2) C5—C4—O1—C1 178.6 (2)
C7—C8—C9—C10 1.1 (4) C2—C1—O1—C4 0.4 (4)
O3—C8—C9—Br1 1.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.14 2.953 (2) 157
C3—H3···O1ii 0.93 2.44 3.324 (3) 159
C6—H6···O2i 0.93 2.50 3.263 (3) 139
O3—H3A···N2 0.82 1.84 2.564 (3) 146

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6980).

References

  1. Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129–136.
  2. Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015. [DOI] [PMC free article] [PubMed]
  3. Bruker (2004). APEX2, SAINT, SADABS and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Prabhu, M., Parthipan, K., Ramu, A., Chakkaravarthi, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2716. [DOI] [PMC free article] [PubMed]
  6. Prasanna, M. K., Sithambaresan, M., Pradeepkumar, K. & Kurup, M. R. P. (2013). Acta Cryst. E69, o881. [DOI] [PMC free article] [PubMed]
  7. Rollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910–1939. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681401085X/bt6980sup1.cif

e-70-0o670-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401085X/bt6980Isup2.hkl

e-70-0o670-Isup2.hkl (144KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401085X/bt6980Isup3.cml

CCDC reference: 1002445

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES