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Abstract

Background—Occupational cohort studies are often challenged by the Healthy Worker Survivor

Effect, which may bias standard methods of analysis. G-estimation of structural failure time

models is an approach for reducing this type of bias. Accelerated failure time models have

recently been applied in an occupational cohort but cumulative failure time models have not.

Methods—We used g-estimation of a cumulative failure time model to assess the effect of

working as a long-haul driver on ischaemic heart disease mortality in a cohort of 30,448 males

employed in the unionized US trucking industry in 1985. Exposure was defined by job title and

based on work records. We also applied g-estimation of an accelerated failure time model as a

sensitivity analysis and approximated hazard ratios from both models to compare them.

Results—The Risk Ratio (RR) obtained from the cumulative failure time model, comparing the

observed risk under no intervention to the risk had nobody ever been exposed as a long-haul

driver, was 1.09 (95% CI: 1.02 – 1.16). The RR comparing the risk had everyone been exposed as

long-haul driver for 8 years to the risk had nobody ever been exposed was 1.20 (95% CI: 1.04 –

1.46). After hazard ratio approximations, accelerated failure time model results were similar.
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Conclusions—The cumulative failure time model can effectively control time-varying

confounding by Healthy Worker Survivor Effect, and provides an easily interpretable effect

estimate. Risk ratios estimated from the cumulative failure time model indicate an elevated

ischaemic heart disease mortality risk for long-haul drivers in the US trucking industry.

Keywords

epidemiologic methods; occupational epidemiology; g-estimation; healthy worker effect;
ischaemic heart disease

INTRODUCTION

Occupational cohort studies often present researchers with the challenge of dealing with the

Healthy Worker Effect1. This bias can be broken into two components. The first, known as

the healthy hire effect, stems from the better overall health status and favorable survival of

actively employed individuals compared to the general population. The other aspect, the

healthy worker survivor effect (HWSE), results from less-healthy workers accumulating less

occupational exposure because they take more time off work, retire earlier than healthier

workers, or switch to a job with lower exposure levels. The HWSE usually leads to a

downward bias and underestimation of the effects of possibly harmful occupational

exposures.

While the healthy hire effect is simply dealt with by means of internal comparisons within a

working population2, the HWSE is less straightforward. A number of methods have been

proposed to control for this bias, including restricting analysis to workers who have been

unemployed for a period of time, lagging exposure, or adjusting for time since hire, time

since termination and/or employment status3–7. However, if less healthy workers take time

off work or terminate employment, then health status and time off work may be confounders

of future exposure and the outcome. In fact, if time off work or termination of employment

is affected by prior occupational exposure, then applying these methods to studies with time-

varying variables using standard regression models may introduce additional bias. It has

been shown that even under the null hypothesis standard models conditional on time-varying

confounders affected by previous exposure (e.g. variables that are proxies for health status)

may result in biased estimates, while failure to adjust for them also results in bias8–9.

G-methods were developed in order to adjust correctly for time-varying confounders

affected by previous exposure. These include the g-computation algorithm9, marginal

structural models and inverse probability weighting10, and g-estimation of structural nested

failure time models11–12. The causal framework for these g-methods was originally

proposed by Robins in the context of occupational epidemiology9. Early attempts to apply

the methods were incomplete, though they identified the challenge13–14. Recently Cole et al.

applied the parametric g-formula in an occupational cohort15, while Chevrier et al. reported

a successful application of g-estimation of accelerated failure time models in a cohort of

autoworkers to reduce HWSE16.

We propose g-estimation of a cumulative failure time model, as a novel alternative for the

analysis of the health effects of exposures based on occupational survival data. Under
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assumptions of no unmeasured confounding, correct classification of all variables, and

correct model specification, this method is also unbiased in the presence of time-varying

confounding affected by previous exposures. Moreover the cumulative failure time model

has advantages compared to either Cox proportional hazards analysis or the accelerated

failure time model. For example, the estimating equations for the cumulative failure time

model are more easily solved than for the accelerated failure time model17. The proposed

cumulative failure time model also allows for the estimation of marginal (unconditional)

cumulative risks and estimands on the absolute scale. Such estimands are easier to interpret

and of more direct use in public health than the ratio of median survival times estimated by

the accelerated failure time model or the hazard ratios (HR) obtained with Cox proportional

hazards analysis.

Drivers have higher exposure to vehicle exhaust fumes than other jobs in the trucking

industry. Previous findings from the Trucking Industry Particles Study (TrIPS) have

suggested that all-cause and ischaeamic heart disease (IHD) mortality are associated with

being a driver18–20. Bias from HWSE in occupational studies of cardiovascular outcomes

has been highlighted as a particular concern in several previous studies2, 16, 21, raising a

question about underestimation of IHD risk. This concern motivated us to apply g-

estimation of a cumulative failure time model to quantify the effects of being a long-haul

driver on marginal cumulative risks of all-cause and IHD mortality in the TrIPS cohort.

METHODS

Study Population

The study population used in the analysis has been described in detail elsewhere18. Briefly,

detailed computerized work records for unionized employees employed in 1985 (54,319

men and 4,007 women) were obtained from four large national companies. These employees

were followed up through the year 2000. Participants from one of the companies (n=5,717)

contributed data for the time period of 1993–2000. Primary analysis was limited to men

forty years or older at baseline, with at least one year of work in the trucking industry.

Duration of employment was calculated as years of work in specific trucking industry jobs,

through information on start date, retirement and layoff dates for each job title. Lack of

detailed records represented only 1.5% of all person-years, and the primary analysis sample

included only participants with complete covariate data (n=30,448).

Exposure Assessment

Job title in the industry was defined in eight different job categories, based on a review of

job titles and duties, information on historical use of diesel and other vehicles by workers in

the industry22 as well as an industrial hygiene exposure assessment23–25. The exposure of

interest in this study was working as a long-haul driver, a specific job classification from the

work history files, which is consistent across the 4 participating companies. Long haul

drivers deliver freight from terminal to terminal, as opposed to pick up and delivery drivers

who pick up and/or deliver freight to consumers locally, other jobs involving driving

forklifts or tractors in terminal docks and yards, or no driving-related duties19–20. While

participants could have contributed person time in multiple job titles, the majority of person-
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years were spent in the same job title. Job titles and related duties were the same for all

participating companies and participants. Throughout follow-up, the time-varying

dichotomous annual exposure variable took the value of 1 if a participant worked as a long-

haul driver at any point during the year and 0 otherwise.

Mortality Follow-up

Vital status, date of death and cause-specific mortality from 1985 to 2000 was obtained

through searching the National Death Index [National Center for Health Statistics (NCHS),

Hyattsville, MD]. Matching criteria included social security number, month and year (±1) of

birth, and first name, middle initial and last name. IHD mortality was defined as

ICD-941.0-414.9 and ICD-10 I20-I25.9 codes.

Evidence of HWSE

To examine evidence of HWSE as a time varying confounder also affected by previous

exposure we fit a series of models to estimate associations amongst exposure, surrogates of

unmeasured health status, such as employment status and intermittent time off work, and

outcome. Standard Cox models were fit to assess the association between health status

surrogate and mortality, adjusted for baseline characteristics such as age, race and region.

We also fit models to assess the exposure-related risk of leaving work, adjusting for the

same baseline covariates.

G-estimation of Structural Nested Cumulative Failure Time Models

We applied a structural nested cumulative failure time model to estimate the causal effect of

working as a long-haul driver in the trucking industry on all-cause and IHD mortality. The

method is described in detail in the Appendix. Briefly, the process requires two models: (a) a

structural model for the ratio of counterfactual risks that differ only in exposure a single

year, as a function of observed exposure and a causal parameter ψcft and (b) a model

predicting annual exposure to adjust for confounding.

The effect estimate in the structural model is a counterfactual risk ratio that compares the

risks assessed in any year j under two scenarios. The numerator is the risk under a given

exposure history up to some earlier year k (k<j) and unexposed thereafter. The denominator

is the risk under the same exposure history up to the previous year k-1 and unexposed

thereafter. Both risks are conditional on the same covariate history up to time k–1. This risk

ratio is then modelled as a function of observed exposure at time k, the length of time from

the final exposure to the time at which the risks are assessed (j–k), and an unknown

coefficient to be estimated (ψcft). Under this model, the impact of a final year of exposure at

time k on risk at time j decreases as the length of time between k and j increases. (See

Appendix for model.)

The logistic model for the (binary) annual exposure allows us to adjust for time-varying

confounding. We predict annual exposure as a function of previous exposure, previous time

off work and other covariates. Under the (conditional exchangeability) assumption of no

unmeasured confounders, counterfactual risks are statistically independent of observed

exposure given the observed confounders.
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The g-estimation procedure uses optimization methods to estimate the unknown coefficient

in the structural model for which this independence is satisfied in the exposure model. After

this coefficient ψcft is estimated, the counterfactual risks under no exposure are estimated for

each year of follow up, using the observed risks and removing the effect of any observed

exposure. Subsequently counterfactual risks for hypothetical exposure interventions can be

estimated by adding effects of exposure to the counterfactual risks under no exposure. The

exposure effect estimate can be transformed to obtain cumulative counterfactual risks over

the duration of follow-up for specific interventions on exposure17.

In this study we assessed three specific interventions: (1) nobody in the study population

ever worked as a long-haul driver, (2) everybody in the population worked as a long-haul

driver for the first 8 years of follow-up (the median duration of employment during follow-

up) and was unexposed thereafter, and (3) everybody in the population worked as a long-

haul driver for the full duration of follow-up (up to 15 years).

We used a pooled logistic model for annual exposure to adjust for covariates. This model for

exposure was restricted to active employment time, because the probability of exposure for

non-active employment is zero by definition. Exposure history was entered in the model as

two variables: an indicator for exposure in the previous year and a continuous variable for

cumulative exposure up to two years ago. Time-varying confounding variables were time

spent off work in the preceding year, as a percentage, and a continuous variable for

cumulative time off work up to two years ago.

Additional covariates entered in the exposure model were pre-baseline cumulative exposure

(years as a long-haul driver prior to baseline), age at baseline, race, geographical region,

ambient air pollution levels near each participant’s residence and cumulative time spent in

other jobs titles up to the preceding year20, 26. Follow-up time was also entered in the model

as a continuous variable along with year of hire to account for left truncation bias.

Inverse probability of censoring weighting was used to control for differential loss to follow-

up and for competing risks in the case of IHD mortality27. Censoring models included the

covariates listed above for the exposure model as well as the dichotomous annual exposure

variable. G-estimation of the cumulative failure time model was performed in SAS (SAS

version 9.3; SAS Institute Inc., Cary, NC) invoking the SNCFTMshell SAS macro available

at: http://www.hsph.harvard.edu/causal.

G-estimation of Structural Nested Accelerated Failure Time Models

As a sensitivity analysis we also fitted a structural nested accelerated failure time model,

described in detail in the Appendix. This accelerated failure time model assesses

counterfactual unexposed survival time as a function of observed survival time and

exposure. It allows us to compare median counterfactual survival times under population

interventions of always exposed (Tα) and never exposed (T0).

Similar to the cumulative failure time model, the accelerated failure time method uses two

models: a) a structural model for counterfactual survival time under no exposure (T0) as a

function of observed exposure and an unknown coefficient to be estimated (ψaft) and b) a
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model for annual exposure to adjust for confounding. We again rely on the (conditional

exchangeability) assumption of no unmeasured confounders under which counterfactual

survival times are independent of observed exposure, and use optimization methods estimate

a ψaft value for which that independence is satisfied.

The same covariates were controlled for in the exposure models of the two structural

methods. Natural cubic splines were used for follow-up time with 3 degrees of freedom, and

for year of hire with 6 degrees of freedom (approximately one for each decade in the time

span), as opposed to linear terms used in the model for the cumulative failure method.

Control for loss to follow up and competing risks was achieved using IPCW as described

above. G-estimation of the accelerated failure time model was performed using R software

(version 2.15.1, see web supplement for R code).

RESULTS

Study Population and Mortality Outcomes

Characteristics of the study population are summarized in Table 1. Briefly, participants were

predominantly white (85%), with mean age at baseline of 49 (±6) years, and the most

common job was long haul driver (32%). The median duration of employment was 8 years.

All-cause and IHD mortality are summarized overall and by job title in Table 2. There were

4,201 deaths during study follow-up, 1,253 of them due to IHD. Most deaths (72%) and

most IHD deaths (68%) occurred after termination of employment. The HR for mortality

associated with leaving active employment was 1.09 (95% CI: 0.99 – 1.20). Leaving active

employment was not associated with IHD mortality after covariate adjustment, however,

intermittent time off was strongly associated with both all-cause and IHD mortality. The HR

for leaving active employment associated with exposure was 1.07 (95% CI: 1.04 – 1.11).

Job Title and Mortality Associations

The Risk Ratios (RR) comparing the observed risk for the cohort under the natural course

(i.e., under observed exposure and covariate history) to the risk under different interventions

are illustrated in Table 3. Being a long-haul driver increased the risk of all-cause and IHD

mortality with similar magnitudes on the multiplicative scale. Survival graphs for the

observed survival times in the study population (natural course), as well as for the three

interventions on the exposure, are presented in Figure 1.

Inverse probability of censoring weights for competing risks did not affect parameter

estimates of the cumulative failure time model for IHD mortality. Effect estimates and their

95% CIs with inverse probability of censoring weights only for loss to follow up were very

similar to those controlling for both loss to follow up and competing risks. Results are

presented based on models controlling for both loss to follow up and competing risks

throughout this report for reasons of simplicity.

Hazard ratio approximations for the cumulative failure time and accelerated failure time

models were very similar for IHD mortality (Table 4). In the case of total mortality, the HR

approximation from the cumulative failure time model was slightly higher than that from the
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accelerated failure time model. (Note: these hazard ratios are only comparable under specific

assumptions. See Appendix.)

DISCUSSION

This application of the cumulative failure time model to the trucking industry study is the

first in any occupational cohort. Given that not all of the assumptions required by different

structural methods are shared, it can be useful to consider alternatives for any particular

study based on the causal question at hand and the possible biology behind it17. Considering

the application of the accelerated failure time model as a sensitivity analysis allows us to

assess the robustness of the results to changes in the method of analysis. Differences in

results may lead to better understanding of the strengths and limitations of both the data and

the methods.

Results from the g-estimation of the cumulative failure time model in this study indicate that

working as a long-haul driver in the trucking industry leads to an increased risk of both IHD

and all-cause mortality. Long-haul drivers are exposed to high levels of vehicle

exhaust23, 25. Exposure to particulate matter from vehicle exhaust and other sources has

been linked to cardiovascular and all-cause mortality in a growing body of literature28–31.

Increased cardiovascular disease risk has also been reported in professional drivers in other

studies32–35. Our finding of increased IHD mortality risk among long-haul drivers is

consistent with previous analyses in which the IHD risk associated with ever being a driver

was elevated18, 20. It is also consistent with previous findings of increased risk for

myocardial infarction in long-distance truck drivers in Sweden35.

A major data limitation of this retrospective cohort mortality study was lack of personal

information on potential risk factors for heart disease mortality, such as smoking, BMI, and

other lifestyle related factors. The observed effect of being a long-haul driver on mortality

may reflect differences in these characteristics across job titles, in addition to differences in

vehicle exhaust exposures. Furthermore, all subjects in the TrIPS cohort were hired before

start of follow-up. Despite steps taken to address left truncation, survivor bias may still exist.

We expect the direction of this bias to be towards the null36. Generalizability of our findings

may also be limited as non-unionized sectors of the industry as well as trucking industries in

other countries may have different practices that affect exposure.

The methods used in this paper have several strengths. G-estimation of the cumulative

failure time model is a structural approach. Under specific assumptions, it correctly adjusts

for time-varying covariates affected by prior exposure, an issue inherent in the HWSE as

described above. This analysis is thus an improvement over standard methods, which are

biased in the presence of a time varying confounder affected by prior exposure.

Additionally, failure time models like either the accelerated and cumulative failure time

models, unlike standard Cox models, are not affected by potential limitations of the hazard

ratio, such as crossing of hazards due to depletion of susceptibles37. They can also be used

to obtain survival graphs, which (though less familiar) may be more informative than hazard

ratios.
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Results from accelerated and cumulative failure time models were similar in the sensitivity

analysis. HR approximations were virtually identical for IHD mortality and were similar for

all-cause mortality. It is important to note, however, that these approximations of hazard

ratios answer different causal questions, and are comparable only under specific

assumptions38. Specifically, the cumulative failure time model approximates a hazard ratio

for the effect of a one-year difference in exposure assessed over a one-year period,

conditional on exposure and covariate history. The accelerated failure time model

approximates a marginal hazard ratio comparing the interventions always and never

exposed, much like the estimate of a Cox marginal structural model, and in the context of

the accelerated failure time model it is also the effect of exposure in each year.

Cumulative failure time models have two advantages over accelerated failure time models.

First, they have a smooth estimating function with respect to their parameters that can be

solved using standard optimization procedures (e.g. the Newton-Raphson procedure). By

contrast, the estimating function of an accelerated failure time model is not differentiable in

the model parameters in the presence of administrative censoring, and requires a grid search

or non-gradient-based optimizers17, 38–39. Second, cumulative failure time models can be

used to obtain marginal cumulative risks, as long as there is no effect modification by time-

varying confounders, an assumption satisfied by the model used in this study. Cumulative

risks and risk ratios are more easily interpretable than ratios of median survival times as

estimated by an accelerated failure time model.

One limitation of the cumulative failure time model is that estimates are valid only under the

“rare failure” assumption. This assumption may have been violated in the case of all-cause

mortality in the latter stages of follow-up in this study. Accelerated failure time models do

not require the “rare failure” assumption and are potentially a better option for less rare

outcomes.

General limitations of our analyses include the fact that estimates are only valid under the

assumption of conditional exchangeability, which is not a testable assumption in

observational studies. This, however, is a limitation of all observational studies.

Additionally, the function of the cumulative failure time model used in this study assumes

no interactions, and validity of results depends on correct specification of the model. The

estimating equation used in our analysis was a simple form, as described by Picciotto et

al.17, and does not result in a doubly-robust, locally efficient estimator.

Censoring by differential loss to follow up and competing risks may be sources of selection

bias inherent in survival data40. Under the assumption that the censoring models for both

mechanisms are correctly specified and account for all censoring factors, use of inverse

probability of censoring weights will lead to unbiased estimates but may present an

interpretation problem. The weight-corrected effect estimates represent the effect of the

exposure “had nobody been lost to follow up or competing risks”. In cause-specific

mortality analysis, no deaths due to competing risks is an unrealistic scenario, and causal

effects “had nobody been lost to competing risks” may not be a useful causal estimate for a

real world public health issue. In our analysis results with and without use of inverse

probability of censoring weights for competing risks were very similar. Assuming that our
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censoring model was correctly specified, this suggests that any selection bias due to loss to

competing risks in this cohort with respect to the exposure is of small magnitude.

To conclude, the cumulative failure time model is an alternative structural method for the

analysis of observational data in the presence of time-varying confounders affected by prior

exposure. It is applicable to occupational studies with longitudinal data in the presence of

HWSE. Cumulative failure time models have advantages over previously proposed methods,

but come with their own limitations. Overall it may be beneficial to consider more than one

structural method when possible. Although in this instance the two g-methods considered

had similar results, this may not always be the case. Given the number of assumptions

required for each model, a sensitivity analysis using different models may provide insights

as to the appropriateness of each in light of the specific causal questions and exposure

scenarios considered, as well as sensitivity to data limitations such as residual confounding

and measurement error.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What this paper adds

The Healthy Worker Survivor Effect, caused by time varying confounders affected by

prior exposure, is a bias that can be avoided by applying g-methods.

One such method, g-estimation of a structural accelerated failure time model, has

previously been used in an occupational cohort.

This paper proposes g-estimation of a structural cumulative failure time model for use in

occupational survival analyses.

While it shares strengths with the accelerated failure time model as compared to standard

Cox analysis, the cumulative failure time model, under a rare failure assumption, also

provides further advantages, such as simpler estimating functions and easily interpretable

effect estimates.
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Figure 1.
Survival graphs for IHD mortality under natural course and the interventions everyone never

exposed as long-haul driver (LH), everyone exposed as long-haul driver for first 8 years of

follow up, and everyone always exposed as long-haul driver.
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Table 1

Population characteristics in primary analysis sample of men aged 40 years or more at baseline with complete

covariate data.

Characteristic Overall
(n=30,448)

Long-Haul Drivers
(n=10,642)

Other job titles
(n=19,846)

Mean ± SD

Age at baseline 49.04 ± 6.01 49.89 ± 6.05 48.59 ± 5.94

Age when leaving active emp. 59.18 ± 4.73 60.04 ± 4.68 58.71 ± 4.68

Year of Hire 1972 ± 8.53 1973 ± 8.10 1972 ± 8.73

Average Pollutant Levels Near Home Residence

  PM10 (µg/m3) 26.83 ± 5.87 26.49 ± 5.62 27.01 ± 6.00

  NO2 (ppb) 14.18 ± 7.11 12.55 ± 5.89 15.03 ± 7.54

  SO2 (ppb) 4.85 ± 2.91 4.80 ± 2.85 4.88 ± 2.94

Census Region of Residence No. (%)

  South 11,505 (37.7) 4,220 (39.7) 7,285 (36.7)

  Midwest 9,736 (31.9) 3,745 (35.2) 5,991 (30.2)

  Northeast 4,477 (14.7) 1,046 (9.8) 3,471 (17.5)

  West 4,730 (15.5) 1,631 (15.3) 3,099 (15.6)

Race, White 25,872 (84.9) 9,385 (88.2) 16,487 (83.1)
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Table 3

15-year cumulative Risk (%) for all-cause and IHD mortality under natural course and “never exposed”,

“exposed through 8 first years of follow-up” and “always exposed”, interventions, along with marginal Risk

Ratios (RR, 95% CI), from the CFT model for the exposure Long-Haul Driver.

Intervention All-cause Mortality IHD mortality

Risk (%) RR vs. “never ex”
(95% CI)

Risk (%) RR vs. “never ex”
(95% CI)

Natural Course 16.75 1.09 (1.05 –1.12) 5.46 1.09 (1.02 – 1.16)

Never Exposed 15.47 . 5.05 .

8-year exposure 18.97 1.23 (1.12 – 1.36) 6.08 1.20 (1.04 – 1.46)

Always Exposed 25.39 1.64 (1.34 – 2.06) 8.03 1.59 (1.12 – 2.47)
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Table 4

Hazard ratio approximations (95% CIs) from cumulative failure time (CFT) and accelerated failure time

(AFT) models for the exposure Long Haul drivers.

HR approx.a

All-cause Mortality

CFT model 1.43 (1.24 – 1.66)

AFT model 1.34 (1.15 – 1.59)

IHD Mortality

CFT model 1.38 (1.08 – 1.82)

AFT model 1.39 (1.05 – 1.84)

b
HR approximation from CFT model Risk Ratio estimate, is the conditional HR at time t ∈(k, k+1] (assumed to approximate the marginal HR) for

the effect of exposure up to year k, compared to exposure up to year k-1 and unexposed afterwards

HR approximation from the AFT model based on Weibull distribution assumption for survival time T, and approximates the HR comparing
“always” exposed to “never exposed” at time t.
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