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Abstract

A set of 2-chloro-4-nitrophenyl glucosamino/xylosaminosides were synthesized and assessed as

potential substrates in the context of glycosyltransferase-catalyzed formation of the corresponding

UDP/TDP-α-D-glucosamino-/xylosaminosugars and single vessel transglycosylation reactions

with a model acceptor. This study highlights a robust platform for aminosugar nucleotide

synthesis and reveals OleD Loki as a proficient catalyst for U/TDP-aminosugar synthesis and

utilization.
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Aminosugars are ubiquitous in nature where they serve as functionally and/or structurally

important building blocks for a range of biologically relevant glycoconjugates including

peptidoglycans,[1] glycosaminoglycans,[2] aminoglycosides,[3] glycoproteins,[4] and

glycosylated natural products (Scheme 1).[5] A unique feature of aminosugars is their

enhanced solubility and potential for ionic interactions by virtue of the inherent positive

charge under normal physiological conditions.[6] Within this context, aminosugar

conjugation has been reported to improve the unconjugated parental compound’s basicity,[7]

pharmacological properties,[8] and/or even alteration of mechanism.[9] Aminosugar

conjugation can be accomplished via either chemical[10] or glycosyltransferase (GT)-

catalyzed strategies,[11] the latter of which typically depends upon the availability of suitable

aminosugar nucleotide donors. Yet, the reported syntheses of aminosugar nucleotides via

chemical,[12] enzymatic,[13] or chemoenzymatic[14] strategies still typically are restricted to
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multi-step, low yielding processes and few, if any, are directly orthogonal to downstream

GT-catalyzed reactions. A simple robust strategy directly compatible with downstream

aminosugar nucleotide utilizing processes would therefore be considered advantageous.

We recently reported simple aromatic glycosides to serve as efficient donors in

glycosyltransferase-catalyzed reactions for both sugar nucleotide formation (i.e., the

‘reverse’ of a conventional GT-catalyzed reaction) and transglycosylation wherein the use of

2-chloro-4-nitrophenyl glycoside donors also offered a convenient colorimetric screen to

enable the directed evolution of enhanced GTs with broad substrate permissivity.[15] Herein

we describe an interrogation of two of the most permissive glycosyltransferase prodigy from

these prior studies (OleD TDP-16 – a P67T/S132F/A242L/Q268V variant;[15a,16] OleD Loki

– a P67T/I112P/T113M/S132F/A242I variant[15b]) for their abilities to catalyze the

production of variant aminopentose and/or aminohexose nucleotides in the presence of the

corresponding 2-chloro-4-nitrophenyl aminosugar donors and TDP/UDP. This study reveals

OleD Loki to catalyze the conversion of 6 out of 7 simple D-glucosamino- and D-

xylosamino-glycoside donors into their corresponding UDP/TDP-aminosugar nucleotides

and also to utilize 6-azido/acetylamino-D-glucoside donors. Using 4-methylumbelliferone as

a model acceptor, this study also highlights the efficient nucleotide-mediated single vessel

transglycosylation with 5 of the 6 representative OleD Loki aminosugar substrates. In

addition to providing a convenient strategy for novel aminosugar nucleotides, this work also

sets the stage to assess the potential for OleD-catalyzed aminosugar conjugation to a range

of bioactive natural products and drugs.[17]

For this study, seventeen 2-chloro-4-nitrophenyl azidosugar and aminosugar glycoside

donors were synthesized using a simple four-step synthesis (bromination, glycosylation,[18]

deprotection, and reduction) from peracylated (acetyl or benzoyl) azidosugars with an

overall average yield of 23%. The synthesized 2-chloro-4-nitrophenyl glucosamino/

xylosaminosides were subsequently converted to their corresponding hydrochloride salts in

an average yield of 94% (Scheme 2, Table S1). In all cases, the corresponding 2-chloro-4-

nitrophenyl glycosides were confirmed as the desired β-anomers. Additional analogs

generated during synthetic methods development and included in this study include (2-

chloro-4-nitrophenyl)-α-L/β-D-arabinoside (18, 18d), (2-chloro-4-nitrophenyl)-6-deoxy-6-

N-acetylamino-β-D-glucoside (19), and (2-chloro-4-nitrophenyl)-2-deoxy-2-amino-α-D-

glucoside (20) (Figure 1, Figure S1).

Three enzymes (wtOleD, OleD TDP-16, and OleD Loki) were selected to compare in the

context of their potential to produce aminosugar nucleotides from the 2-chloro-4-nitrophenyl

glycoside panel described above. Of these, TDP-16[16] and Loki[15b] are engineered variants

of the Streptomyces antibioticus macrolide glucosyltransferase (wtOleD).[19] Standard

conditions (10 µM OleD variant, 2 mM UDP or 5 mM TDP, 2 mM 2-chloro-4-nitophenyl

glycoside, 50 mM Tris-HCl, pH 8.0, final volume of 100 µL, 25µC, 12 h followed by the RP

HPLC analysis) were utilized to compare the turnover across the entire panel of enzyme/

glycoside combinations. Figure 1 highlights the outcome of this cumulative study and

reveals OleD Loki to have the broadest capacity for aminosugar conversion with all but one

targeted free aminosugar donor (3-deoxy-3-amino-β-D-xyloside 17) leading to appreciable

product (≥ 50%) in the presence of either UDP or TDP (Figure 1). An overall preference for

Zhang et al. Page 2

Chembiochem. Author manuscript; available in PMC 2015 March 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



glucosides (rank order of 6-NH2 ≈ 4-NH2 ≈ 2-NH2 > 3-NH2) over xylosides (rank order of

4-NH2 ≈ 2-NH2) was observed with no apparent difference between the donor free base and

the corresponding hydrochloride salt (Table S2, Figure S2, S3, S4, S5). By comparison, both

wtOleD and OleD TDP-16 were notably worse than OleD Loki with one exception (6-

deoxy-6-azido-β-D-glucoside 2), a previously reported substrate of TDP-16,[15a] where

TDP-16 was found to slightly outperform OleD Loki in this endpoint assay. In addition,

OleD Loki displayed notable improvement with additional non-native donors beyond the

scope of the targeted aminosugar series including 6-deoxy-6-N-acetylamino-β-D-glucoside

19 and slight improvement with α-L-arabinoside 18 - both analogs generated during the

course of synthetic methods development. Intriguingly, both wtOleD and OleD TDP-16

outperformed OleD Loki with β-D-glucoside 1. As UDP-glucose is the native substrate of

wtOleD,[19] this assessment suggests OleD Loki to offer a unique divergence in sugar

specificity from wtOleD prodigy studied to date.

In the context of aminosugar nucleotide synthesis, this OleD catalyzed reversible reaction

provides a noteworthy alternative to the synthesis of aminosugar nucleotides and compares

favorably to prior precedent. For example, as comparison, prior chemical syntheses of the

UDP-2-deoxy-2-amino-α-D-glucose and UDP-6-deoxy-6-amino-α-D-glucose from

peracetylated azidosugar precursors required 6 steps with overall yields ranging from 4.5 –

20% and a lengthy (up to 5 days) key conjugation reaction between peracetylated azido-α-

D-glucoside-1-phosphates and UMP-morpholidate.[20,21] The prior chemenzymatic

syntheses of NDP-2-deoxy-2-amino-, 3-deoxy-3-amino-, 4-deoxy-4-amino-, and 6-deoxy-6-

amino-α-D-glucose have also previously been accomplished via the use of an engineered α-

D-glucose-1-phosphate thymidylyl-transferases (RmlA) with overall yields ranging from 5–

24% (including up to 7 chemical transformations to provide the requisite aminosugar-α-1-

phosphate substrates).[22] The current strategy affords the desired UDP/TDP-aminosugars in

7%–28% yield (including the simple four-step synthesis from peracylated azidosugars).

Furthermore, given OleD Loki was evolved to also efficiently utilize ADP, CDP, and

GDP,[15b] the current study suggests the potential to also employ OleD Loki for the

corresponding syntheses of ADP-, CDP-, and/or GDP-aminosugars.

To assess the direct compatibility of this approach with a downstream coupled sugar

nucleotide utilizing processes,[23] we examined the ability of the coupled OleD Loki-driven

system to mediate the glycosylation of a model acceptor 4-methylumbelliferone 54 (Figure

2). The advantage of 4-methylumbelliferone as a surrogate acceptor is its inherent

fluorescence. Specifically, glycosylation of the 4-methylumbelliferone C7-OH extinguishes

fluorescence, thereby enabling a highly sensitive fluorescent-based continuous GT assay.[24]

To set the stage for this assessment, the UDP concentration was first optimized in the

context of the coupled reaction to afford the greatest transglycosylation output (i.e., the best

4-methyumbelliferone glycoside formation) in the presence of (2-chloro-4-nitrophenyl)-2-

deoxy-2-amino-β-D-glucoside 5 as a representative aminosugar donor (Figure 2B, 2C). The

optimization series [10 µM OleD Loki, 1 mM 4-methylumbelliferone 54, 1 mM 2-deoxy-2-

amino-β-D-glucoside 5 and variant UDP (0.1 – 1.5 mM) in 50 mM Tris-HCl, pH 8.0 with a

final volume of 100 µL] revealed 0.1 eq UDP as the optimal relative concentration to

support the coupled transglycosylation process. Using this optimized protocol, the coupled
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system was subsequently examined in the context of seven 2-chloro-4-nitrophenyl glycoside

donors including the five established aminosugar donors for aminosugar nucleotide

synthesis (amino-β-D-glucosides 3, 5, 7, 9 and 4-deoxy-4-amino-β-D-xyloside 13), 6-

deoxy-6-azido-β-D-glucoside 2 and β-D-glucoside 1 (Figure 2D). Overall, the trends for

transglycosylation generally paralleled that for sugar nucleotide formation highlighted in

Figure 1 with a general preference for hexose over pentose congeners and 2-/6-amination

favored over the corresponding 3-/4-substitution. Importantly, this assessment confirms that

the OleD-catalyzed NDP-aminosugar production strategy can be directly coupled to the

downstream sugar nucleotide-utilizing applications.

Inspired by the ability of diverse simple ‘activated’ donors to modulate the thermodynamics

of GT-catalyzed reactions, this work highlights the first systematic interrogation of the most

proficient/permissive OleD variants in the context of aminosugar nucleotide formation and

utilization. This study revealed OleD Loki to slightly outperform OleD TDP-16 in nearly all

standard endpoint assays conducted and to serve as an efficient catalyst for the production of

12 out of 14 targeted UDP/TDP-α-D-glucosamino-/xylosaminosugars from a series of

simple 2-chloro-4-nitrophenyl glucosamino/xylosaminoside donors. In addition, OleD Loki

also enabled the subsequent production of the corresponding set of model 4-

methylumbelliferone glucosamino/xylosaminosides in a series of model UDP-mediated

transglycosylation reactions. As such, this work notably highlights an efficient platform for

UDP-/TDP-(and potentially ADP-/GDP-/CDP-) aminosugar production that is directly

orthogonal to subsequent sugar nucleotide-dependent reactions relevant to a range of

glycoconjugation and glycobiology applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of catalysts in 2-chloro-4-nitrophenyl glycoside driven sugar nucleotide

syntheses. A) General reaction scheme. B) Maximum observed percentage conversion of (U/

T)DP to (U/T)DP-sugars by OleD Loki (dark), TDP-16 (light dark) and wtOleD (gray) (n ≥

2, S. D. < 8%) (See Supplement methods). C) Additional 2-chloro-4-nitophenyl glycosides

tested for which no products were observed within the sensitivity limits of the assay.
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Figure 2.
Single enzyme coupled UDP-mediated transglycosylation reaction of 4-methylumbelliferone

54 with 2-chloro-4-nitrophenyl glucosamino/xylosaminosides. A) General reaction scheme.

B) Time course of 5 fluorescence as a measure of reaction progress over 8 h with different

UDP concentrations. C) HPLC chromatogram of the final reaction mixtures from panel c

after 8 h where the solid circle (●) denotes the 54 glycoside product and (○) represents

UDP-2-deoxy-2-amino-α-D-glucose. D) Percentage conversion to 54 glycoside products via

OleD Loki-catalyzed NDP-mediated transglycosylation containing 0.1 mM UDP, 1 mM 54,

and 1 mM 2-chloro-4-nitrophenyl glycoside donors (1, 2, 3, 5, 7, 9, 13) (n ≥ 2. S. D. < 5%).
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scheme 1.
Representative aminosugar-appended natural products where aminosugars are highlighted in

darker shade.
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scheme 2.
Synthesis of 2-chloro-4-nitrophenyl aminosugar donors.
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