Skip to main content
. 2014 Jun 10;8:418. doi: 10.3389/fnhum.2014.00418

Table 1.

Left column: mathematical expressions of the probability density functions (pdf's) for RTs for a single boundary diffusion model, two boundary diffusion model, and the reciprocal Normal.

Time-domain Rate-domain
Inverse Gaussian Reciprocal inverse Gaussian
IG(μ,σ2)=(μ32πσ2χ3)12exp[μ(χμ)22σ2χ] recIG(μ,σ2)=(μ32πσ2χ)12exp[2μ2μ/χχμ32σ2]
First passage time distribution for the boundary of the two boundaries a and b for the pure DDM with diffusion constant, s Reciprocal first passage time distribution boundary a of the two boundaries a DDM
B(ξ,a,b,z)=πs2(ab)2exp[ξ(az)s2ξ2t2s2]k=1kexp[k2π2s2t2(ab)2]sin[kπ(az)ab] recB(ξ,a,b,z)=πs2t2(ab)2exp[ξ(az)s2ξ22ts2]k=1kexp[k2π2s22t(ab)2]sin[kπ(az)ab]
see Ratcliff and Smith (2004)
Reciprocal truncated Normal Truncated Normal
rectrN(μ,σ)=exp[(1/tμ)22σ2]2π(1ϕ(μσ))σt2 trN(μ,σ)=exp[(tμ)22σ2]2π(1φ(μσ))σ

Φ = Normal cdf; ξ = drift rate; a = upper boundary; b = lower boundary; z = starting point. Right column: equivalent pdf's in the rate (reciprocal RT) domain. See Harris and Waddington (2012) for the mathematical relationship between the two domains.