
Citation: CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e114;  doi:10.1038/psp.2014.11
© 2014 ASCPT  All rights reserved 2163-8306/14

www.nature.com/psp

Drug-induced peripheral neuropathy (DIPN) is a common but 
unintended effect of many lifesaving drugs and often leads 
to dose reduction or regimen modification that may compro-
mise clinical outcomes.1 Various chemotherapeutic agents 
and anti-infective drugs are known to cause peripheral neu-
ropathy (PN) during treatment; however, other drugs can also 
induce PN following prolonged use. For example, the statins, 
which are widely prescribed for lowering total cholesterol, 
have been reported to cause PN with an incidence of 1 in 
14,000 person-years of treatment.2

DIPN can be broadly divided into three groups based on 
pathophysiology: (i) axonal degeneration, (ii) segmental 
demyelination, and (iii) neuron soma damage. Chemothera-
peutic agents not only act on their intended therapeutic tar-
gets but can also affect various cellular compartments of 
neurons and their surrounding cells (i.e., glial cells and mac-
rophages), resulting in neurotoxicity and functional changes. 
For example, bortezomib, paclitaxel, platinum, and vincris-
tine all can cause mitochondrial toxicity, with bortezomib also 
acting on endoplasmic reticulum, microtubules, and myelin 
sheath of the dorsal root ganglia.3

Genome-wide association studies have improved our 
understanding of the association between genes and differ-
ential clinical manifestations of DIPN. For example, genome-
wide association studies have implicated regulatory factor X 
2 (RFX2),4 ephrin type A receptor (EPHA4),5,6 and frizzled 
family receptor 3 (FZD3)6 in treatment-related PN of taxanes. 
However, it is generally not well understood how a wide spec-
trum of drug classes can cause treatment-related PN or how 
diverse these DIPN drugs are or whether there are any com-
mon biological factors connected to these particular com-
pounds. Neither are the mechanisms of DIPN characterized 
across the drugs approved for treating different diseases.

To define the pharmacological space of DIPN drugs and 
to enable prediction and assessment of the likelihood of a 
new drug in causing DIPN, we adopted a hybrid approach of 
bioinformatics, systems pharmacology, and statistical regres-
sion tree analysis to link the clinical incidence and severity 
that are associated with individual DIPN drugs to their known 
and extended pharmacological targets. In this reported 
study, we mined the Drugs@FDA database, supplemented 
the findings by mining SIDER and NCBI DailyMed, curated 
the clinical incidence and severity of DIPN reported in pub-
lished summaries of clinical trials, and then conducted sta-
tistical regression tree analyses to associate proteins in the 
extended pharmacological network with the clinical pheno-
types of incidence.

RESULTS
Compilation and curation of the drug list
To identify the DIPN drugs, we referred to the terms listed 
in Common Terminology Criteria for Adverse Events (v4.03: 
14 June 2010) published by the National Cancer Institute 
of the National Institutes of Health.7 PN, peripheral sensory 
neuropathy, and peripheral motor neuropathy were used as 
search terms. Medical Dictionary for Regulatory Activities 
(MedDRA; http://www.meddra.com/) terms of hyperesthesia, 
hypoesthesia, and paresthesia were also referenced. A total 
of 3,200 current drug label PDF files were downloaded from 
the Drugs@FDA database8 and were converted to text files 
using Xpdf (http://www.foolabs.com/xpdf/). Among a total of 
532 drug labels containing neuropathy terms, manual cura-
tion confirmed 214 nonredundant DIPN drugs. Similarly, 
two additional resources, the NCBI DailyMed data9 and 
the SIDER210 were surveyed for the aforementioned terms 
to include 20 additional drugs. A final list of 234 drugs was 
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A systems pharmacology approach was undertaken to define and identify the proteins/genes significantly associated with 
clinical incidence and severity of drug-induced peripheral neuropathy (DIPN). Pharmacological networks of 234 DIPN drugs, 
their known targets (both intended and unintended), and the intermediator proteins/genes interacting with these drugs via 
their known targets were examined. A permutation test identified 230 DIPN-associated intermediators that were enriched with 
apoptosis and stress response genes. Neuropathy incidence and severity were curated from drug labels and literature, and were 
used to build a predictive model of DIPN using a regression tree algorithm, based on the drug targets and their intermediators. 
DIPN drugs whose targets interacted with both v-myc avian myelocytomatosis viral oncogene homolog (MYC) and proliferating 
cell nuclear antigen-associated factor (PAF15) were associated with a neuropathy incidence of 38.1%, whereas drugs interacting 
only with MYC had an incidence of 2.9%. These results warrant further investigation in order to develop a predictive tool for the 
DIPN potential of a new drug.
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obtained (Supplementary Table S1), 183 (78%) of which 
were common in two or more resources (Figure 1a).

Indication-based drug categorization
DIPN drugs were categorized based on the indication for 
which each drug was approved by referencing DrugBank 
and Drugs@FDA. DrugBank included records for 224 out of 
the 234 drugs, with an average of three classes per drug. 
Referencing the US Food and Drug Administration (FDA)–
approved labels allow the adoption of one indication for each 
drug. This categorization, though different from pharmaco-
logical target-based classification, was chosen to show the 
relation of DIPN to disease-specific treatment. The five larg-
est categories were antineoplastic (n = 64; 27%), anti-infec-
tive (n = 38; 16%), anti-inflammatory (n = 16; 7%), anti-HIV 
(n = 16; 7%), and antidepressive (n = 10; 5%) (Figure 1b). 
Those categories with only one or two drugs were merged 
into the “Miscellaneous” category (n = 34; 14%).

Construction of DIPN pharmacological networks
The known intended and unintended targets of DIPN drugs 
are defined hereafter as targets and were collected from Drug-
Bank and Therapeutic Target Database (TTD; http://bidd.nus.
edu.sg/group/cjttd/). Among the 234 DIPN drugs, 204 had at 
least one target, whereas 30 anti-infective agents only had 
nonhuman targets in the databases. We then generated a 
pharmacological network (Figure 2a) using the remaining 
174 DIPN drugs and their 280 human targets, referred to as 
the base network. This network contained multiple subnet-
works (Figure 2b), identified by the Fast Greedy community 
structure analysis algorithm11 based solely on the network 
topology, and the 10 largest subnetworks are indicated by 
nongray node colors. The largest subnetwork, highlighted in 

yellow (Figure 2b), includes 23 drugs (mostly antineoplastic) 
and 62 targets. The second largest subnetwork consisted of 
24 drugs and 35 targets (Figure 2c) and included the drugs 
that are mainly used for treating neurological disorders such 
as Parkinson disease, bipolar disorder, unipolar depression 
and seizures, and the drugs that shared serotonin receptors 
as common therapeutic targets.

Extension of DIPN pharmacological networks
The base network was extended by referencing the database 
of BioGRID (http://thebiogrid.org/)12 to add intermediators 
that had either genetic or physical protein–protein interactions 
with the targets. A total of 2,807 intermediators had interac-
tions with any targets of at least one drug. For each interme-
diator, drug-degree was defined as the number of interacting 
drugs that the intermediator indirectly interacted through their 
known targets. With drug-degree as the cutoff, we generated 
20 different extended networks, denoted as Min01 through 
Min20. The Min01 network included all 2,807 intermediators, 
whereas the Min20 network included 12 intermediators with 
at least 20 interacting drugs (Supplementary Table S2). The 
number of intermediators substantially decreased as the min-
imum drug-degree threshold increased. As an example, the 
Min05 extended network including 274 intermediators, ~10% 
of all intermediators, is depicted in Supplementary Figure 
S1. Compared with the base pharmacological network, the 
drugs and their targets in this extended network are highly 
interconnected via intermediators.

Gene set enrichment analysis on drug targets and 
intermediators
To identify significantly enriched biological functions among 
the targets and intermediators, gene set enrichment 

Figure 1 DIPN drugs and the indication-based categories. Neuropathy-causing drugs were compiled from three resources (Drugs@FDA, 
DailyMed, and SIDER). (a) This Venn diagram illustrates the overlap among the identified drugs. (b) One representative indication category was 
assigned to each DIPN drug based on the indication information from the DrugBank database and Drugs@FDA. Those categories consisting of only 
one or two drugs were merged into the “miscellaneous” category, accounting for 14% of all DIPN drugs. DIPN, drug-induced peripheral neuropathy.
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analysis was performed using local implementation of 
the Database for Annotation, Visualization and Integrated 
Discovery, v6.7 (DAVID; http://david.abcc.ncifcrf.gov/).13,14 
Using Benjamini–Hochberg (BH)–adjusted P < 0.05 as 
the cutoff, we identified 698 biological functions in Gene 
Ontology (GO; http://geneontology.org/) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG; http://www.
genome.jp/kegg/) terms in the drug targets and an aver-
age of 388 functional terms in the 20 sets of intermediators. 
Figure 3 is a heat-map of top 10 most significant biological 
functions in each set, in which the color gradient represents 
the statistical significance, log transformed by −log10 (BH-
corrected P value). The targets were highly enriched with 
functions such as cell surface receptors, voltage-gated ion 
channels, and regulation of synaptic transmission, whereas 
the intermediators were highly enriched with functions 
related to transcription of mRNA, cell cycle, apoptosis, epi-
dermal growth factor receptor signaling pathway, and other 
functions.

Identification of significant DIPN-associated intermediators
To identify the intermediators significantly associated with 
DIPN, we generated 1,000 random drug sets from Drug-
Bank and constructed extended networks for each ran-
dom network. The drug-degree of each intermediator from 
the DIPN extended networks were compared with those 
from the extended networks of the 1,000 random net-
works using a Z-test. Among the total 2,807 intermedia-
tors, 230 (Supplementary Table S3) met our significance 
criteria: having at least five interacting drugs via their tar-
gets, a BH-corrected P value < 0.05, and a minimum of 
1.5-fold enrichment of drug-degree in the DIPN networks 
compared with the average drug-degrees of the random 
networks. The 20 significant intermediators with the high-
est number of drug-degrees are listed in Table 1, which 
includes three transcription factors and nine transcription 
cofactors according to MatBase (Genomatix, Munich, Ger-
many; http://www.genomatix.de/). Tumor protein 53 (TP53) 
was the most highly connected significant intermediator, 

Figure 2 Base pharmacological network. (a) The base pharmacological network including 174 drug-induced peripheral neuropathy drugs 
and 280 human drug targets. The layout of the network was generated using edge-embedded spring layout available in Cytoscape, then was 
manually adjusted to make sure that all node names are visible. Node color represents the community structures identified by the Greedy 
algorithm implemented in GLay, where gray is used as a default color and nongray colors were used for the 10 biggest clusters. (b) The biggest 
subnetwork with 23 drugs and 62 targets, in yellow. Drugs were mostly from the antineoplastic class. (c) The second biggest subnetwork with 
24 drugs and 35 targets. Drugs were mostly from antidepressive, antiparkinson, and anticonvulsant agents. Shape of notes represent types 
of entity: circle for drug target and rectangle for drug. The size of node corresponds to the number of interacting drugs.
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interacting with 49 DIPN drugs in the Min01 network, which 
is 1.7 times more than the average 37.1 drugs in the 1,000 
random networks.

These significant intermediators were further examined for 
common features using gene set enrichment analysis. The 
10 most significantly enriched biological functions in KEGG 

Figure 3 Functional enrichment of drug targets and intermediators. A heat-map was generated using top 10 most enriched biological functions 
in each gene set (the human target set and 20 sets of intermediators at different level). Benjamini–Hochberg (BH)–corrected P values of 
the top 10 most significant functional terms are represented in a heat-map with −log10 (BH-corrected P value) as color gradient; the darker 
the red, the more significant. Any blank cell indicates that the corresponding biological function in the gene set is not statistically significant 
(BH-corrected P value ≥ 0.05).
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pathway and three GO categories are listed in Table 2. The 
ubiquitin-mediated proteolysis pathway was the most signifi-
cantly enriched pathway, comprising 10% of the significant inter-
mediators. Apoptosis-related terms were also highly enriched.

Comparison of known targets and intermediators with 
the genes implicated in neuropathy
We compiled 72 human genes whose mutations result in neu-
rological disorders with neuropathy,15 and 36 genes for which 
single-nucleotide polymorphisms or differential expression 
was reportedly to be associated with chemotherapy-related 
neuropathy.4,6,16–20 When these two lists of genes were com-
pared with the known targets and significant intermediators, 
little overlap was observed (Supplementary Table S4), sug-
gesting that the DIPN pharmacological networks were not 
directly linked to the genes that are predisposed to neuropathy.

Integration of clinical information with pharmacological 
network
We extracted the clinical data (neuropathy incidence, grade, 
and the size of clinical trials) for 90 DIPN drugs from drug 
labels and published new drug application reviews in Drugs@
FDA, and 43 drugs from published clinical studies, resulting 
in a nonredundant set of 97 drugs. Over 30 drugs included 
data from multiple clinical trials. The trial with the highest inci-
dence was chosen first followed by highest severity if multiple 
trials of similar sizes were found for a drug. The majority of 
these 97 drugs had only the incidence of all grades (grade 
0–4 combined), whereas only 20 drugs had a detailed inci-
dence profile of grade 1–2 and/or grade 3–4 (Table 3).

Regression tree analysis was applied to the 97 drugs, 
of which treatment-related neuropathy incidences were 
reported, with their neuropathy incidence as the depen-
dent variable. Multiple sets of factors, including interme-
diators from the pharmacological network (minimum level 
of 5), known molecular targets, and the drug categories 
and substructures obtained from DrugBank, were used 
as explanatory variables. Regression tree models for neu-
ropathy incidence were obtained for all grades. A model of 
potentially important intermediators is shown in Figure 4a. 
Among the 17 drugs interacting with v-myc avian myelocy-
tomatosis viral oncogene homolog (MYC), 8 drugs interact-
ing also with PAF15 had an average neuropathy incidence 
of 38.1%, whereas 9 drugs not interacting with proliferat-
ing cell nuclear antigen-associated factor (PAF15) had an 
average incidence of 2.9% (Figure 4b; see Supplemen-
tary Table S5 for additional clinical and demographic data). 
Figure 4c illustrates a subnetwork centered on MYC, prolif-
erating cell nuclear antigen-associated factor (PAF15), and 
all of their interacting drugs in the base DIPN pharmaco-
logical network. The subnetwork in the middle consists of 
14 drugs and 11 drug targets interacting with both MYC 
and PAF15. Among these 14 drugs, 6 drugs highlighted in 
yellow had no known neuropathy incidence available from 
clinical trial data.

We also performed linear regression analyses to deter-
mine the effect of drug targets and intermediators on neu-
ropathy incidence. Using univariate analysis, three targets 
and 18 intermediators were identified with false discov-
ery rate < 0.05 as the cutoff (Supplementary Table S6). 

Table 1 Top 20 highly connected significant intermediators in DIPN

Gene ID Symbol Description

No. of interacting drugs 
(drug-degree)

FDR
Enrichment 

fold TF role
DIPN  

network
1,000 Random 

networks

7157 TP53 Tumor protein p53 49 31.6 3.45E-03 1.6 TF

6613 SUMO2 Small ubiquitin-like modifier 2 46 25.9 1.73E-04 1.8 —

10987 COPS5 COP9 signalosome subunit 5 44 29.1 1.05E-02 1.5 Cofactor

7341 SUMO1 Small ubiquitin-like modifier 1 42 27.1 7.33E-03 1.5 —

4738 NEDD8 neural precursor cell expressed, developmentally  
downregulated 8

34 11.1 4.75E-11 3.1 Cofactor

4609 MYC v-myc avian myelocytomatosis viral oncogene homolog 33 16.3 3.40E-02 2.0 TF

5371 PML promyelocytic leukemia 32 15.0 4.96E-05 2.1 Cofactor

867 CBL Cbl proto-oncogene, E3 ubiquitin protein ligase 32 18.3 2.67E-03 1.7 —

672 BRCA1 breast cancer 1, early onset 32 19.2 6.43E-03 1.7 Cofactor

5925 RB1 Retinoblastoma 1 31 10.2 9.80E-03 3.0 Cofactor

3164 NR4A1 Nuclear receptor subfamily 4, group A, member 1 28 11.4 1.15E-05 2.5 TF

387082 SUMO4 Small ubiquitin-like modifier 4 28 13.5 2.17E-04 2.1 —

142 PARP1 Poly (ADP-ribose) polymerase 1 27 14.1 1.98E-03 1.9 Cofactor

3717 JAK2 Janus kinase 2 27 16.4 1.55E-02 1.6 —

6605 SMARCE1 SWI/SNF-related, matrix-associated, actin-dependent 
regulator of chromatin, subfamily e, member 1

26 17.2 4.14E-02 1.5 Cofactor

8065 CUL5 cullin 5 25 10.0 1.46E-05 2.5 —

6421 SFPQ Splicing factor proline/glutamine-rich 25 12.4 8.48E-04 2.0 Cofactor

8453 CUL2 Cullin 2 25 14.9 1.95E-02 1.7 —

9219 MTA2 Metastasis associated 1 family, member 2 25 15.0 2.08E-02 1.7 Cofactor

6595 SMARCA2 SWI/SNF-related, matrix-associated, actin-dependent 
regulator of chromatin, subfamily a, member 2

25 16.6 3.91E-02 1.5 Cofactor

DIPN, drug-induced peripheral neuropathy; FDR, false discovery rate; enrichment fold, the ratio of drug-degree between DIPN network and 1,000 random 
networks (drug-degree

DIPN/drug-degree1,000 networks); TF, transcription factor.
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Based on this result, we performed three multivariate anal-
yses: (i)  using all 21 significant factors; (ii) using 12 fac-
tors, each with minimum three incidence data points; and 
(iii) using 7 factors, each with minimum five incidence data 
points. One drug target (tubulin beta-3 chain (TUBB3)) and 
three intermediators (protein phosphatase 1 alpha cata-
lytic subunit (PPP1CA), proteasome 26s subunit ATPase 2 
(PSMC2), and F-box protein 25 (FBXO25)) were found to 
be significant.

DISCUSSION
To better understand the underlying mechanisms of DIPN and 
to facilitate future development of drugs with a minimal poten-
tial of inducing DIPN, we conducted a pharmacological net-
work-based analysis. We first compiled the list of DIPN drugs 
and defined the pharmacological space of DIPN as broadly 
as possible. A substantial number of drugs with PN identified 
as an adverse reaction from the postmarketing surveillance 
were also included, as long as such information is available 

Table 2 Top 10 most significantly overrepresented biological functions in KEGG pathway and GO terms

ID Term Gene count
% Of all  

intermediators
Fold  

enrichment
BH-corrected 

P value

KEGG pathway

hsa04120 Ubiquitin-mediated proteolysis 23 10.0 6.0 1.20E-09

hsa04622 RIG-I-like receptor signaling pathway 13 5.7 6.5 2.27E-05

hsa04660 T-cell receptor signaling pathway 15 6.5 4.9 4.67E-05

hsa04210 Apoptosis 12 5.2 4.9 6.39E-04

hsa05220 Chronic myeloid leukemia 11 4.8 5.2 7.60E-04

hsa04920 Adipocytokine signaling pathway 10 4.3 5.3 1.48E-03

hsa04620 Toll-like receptor signaling pathway 12 5.2 4.2 1.48E-03

hsa04010 MAPK signaling pathway 20 8.7 2.7 1.72E-03

hsa04722 Neurotrophin signaling pathway 13 5.7 3.7 1.76E-03

hsa05200 Pathways in cancer 22 9.6 2.4 2.66E-03

GO cellular component

GO:0005829 Cytosol 66 28.7 3.3 0

GO:0031981 Nuclear lumen 57 24.8 2.6 1.96E-09

GO:0070013 Intracellular organelle lumen 62 27.0 2.3 1.64E-08

GO:0031974 Membrane-enclosed lumen 63 27.4 2.2 2.37E-08

GO:0043233 Organelle lumen 62 27.0 2.3 2.48E-08

GO:0043232 Intracellular non–membrane-bounded organelle 77 33.5 2.0 3.19E-08

GO:0043228 Non–membrane-bounded organelle 77 33.5 2.0 3.19E-08

GO:0005654 Nucleoplasm 39 17.0 2.9 1.27E-07

GO:0005694 Chromosome 25 10.9 3.6 4.32E-06

GO:0044427 Chromosomal part 21 9.1 3.6 5.35E-05

GO molecular function

GO:0019899 Enzyme binding 37 16.1 4.5 0

GO:0031625 Ubiquitin protein ligase binding 11 4.8 19.4 3.10E-08

GO:0004672 Protein kinase activity 31 13.5 3.2 3.39E-06

GO:0019787 Small conjugating protein ligase activity 15 6.5 5.7 4.10E-05

GO:0004842 Ubiquitin protein ligase activity 14 6.1 6.0 5.04E-05

GO:0032553 Ribonucleotide binding 56 24.3 1.9 7.85E-05

GO:0032555 Purine ribonucleotide binding 56 24.3 1.9 7.85E-05

GO:0000166 Nucleotide binding 64 27.8 1.8 8.04E-05

GO:0016881 Acid–amino acid ligase activity 15 6.5 4.7 2.04E-04

GO:0005524 ATP binding 47 20.4 2.0 1.89E-04

GO biological process

GO:0033554 Cellular response to stress 41 17.8 4.6 0

GO:0044265 Cellular macromolecule catabolic process 58 25.2 5.1 0

GO:0043085 Positive regulation of catalytic activity 36 15.7 4.4 0

GO:0032268 Regulation of cellular protein metabolic process 34 14.8 4.5 0

GO:0043632 Modification-dependent macromolecule catabolic process 45 19.6 5.0 4.99E-10

GO:0019941 Modification-dependent protein catabolic process 45 19.6 5.0 4.99E-10

GO:0043067 Regulation of programmed cell death 53 23.0 4.1 3.63E-10

GO:0010941 Regulation of cell death 53 23.0 4.1 4.12E-10

GO:0010942 Positive regulation of cell death 40 17.4 5.8 3.30E-10

GO:0043068 Positive regulation of programmed cell death 40 17.4 5.8 2.97E-10

BH, Benjamini–Hochberg; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase.
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Table 3 Incidence of DIPN

Drug name

No. of 
subjects in 
clinical trial

Neuropathy incidence

Source
All 
grades

Grade 
1–2

Grade 
3–4

Aldesleukin 525 <1.0% — — Drugs@FDA

Almotriptan 1,313 1.0% — — Drugs@FDA

Amiodarone 241 3.7% — — Drugs@FDA

Amlodipine 1,730 0.1–1% — — Drugs@FDA

Anastrozole 60 0.1% — — Drugs@FDA

Aprepitant 261 >0.5% — — Drugs@FDA

Atorvastatin 5158 0.2% — — Drugs@FDA

Betaxolol 509 <2.0% — — Drugs@FDA

Bexarotene 156 <10.0% — — Drugs@FDA

Bicalutamide 401 8.0% — — Drugs@FDA

Bortezomib 1,163 39.0% 27.0% 12.0% Drugs@FDA

Cabazitaxel 371 13.0% 12.0% 1.0% Drugs@FDA

Capecitabine 596 10.0% — — Drugs@FDA

Carboplatin 1,893 4.0% — — Drugs@FDA

Carfilzomib 526 14.0% — <2% Drugs@FDA

Cevimeline 533 <1.0% — — Drugs@FDA

Ciprofloxacin 1,085 0.1% — — Drugs@FDA

Cisplatin 79 38.0% — — PMID: 
2541260

Clomipramine 3,525 0.1% — — Drugs@FDA

Crizotinib 255 23.0% — <1% Drugs@FDA

Cyclobenza-
prine

7,607 <1.0% — — Drugs@FDA

Cyclosporine 705 1.0% — — Drugs@FDA

Cytarabine 257 4.0% — — Drugs@FDA

Daptomycin 989 0.7% — — Drugs@FDA

Dasatinib 911 13.0% 12.0% 1.0% Drugs@FDA

Dexametha-
sone

332 9.0% — 1.0% PMID: 
15958804

Didanosine 395 19.0% — — Drugs@FDA

Diltiazem 800 1.1% — — Drugs@FDA

Docetaxel 2,045 49.0% — 4.0% Drugs@FDA

Doxorubicin 163 6.0% — 0.0% PMID: 
10561296

Eletriptan 4,597 3.1% — — Drugs@FDA

Enalapril 2,341 0.5–1% — — Drugs@FDA

Eribulin 503 35.0% — 8.0% Drugs@FDA

Eszopiclone 287 0.1–1% — — Drugs@FDA

Etoposide 2,081 1–2% — — Drugs@FDA

Etravirine 599 1.7% — — Drugs@FDA

Exemestane 2,252 6.0% — — Drugs@FDA

Fludarabine 101 4.0% — — Drugs@FDA

Fluoxetine 1,145 0.1–1% — — Drugs@FDA

Fosaprepitant 438 0.5–3% — — Drugs@FDA

Foscarnet 189 5.0% — — Drugs@FDA

Ganciclovir 326 8.0% — — Drugs@FDA

Gatifloxacin 5,000 0.1–3% — — Drugs@FDA

Ifosfamide 1,317 0.4% — — Drugs@FDA

Imatinib 337 5.9% — 0.0% Drugs@FDA

Indomethacin 175 <1.0% — — Drugs@FDA

Iopromide 1,142 <1.0% — — Drugs@FDA

Itraconazole 107 17.0% — — PMID: 
21685202

Ixabepilone 126 70.0% — 14.0% PMID: 
19171553

Lamivudine 687 2.0% — — Drugs@FDA

Leflunomide 113 10.0% — — PMID: 
16845649

Lenalidomide 148 5.4% — — Drugs@FDA

Leuprolide 98 <5.0% — — Drugs@FDA

Maraviroc 426 4.0% — — Drugs@FDA

Megestrol 
Acetate

400 2.0% — — Drugs@FDA

Metronidazole 26 50.0% — — PMID: 
7084615

Miglustat 80 8.0% — — Drugs@FDA

Nelarabine 103 21.0% 20.0% 2.0% Drugs@FDA

Nitrofurantoin 1,366 6.0% — — PMID: 
6282377

Oxaliplatin 156 76.0% — 7.0% Drugs@FDA

Paclitaxel 225 55.0% 2.0% — Drugs@FDA

Pemetrexed 265 29.0% — 2.0% Drugs@FDA

Pergolide 1,800 0.1–1% — — Drugs@FDA

Posaconazole 40 3.0% — — PMID: 
21685202

Ritonavir 541 5.0% — — Drugs@FDA

Rofecoxib 3,600 0.1–1.9% — — Drugs@FDA

Ropinirole 1,599 0.1–1% — — Drugs@FDA

Ropivacaine 3,988 <1.0% — — Drugs@FDA

Saquinavir 442 2.5% 1.1% — Drugs@FDA

Sildenafil 734 <2.0% — — Drugs@FDA

Simvastatin 5,000 0.1% — — PMID: 
15016485

Sorafenib 384 6.6% — <1% Drugs@FDA

Sotalol 1,292 <0.1% — — Drugs@FDA

Stavudine 417 12.0% — — PMID: 
9054279

Sumatriptan 848 2.4% — — Drugs@FDA

Telbivudine 680 3.0% — — Drugs@FDA

Tenofovir 312 5.0% — — Drugs@FDA

Teriflunomide 1,086 2.0% — — Drugs@FDA

Tesamorelin 543 1.6% — — Drugs@FDA

Thalidomide 169 — — 9.0% PMID: 
11435324

Tolcapone 1,536 0.1–1% — — Drugs@FDA

Topiramate 2,246 0.1–1% — — Drugs@FDA

Valdecoxib 5,349 0.1–1.9% — — Drugs@FDA

Valganciclovir 370 9.0% — — Drugs@FDA

Vemurafenib 336 18.0% — — Drugs@FDA

Venlafaxine 7,212 0.1–1% — — Drugs@FDA

Vigabatrin 457 4.2% — — Drugs@FDA

Vincristine 250 2.0% — — PMID: 
20864405

Vinorelbine 365 25.0% — 2.0% Drugs@FDA

Voriconazole 2,090 <1.0% — — Drugs@FDA

Zalcitabine 237 — — 28.3% Drugs@FDA

Zaleplon 2,900 <0.1% — — Drugs@FDA

Zidovudine 1,277 8.0% — — PMID: 
10463516

Ziprasidone 3,834 1.0% — — Drugs@FDA

Zolmitriptan 1,858 11.0% — — Drugs@FDA

Zolpidem 3,660 <0.1% — — Drugs@FDA

Zonisamide 269 3.5% — — Drugs@FDA

DIPN, drug-induced peripheral neuropathy; PMID, PubMed unique 
identifier.
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in their FDA-approved labels. The incidence for these drugs 
is typically less than 0.1% (Table 3). The DIPN causality for 
those identified from postmarketing surveillance cannot be 
established, nor can those from epidemiology studies. On 
the contrary, the identification of PN as a treatment-related 
problem in clinical trials is considered to have been judged 
by physicians in charge of the trials. In light of our goal to 
project an inclusive pharmacological network, it is not consid-
ered crucial whether the causality is established for each of 
the 234 drugs. Furthermore, the pharmacological networks 
in the current study do not distinguish severity and incidence. 
As a result, the DIPN list covered the drugs with a wide range 
of pharmacological characteristics. Because the 234 drugs 
were approved for treating various diseases (Figure 1),  
their pharmacological and extended pharmacological net-
works could conceivably highlight, at least, part of the net-
work connecting those diseases. On the other hand, these 
drugs do share a common characteristic of clinical DIPN, and 

one could argue that these pharmacological networks would 
biologically reflect the DIPN network and, therefore, would be 
useful for understanding DIPN.

As shown in Table 3, clinical DIPN incidence varied from 
drug to drug. It should be noted that the underlying diseases 
could have affected the DIPN incidence; for instance, mul-
tiple myeloma itself can cause PN.21 In the present study, the 
impact of disease was, however, not taken into account due 
to the lack of a comprehensive understanding of how indi-
vidual diseases at different stages had affected the incidence 
and severity of PN in individual clinical trials. When trials were 
conducted for a chemotherapeutic agent as compared with 
a “standard-of-care” treatment, we only adopted those from 
the trials that had a head-to-head comparison between two 
single-agent regimens. When multiple trial results for a drug 
for either the same indication or different indications were 
available, we adopted a subjective criterion of adopting the 
result from the trial with the highest incidence first followed 

Figure 4 The best working regression model. (a) The collected clinical frequencies of the drug-induced peripheral neuropathy drugs were 
used in a regression tree analysis modeling using known targets and intermediators at level 5. The numbers in the yellow circles are the 
numbers of drugs and the numbers beneath the circles are the average incidence of these drugs. (b) The clinical information of the 17 DIPN 
drugs interacting with MYC alone (n = 9) or with both MYC and PAF15 (n = 8). Y and N indicate whether the corresponding drug interacts with 
MYC or PAF15. (c) This network includes only those drugs interacting with MYC or PAF15. The drugs within the gray boundary in the middle 
interact with both MYC and PAF15. The yellow nodes were not included in the regression tree modeling because we were not able to collect 
appropriate neuropathy incidence data from drug labels or published literature. The drugs interacting with either MYC or PAF15 are colored 
differently depending on the availability of the neuropathy incidence: cyan and purple for with and without available incidence, respectively.
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by highest severity if multiple trials of similar sizes were found 
for a drug. As a result, we may have inflated the severity and/
or incidence of DIPN for some drugs. Our goal was not to be 
exclusive by imposing strict rules but to employ consistent 
rules for adopting the published results.

To identify the pharmacological network with a broad 
coverage of biological pathways for future development of 
a useful predictive tool, we extended the base pharmaco-
logical network to include intermediators that interacted with 
the known targets of DIPN drugs. As shown in Figure 3, the 
most enriched biological functions of these intermediators, 
very similar across different sets of intermediators, included 
“transcription cofactor binding,” “cell cycle,” and “regulation 
of apoptosis.” We speculated that this was likely due to the 
fact that 27% of the DIPN drugs were antineoplastic agents; 
however, the significant intermediators, with the antineoplas-
tic or anti-infective drugs excluded, were still highly enriched 
with these functions (Supplementary Figure S2). It was 
concluded that these enriched functions were not limited to 
antineoplastic or anti-infective agents. There seemed to be a 
distinct pattern in the enriched biological functions between 
the drug–target group and the various groups of intermedia-
tors (Figure 3). Drug targets are mainly receptors or specific 
kinases, whereas intermediators are cellular proteins that 
interact with drug targets. It seems reasonable that the spec-
trum of biological functions covered by intermediators would 
be different, including regulation and transcription.

Though all the 97 drugs listed in Table 3 were used for 
our regression tree analyses, many classes of drugs were 
pruned off the regression tree by the Generalized, Unbi-
ased, Interaction Detection and Estimation tree algorithm 
due to low predictive power. As a result, higher clinical DIPN 
incidences of antineoplastic drugs as compared with other 
classes of drugs could have led to the dominance of these 
drugs identified in regression tree modeling. Our regression 
tree modeling of neuropathy incidence suggests that MYC 
and PAF15 might play an important role in DIPN (Figure 4). 
Interacting with either MYC or PAF15 alone was associated 
with relatively low neuropathy incidence of 2.94% or 2.90%, 
respectively, whereas interaction with both genes had a high 
rate of 38.14%. The drugs linked to MYC were dominated 
by floxacins, and then by tyrosine kinase inhibitors, whereas 
those linked to PAF15 seemed to include drugs from diverse 
categories. Those drugs linked to both MYC and PAF15 were 
mostly nucleoside analogues or metabolic inhibitors, followed 
by taxanes. When we examined the 10 drugs with the highest 
neuropathy incidences, 4 (paclitaxel, docetaxel, bortezomib, 
and vinorelbine) were connected to both MYC and PAF15 
(Table 3 and Figure 4c), suggesting that these two genes 
might contribute to DIPN in some drugs. The remaining six 
drugs with top 10 incidences included four antineoplastic 
drugs (oxaliplatin, ixabepilone, eribulin, and pemetrexed), 
one anti-infective drug (metronidazole), and one anti-HIV 
drug (stavudine). In the pharmacological networks, four of 
these drugs (metronidazole, oxaliplatin, eribulin, and stavu-
dine) did not have any known human targets; thus, unknown 
off-targets may play a role. It should be noted that our compu-
tational exercise is limited by what pharmacological targets 
and intermediators are available in the databases. Eribulin 
with the eighth highest rate (36%), for example, is known 

to directly bind tubulin, thus disrupting microtubule struc-
tures,22,23 which was not properly annotated in neither Drug-
Bank nor TTD.

To demonstrate the usefulness of our theoretical exer-
cises, we further explored the pharmacological networks 
focusing two antineoplastic agents. Both bortezomib and 
sorafenib are widely used anticancer drugs, where the former 
is a proteasome inhibitor and the latter is a tyrosine kinase 
inhibitor. They both interact with MYC through their targets: 
RAF1 (v-raf-1 murine leukemia viral oncogene homolog 1) 
for sorafenib and PSMB5 (proteasome subunit beta type-5) 
or PSMD2 (26S proteasome non-ATPase regulatory subunit 
2) for bortezomib (Figure 4c). Interestingly, they had differ-
ent incidences of DIPN: 39% for bortezomib and 6.6% for 
sorafenib. In the extended subnetwork centered on bortezo-
mib and sorafenib, we observed that only the targets of bort-
ezomib interacted with tubulins (Supplementary Figure S3). 
This finding is in line with other studies that related perturba-
tion of tubulin or microtubules in neural cell lines24 and in rat 
dorsal root ganglion neurons25 to the neurotoxicity of bort-
ezomib. In fact, five drugs (ixabepilone, paclitaxel, docetaxel, 
bortezomib, and vinorelbine) belonging to the top 10 list were 
connected to tubulins (Table 3 and Supplementary Figure 
S4). These results, though not new, are supported by other 
studies demonstrating that dysregulated microtubule polym-
erization by microtubule-targeting agents such as taxanes 
are strongly related to DIPN.24–26 Furthermore, these find-
ings confirmed the quality of the databases and knowledge 
bases that were used for this study. The three intermediators 
(PPP1CA, PSMC2, and FBXO25) identified in the multivari-
ate linear regression analysis are preliminary but worthy of 
further investigation.

The current study demonstrates the usefulness of lever-
aging the knowledge of the FDA-approved drugs and accu-
mulated knowledge generated from pharmacological as well 
as medical research for constructing the extended pharma-
cological network of DIPN. Such extended pharmacological 
network can potentially be useful for predicting the neurotox-
icity potential of new drugs. Based on the modeling result, 
the usefulness of targeting the genes regulated by MYC and 
PAF15 could be worthy of further investigation for the discov-
ery of potential drugs for alleviating the symptoms of DIPN. 
Our next step will be to refine our network analysis by incor-
porating high-throughput omics data such as gene expres-
sion profiles of DIPN drugs in neuronal cells. Our ultimate 
goal is to develop our theoretical analysis into a predictive 
tool of DIPN with an acceptable specificity and sensitivity, 
based on the pharmacological networks and multiplex mea-
surements including transcriptomic profiling. Such tool will be 
valuable for minimizing the severity and incidence of DIPN.

METHODS
Compilation and curation of DIPN drugs
Text-mining of the drug labels and online resources. DIPN 
drugs were compiled and curated. A text-mining approach 
was first used to automatically retrieve and screen the lat-
est drug labels, available as PDF files, from the Drugs@
FDA database (http://www.accessdata.fda.gov/scripts/cder/
drugsatfda/) on 8 November 2012. The PDF files were con-
verted to text files using Xpdf (http://www.foolabs.com/xpdf/). 
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The flanking texts surrounding the identified neuropathy 
terms in the drug labels were manually examined for their 
accuracy, and a nonredundant set of DIPN drugs was com-
piled. Two other drug resources, DailyMed (http://dailymed.
nlm.nih.gov/) and SIDER2 (http://sideeffects.embl.de/), were 
to identify additional DIPN drugs. The drugs collected only 
from DailyMed or SIDER2 were subjected to confirmation for 
inclusion by referencing the literature (PubMed).

Drug name normalization, integration, and manual curation. 
The drug names collected were normalized to be consistent 
and comparable. The official names in the DrugBank database 
were used as the representative names, if available. Drugs 
without a DrugBank record were processed by a Perl script to 
automatically identify the core ingredient name. For example, 
“sumatriptan succinate” was normalized to “sumatriptan.” The 
lists of drugs collected above were normalized and combined 
and then thoroughly reviewed by a pharmacology expert to 
include only the single active ingredients with evidence of DIPN.

Pharmacological network analysis
Construction of pharmacological network. A base pharma-
cological network consisting of DIPN drugs and their known 
intended and unintended targets was constructed by refer-
encing the DrugBank version 3.0 (downloaded on 21 Octo-
ber 2012; http://www.drugbank.ca/)27 and Therapeutic Target 
Database version 4.3.02 released on 25 August 2011 (TTD; 
http://bidd.nus.edu.sg/group/cjttd/).28 This base network was 
extended by adding the proteins or genes, denoted as inter-
mediators, that have protein–protein interactions or genetic 
interactions with the known targets of DIPN drugs. The 
protein–protein interactions and genetic interactions were 
derived from the BioGRID release 3.2.97 (http://thebiogrid.
org/).12 Drug-degree was defined for each intermediator as 
the number of drugs indirectly interacting via the known tar-
gets. Twenty extended networks were generated using the 
criterion of drug-degrees ranging from 1 to 20 as the thresh-
old for intermediators to be included in a network.

Functional enrichment of the pharmacological networks. To 
identify the enriched biological functions of the known targets 
of DIPN drugs and their intermediators, gene set enrichment 
analysis was employed using a locally implemented version 
of DAVID.13,14 GO terms and KEGG pathway terms were 
used as biological functions. Terms with a BH-corrected P < 
0.05 were deemed significant. A heat-map with −log10 (BH-
corrected P value) as a color index was generated for the 
top 10 most significantly enriched terms of the sets of known 
targets of DIPN drugs and their intermediators for visualiza-
tion of the different contents of enriched biological functions 
across different gene sets.

Identification of significant DIPN-associated intermediators. 
One thousand random networks, of the same number of 
drugs as in DIPN, were generated from the 6,825 drugs in 
DrugBank. Extended networks using the same with a range 
of drug-degrees (1–20) were also generated for each random 
network. A Z-test was used to statistically evaluate the dif-
ference in drug-degrees of intermediators between the DIPN 

networks and the random networks. Intermediators meeting 
the following three criteria were deemed as DIPN-specific sig-
nificant intermediators: (i) BH-corrected P value < 0.05 in the 
Min01 network, (ii) minimum drug-degree of 5, and (iii) the 
drug-degree in DIPN network is at least 1.5 times higher than 
that in random networks. These DIPN-specific intermediators 
were subjected to further functional enrichment analysis.

Integration of clinical information with pharmacological 
networks
Clinical information from drug labels and literature. The data 
of PN incidence, severity, and trial size from clinical trials 
were collected from drug labels, published new drug appli-
cation reviews in Drugs@FDA, and published literature in 
PubMed. Following automatic text-mining, manual curation 
extracted the clinical phenotypes of incidence and severity of 
DIPN for individual DIPN drugs from Drugs@FDA. PubMed 
was also surveyed to compile relevant clinical information 
of DIPN drugs. Over 21 million abstracts in PubMed were 
surveyed using a text-mining script to identify publications 
containing any of DIPN drugs and keywords, “clinical trial” 
and “neuropathy.” Then, manual curation was performed to 
extract relevant clinical information. In the case of drugs with 
multiple clinical trial data available, the data from the source 
with the largest trial size first, and the highest incidence fol-
lowed by the highest severity if the trial sizes were similar, 
were included for further analyses.

Modeling using regression tree algorithm. The collected neu-
ropathy incidence data were used to build a statistical model 
with the Generalized, Unbiased, Interaction Detection and Esti-
mation algorithm, a multipurpose machine-learning algorithm 
for constructing regression trees.29,30 Generalized, Unbiased, 
Interaction Detection and Estimation algorithm uses recursive 
partitioning to select the splits of the tree nodes. After an initial 
large tree is constructed, the algorithm uses 10-fold cross-val-
idation to prune the nodes and estimate prediction accuracy. 
Only those models with estimated prediction accuracy within 
half a standard error of the minimum are reported.

Univariate and multivariate linear regression analysis. Linear 
regression analyses were performed to examine the effect 
of drug targets and intermediators on neuropathy incidence. 
Significant factors, defined at false discovery rate < 0.05 in 
univariate regression, were further examined in a multivariate 
regression analysis.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?

33 Many antineoplastic and anti-infective agents 
cause DIPN, resulting in dose reduction or 
treatment modification that may compromise 
clinical outcomes.

WHAT QUESTION DID THIS STUDY ADDRESS?

33 This study attempts to define the pharmacologi-
cal space of DIPN, to identify the commonly as-
sociated genes and proteins, and to build sta-
tistical models based on clinical incidence and 
severity using an integrated approach of bioin-
formatics, systems pharmacology, and statisti-
cal regression analysis.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

33 This study expands the current list of DIPN 
drugs, typically limited to antineoplastic and an-
ti-infective drugs, to include the drugs for treat-
ing many other diseases. This study suggests 
that two high-level gene regulators, MYC and 
PAF15, might be involved in DIPN.

HOW THIS MIGHT CHANGE CLINICAL 
PHARMACOLOGY AND THERAPEUTICS

33 The integrated pharmacological networks of 
DIPN and the statistical model may be informa-
tive for future development of drugs with a po-
tential of inducing peripheral neuropathy.
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