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Abstract

We propose a semiparametric method for conducting scale-invariant sparse principal component

analysis (PCA) on high dimensional non-Gaussian data. Compared with sparse PCA, our method

has weaker modeling assumption and is more robust to possible data contamination. Theoretically,

the proposed method achieves a parametric rate of convergence in estimating the parameter of

interests under a flexible semiparametric distribution family; Computationally, the proposed

method exploits a rank-based procedure and is as efficient as sparse PCA; Empirically, our

method outperforms most competing methods on both synthetic and real-world datasets.
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1 Introduction

Principal component analysis (PCA) is a powerful tool for dimension reduction and feature

selection. Let  be n observations of a d-dimensional random vector X with

covariance matrix Σ. PCA aims at estimating the leading eigenvectors u1, …, um of Σ.

When the dimension d is small compared with the sample size n, u1, …, um can be

consistently estimated by the leading eigenvectors  of the sample covariance

matrix (Anderson, 1958). However, when d increases at the same order or even faster than n,

this approach can lead to poor estimates. In particular, Johnstone and Lu (2009) showed that

the angle between  and u1 may not converge to 0 if d/n → c for some constant c > 0. To

handle this challenge, one popular assumption is to impose sparsity constraint on the leading

eigenvectors. For example, when estimating the leading eigen-vector u1 := (u11, …, u1d)T,

we may assume that s := card({j : u1j ≠ = 0}) < n. Under this assumption, different variants

of sparse PCA have been developed, more details can be found in d’Aspremont et al. (2004),

Zou et al. (2006), Shen and Huang (2008), Witten et al. (2009), Journée et al. (2010), and

Zhang and El Ghaoui (2011). The theoretical properties of sparse PCA in feature selection

and parameter estimation have been investigated by Amini and Wainwright (2009), Ma

(2013), Paul and Johnstone (2012), Vu and Lei (2012), and Berthet and Rigollet (2012).
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There are several drawbacks of the classical PCA and sparse PCA: (i) It is not scale-

invariant, i.e., changing the measurement scale of variables makes the estimates different

(Chatfield and Collins, 1980); (ii) It is not robust to possible data contamination or outliers

(Puri and Sen, 1971); (iii) The theory of sparse PCA relies heavily on the Gaussian or sub-

Gaussian assumption, which may not be realistic for many real-world applications.

In the low dimensional settings, remedies for the drawbacks (ii) and (iii) include

generalizing the Gaussian distribution to elliptical distribution (Fang et al., 1990), and

considering some robust estimators (Huber and Ronchetti, 2009). One research line is to

develop various PCA estimators for the elliptical data (Möttönen and Oja, 1995; Choi and

Marden, 1998; Marden, 1999; Visuri et al., 2000; Croux et al., 2002; Jackson and Chen,

2004). The theoretical properties of these elliptical distribution based PCA estimators have

been established under the classical asymptotic framework (i.e., the dimension d is fixed) by

Hallin et al. (2010), Oja (2010), and Croux and Dehon (2010). Along another research line,

multiple robust PCA estimators have been proposed to address the outlier and heavy tailed

issues via replacing the sample covariance matrix by a robust scatter matrix. Such robust

scatter matrix estimators include M-estimator (Maronna, 1976), S-estimator (Davies, 1987),

median absolute deviation (MAD) proposed by Hampel (1974), and Sn and Qn estimators

(Rousseeuw and Croux, 1993). These robust scatter matrix estimators have been exploited to

conduct robust (sparse) principal component analysis (Gnanadesikan and Kettenring, 1972;

Maronna and Zamar, 2002; Hubert et al., 2002; Croux and Ruiz-Gazen, 2005; Croux et al.,

2013). The theoretical performances of PCA based on these robust estimators in low

dimensions were further analyzed in Croux and Haesbroeck (2000).

In this article we propose a new method for conducting sparse principal component analysis

on non-Gaussian data. Our method can be viewed as a scale-invariant version of sparse PCA

but is applicable to a wide range of distributions belonging to the meta-elliptical family

(Fang et al., 2002). The meta-elliptical family extends the elliptical family. In particular, a

continuous random vector  follows a meta-elliptical distribution

if there exists a set of univariate strictly increasing functions  such that f(X) :=

(f1(X1), …, fd(Xd))T follows an elliptical distribution with location parameter 0 and scale

parameter Σ0, whose diagonal values are all 1. We call Σ0 the latent generalized correlation

matrix. By treating  as nuisance parameters, our method estimates the leading

eigenvector θ1 of Σ0 by exploiting a rank-based estimating procedure and can be viewed as a

scale-invariant PCA conducted on f(X). Theoretically we show that when s is fixed, it

achieves a parametric rate of convergence in estimating the leading eigenvector.

Computationally, it is as efficient as sparse PCA. Empirically, we show that the proposed

method outperforms the classical sparse PCA and two robust alternatives on both synthetic

and real-world datasets.

The rest of this paper is organized as follows. In the next section, we review the elliptical

distribution family and introduce the meta-elliptical distribution. In Section 3, we present the

statistical model, introduce the rank-based estimators, and provide computational algorithm

for parameter estimation. In Section 4, we provide theoretical analysis. In Section 5, we
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provide empirical studies on both synthetic and real-world datasets. More discussion and

comparison with related methods are put in the last section.

2 Elliptical and Meta-elliptical Distributions

In this section, we briefly review the elliptical distribution and introduce the meta-elliptical

distribution family. We start by first introducing the notation: Let  and

 be a d-dimensional matrix and a d-dimensional vector. We denote vI

to be the subvector of v whose entries are indexed by a set I. We also denote MI,J to be the

submatrix of M whose rows are indexed by I and columns are indexed by J. Let MI* and

M*J be the submatrix of M with rows in I, and the submatrix of M with columns in J. Let

supp(v) := {j : vj ≠ = 0}. For 0 < q < ∞, we define the ℓ0, ℓq and ℓ∞ vector norms as ||v||0 :=

card(supp(v)),  and . We define the matrix

ℓmax norm as the elementwise maximum value: ||M||max := max{|Mij|}. Let Λj(M) be the j-th

largest eigenvalue of M. In particular, we denote Λmin(M) := Λd(M) and Λmax(M) := Λ1(M)

to be the smallest and largest eigenvalues of M. Let ||M||2 be the spectral norm of M. We

define  and  be the d-dimensional unit

sphere. For any two vectors  and any two squared matrices , we

denote the inner product of a and b, A and B by 〈a, b〉 := aTb and 〈A, B〉:= Tr(ATB). For any

matrix , we denote diag(M) to be the diagonal matrix with the same diagonal

entries as M. For any univariate function f, we denote f(M) = [f(Mjk)] to be a d × d matrix

with f applied on each entry of M. Let Id be the identity matrix in . For two random

vectors X and Y, we denote  if they are identically distributed.

2.1 Elliptical Distribution

We briefly overview the elliptical distribution. In the sequel, we say a random vector X =

(X1, …, Xd)T is continuous if the marginal distribution are all continuous. X possesses

density if it is absolutely continuous with respect to the Lebesgue measure.

Definition 2.1 (Elliptical distribution). A random vector Z = (Z1, …, Zd)T follows an

elliptical distribution if and only if Z has a stochastic representation: . Here

, q := rank(A), , ξ ≥ 0 is a random variable independent of U,  is

uniformly distributed on the unit sphere in . Letting Σ := AAT, we denote Z ~ ECd(μ, Σ,

ξ). We call Σ the scatter matrix.

In Definition 2.1, there can be multiple A’s corresponding to the same Σ, i.e., there exist

 such that . To make the representation unique, we

always parameterize an elliptical distribution by the scatter matrix Σ instead of A.

The model family in Definition 2.1 is not identifiable. For example, Σ is unique only up to a

constant scaling, i.e., for some constant c > 0, if we define ξ* = ξ/c and A* = cA, then

. To make the model identifiable, we require the condition that
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max1≤i≤dΣii=1. We define Σ0 := diag(Σ)−1/2 · Σ · diag(Σ)−1/2 to be the generalized

correlation matrix.

2.2 Meta-elliptical Distribution

Real world data are usually nonGaussian and asymmetric. To illustrate the nonGaussianity

and asymmetry issues, we consider the stock log return data in S&P 500 index, collected

from Yahoo! Finance (finance.yahoo.com) from January 1, 2003 to January 1, 2008,

including 452 stocks and 1,257 data points. Table 1 illustrates the nonGaussianity issue of

the stock log-return data. Here we conduct the three marginal normality tests as in Table 1 at

the significant level of 0.05. It is clear that at most 24 out of 452 stocks would pass any of

three normality test. Even with Bonferroni correction there are still over half stocks that fail

to pass any normality tests. Figure 1 plots the histograms of three typical stocks, “eBay

Inc.”, “Macy’s Inc.”, and “Wells Fargo”, in the sectors of information technology, consumer

discretionary, and financials separately. We see that the log-return values are skewed to the

left.

Though the elliptical distribution family has been widely used to model heavy-tail data (Oja,

2010), it assumes that the distribution contours to exhibit ellipsoidal structure. To relax this

assumption, Fang et al. (2002) introduced the concept of meta-elliptical distribution under a

copula framework. In this section we introduce the concept of meta-elliptical using a

different approach, which extends the family defined in Fang et al. (2002).

First, we define two sets of symmetric matrices:

The meta-elliptical distribution family is defined as follows:

Definition 2.2 (Meta-elliptical distribution). A continuous random vector X = (X1, …, Xd)T

follows a meta-elliptical distribution, denoted by X ~ MEd(Σ0, ξ; f1, …, fd), if there exist

univariate strictly increasing functions f1, …, fd such that

(2.1)

Here, Σ0 is called the latent generalized correlation matrix. When

we say that X follows a nonparanormal distribution, denoted by X ~ NPNd(Σ0; f1, …, fd).

The meta-elliptical is a strict extension to the nonparanormal defined in Liu et al. (2012).

They both assume that after unspecified marginal transformations the data follow certain
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distributions. However, the nonparanormal exploits a Gaussian base distribution while the

meta-elliptical exploits an elliptical base distribution.

On the other hand, we would like to point out that Definition 2.2 extends the family

originally defined in Fang et al. (2002) in three aspects: (i) The generating variable ξ does

not have to be absolutely continuous; (ii) The parameter Σ0 is strictly enlarged from  to

; (iii) X does not necessarily possess density. Moreover, even if these two definitions are

the same confined in the distribution set with density existing, we define the meta-elliptical

in fundamentally different ways by characterizing the transformation functions instead of

characterizing the density functions. By exploiting this new definition, we find that several

results provided in the later sections can be easier to understand.

The meta-elliptical family is rich and contains many useful distributions, including

multivariate Gaussian, rank-deficient Gaussian, multivariate t, logistic, Kotz, symmetric

Pearson type-II and type-VII, the nonparanormal, and various other asymmetric distributions

such as multivariate asymmetric t distribution (Fang et al., 2002). To illustrate the modeling

flexibility of the meta-elliptical family, Figure 2 visualizes the density functions of two

meta-elliptical distributions.

3 Methodology

We propose a new scale-invariant sparse PCA method based on the meta-elliptical

distribution family. More specifically, under a meta-elliptical model X ~ MEd(Σ0, ξ; f1, …,

fd), the proposed method aims at estimating the leading eigenvector of Σ0. Since the

diagonal entries of Σ0 are all 1, the proposed method is scale-invariant. From Definition 2.2,

the proposed method is equivalent to conducting scale-invariant sparse PCA on the

transformed data (f1(X1), …, fd(Xd))T which follow an elliptical distribution.

3.1 Statistical Model

The statistical model of our proposed method is defined as follows:

Definition 3.1. We consider the following model, denoted by , which is

defined to be the set of distributions:

(3.1)

This model allows asymmetric and heavy tail distributions with nontrivial tail dependency.

It can be used as a powerful tool for modeling real-world data.

3.2 Method

We now provide the proposed method that exploits the model (3.1). One of the key

components of the proposed rank based method is the Kendall’s tau correlation matrix

estimator, which will be explained in the next section.
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3.2.1 Kendall’s tau based Correlation Matrix Estimator—The Kendall’s tau statistic

was introduced by Kendall (1948) for estimating pairwise correlation and has been used for

principal component analysis in low dimensions (Croux et al., 2002; Gibbons and

Chakraborti, 2003). More specifically, let X := (X1, …, Xd)T be a d-dimensional random

vector and let  be an independent copy of X. The Kendall’s tau

correlation coefficient between Xj and Xk is defined as

The next proposition shows that for meta-elliptical distribution family, we have a one-to-one

map between  and τ(Xj, Xk).

Theorem 3.2. Given X ~ MEd (Σ0, ξ; f1, …, fd) meta-elliptically distributed, we have

(3.2)

Proof. It is obvious that the Kendall’s tau statistic is invariant under strictly increasing

transformations to the marginal variables. Moreover, Lindskog et al. (2003) show that the

Kendall’s tau statistic is invariant to different generating variables ξ’s. Combining these two

results and Equation (6.6) of Kruskal (1958), we obtain the desired result.

Let  with x := (xi1, …, xid)T be n data points of X. The sample version

Kendall’s tau statistic is defined as:

It is easy to see that  is an unbiased estimator of τ(Xj, Xk). Using , we define the

Kendall’s tau correlation matrix as follows:

Definition 3.3 (Kendall’s tau correlation matrix). We define the Kendall’s tau correlation

matrix  to be a d by d matrix with element entry to be

(3.3)

3.2.2 Rank-based Estimators—Given the model , Theorem 3.2

provides a natural way to estimate θ1. In particular, we solve the following optimization

problem:
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(3.4)

where , k is a sufficiently large tuning parameter, and  is the

Kendall’s tau correlation matrix. Equation (3.4) is a combinatorial optimization problem and

hard to compute. The corresponding global optimum is denoted by .

Because the estimator  is very hard to compute, we consider an alternative way to

estimate θ1 using the truncated power algorithm proposed by Yuan and Zhang (2013). This

algorithm yields an estimator .. Here  is a hypothesized value for s (the

number of nonzero elements of θ1) and can be treated as a tuning parameter.

More specifically, we apply the classical power method, but within each iteration t we

project the intermediate vector xt to the intersection of the d-dimension sphere  and the

ℓ0 ball with radius k > 0. In detail, we sort the absolute values of the elements of xt from the

highest to the lowest, find the highest k absolute values, truncate all the others to zero, and

then normalize the truncated vector such that it lies in . To provide the detailed

algorithm, we first introduce some additional notation. For any vector  and an index

set J ˄ {1, …, d}, we define the truncation function TRC(·,·) to be

(3.5)

where I(·) is the indicator function. The truncated power algorithm is presented in Algorithm

1.

The formulation of the truncated power algorithm is nonconvex and the performance of the

estimator relies on the selection of the initial vector v(0). In practice, we use the estimate

obtained from the SPCA algorithm (Zou et al., 2006) as the initial vector. We set the

termination criteria to be ||v(t)−v(t−1)||2≤ 10−4.

In Section 4, we show that, by appropriately setting the initial vector v(0), the algorithm

converges and the corresponding estimator  is a consistent estimator of θ1. In practice,

we find that this algorithm always converges on all the synthetic and real-world data.
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Algorithm 1

Truncated Power Method

3.3 Estimating the Top m Leading Eigenvectors

We exploit the iterative deflation method to estimate the top m leading eigenvectors θ1, …,

θm of Σ0. This method is proposed by Mackey (2009) and its empirical performance is

further evaluated in Yuan and Zhang (2013). In detail, for any positive semidefinite matrix

, its deflation with respect to the vector  is defined as:

In this way, D(Γ, v) is positive semidefinite, left and right orthogonal to v, and symmetric.

To estimate θ1, …, θm, we exploit the following approach: (i) The estimate  (can be either

 or ) of θ1 is calculated using Equation (3.4) or the truncated power method; (ii)

Given , we estimate  by plugging  into Equation (3.4) or

the truncated power method (Γ(1) := Σ0).

4 Theoretical Properties

In this section we provide the theoretical properties of the estimators  and . In the

analysis, we adopt the double asymptotic framework in which the dimension d increases

with the sample size n. This framework more realistically reflects the challenges of many

high dimensional applications (Bühlmann and van de Geer, 2011).
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4.1 Latent Generalized Correlation Matrix Estimation

In this section we focus on estimating the latent generalized correlation matrix Σ0. In the

next theorem we prove the rate of convergence  for 

uniformly over all indices j, k. This is an important result, which indicates that the Gaussian

parametric rate in estimating the correlation matrix obtained by Bickel and Levina (2008)

can be extended to the meta-elliptical distribution family using the Kendall’s tau statistic.

Theorem 4.1. Let x1, …, xn be n observations of X ~ MEd(Σ0,ξ; f1, …, fd) and let  be

defined as in Equation (3.3). We have, with probability at least 1 − d−5/2,

(4.1)

Proof. The result follows from Theorem 4.2 in Liu et al. (2012) but with a slightly different

probability bound. A detailed proof is provided in Appendix A.2 for self-completeness.

4.2 Leading Eigenvector Estimation

We analyze the estimation errors of the global optimum  and the estimator  obtained

from the truncated algorithm. We say that the model  holds if the data are

drawn from one probability distribution in . The next theorem provides

an upper bound on the angle between  and θ1.

Theorem 4.2. Let  be the global optimum to Equation (3.4), the model

 hold, and k ≥ s. For any two vectors  and , let

. Then we have, with probability at least 1 − d−5/2,

(4.2)

when λj := Λj(Σ0) for j = 1,2.

Proof. The key idea of the proof is to exploit the results in Theorem 4.1 in bounding the

estimation error. Detailed proofs are presented in Appendix A.3.

Remark 4.3. When s, λ1, λ2 do not scale with (n, d) and k ≥ s is a fixed constant, the rate of

convergence in parameter estimation is , which is the minimax optimal

parametric rate shown in Vu and Lei (2012) under certain model class.

In the next corollary, we provide a feature selection result for the proposed method. Given

that the selected tuning parameter k is large enough, we show that the support set of θ1 can
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be consistently recovered in a fast rate by imposing a constraint on the minimum absolute

value of the signal part of θ1.

Corollary 4.4 (Feature selection). Let  be the global optimum to Equation (3.4), the

model  hold, and k ≥ s. Let Τ:= supp(θ1), and . If we

further have , then .

Proof. The key of the proof is to construct a contradiction given Theorem 4.2 and the

condition on the minimum value of . Detailed proof is shown in Appendix A.4

In the next theorem, we provide a result on the convergence rate of the estimator 

obtained by exploiting the truncated power algorithm. This theorem, coming from Yuan and

Zhang (2013), indicates that under sufficient conditions  converges to θ1 in a

 rate.

Theorem 4.5. If the model  holds, the conditions in Theorem 1 in Yuan

and Zhang (2013) hold, and k ≥ s, we have, with probability at least 1 − d−5/2,

for some generic constant C not scaling with (n; d; s).

The result in Theorem 4.5 is a direct consequence of Theorem 1 in Yuan and Zhang (2013)

and therefore the proof is omitted. Here we note that, similar as Corollary 4.4, it can be

shown that under certain conditions,  with high probability.

4.3 Principal Component Estimation

In this section, we consider estimating the latent principal components of the meta-

elliptically distributed data. To estimate the latent principal components instead of the

eigenvectors of the latent generalized correlation matrix, one needs to obtain good estimates

of the unknown transformation functions f1, …, fd.

Let X ~ MEd(Σ0, ξ; f1, …, fd) follow a meta-elliptical distribution and x1, …, xn be n

observations of X with xi := (xi1, …, xid)T. Let Z := (f1(X1), …, fd(Xd))T be the transformed

random vector. By definition, Z ~ ECd(0, Σ0, ξ) is elliptically distributed. Let Qg be the

marginal distribution function of Z (From Proposition A.2, we know all the elements of Z
share the same marginal distribution functions). If Qg is known, we can estimate f1, …, fd as

follows. For j = 1, …, d, let  be defined as
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We define

(4.3)

to be an estimator of fj. When Qg(·) = Φ(·), where Φ(·) is the distribution function of the

standard Gaussian, we have the following theorem, showing that  converges to fj(·)

uniformly over an expanding interval with high probability.

Theorem 4.6 (Han et al. (2013)). Suppose that X ~ NPNd(Σ0; f1, …, fd) and for j = 1, …, d,

let  be the inverse function of fj. For any 0 < γ 1, we define

then . Here

.

Using Theorem 4.6, we have the following theorem, which shows that, under appropriate

conditions, we can recover the first principal component of any data point x.

Theorem 4.7. For any observation x := (x1, …, xd)T of X ~ NPNd(Σ; f1, …, fd), under the

conditions of Theorem 4.2, letting

and b be any positive constant such that (s + k)n−b/2 = o(1),we have

where .

Proof. Theorem 4.7 is proved by combining the results in Theorems 4.2 and 4.6. More

details are presented in Appendix A.5.
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5 Experiments

In this section we evaluate the empirical performance of the proposed method on both

synthetic and real-world datasets and compare its performance with the classical sparse PCA

and two additional robust sparse PCA procedures. We use the truncated power method

proposed by Yuan and Zhang (2013) for parameter estimation. The following four methods

are considered:

• Pearson: the classical high dimensional scale-invariant PCA using the Pearson’s

sample correlation matrix as the input;

• Sn: The sparse PCA using the robust Sn correlation matrix estimator (Rousseeuw

and Croux, 1993; Maronna and Zamar, 2002) as the input;

• Qn: The sparse PCA using the robust Qn correlation matrix estimator (Rousseeuw

and Croux, 1993; Maronna and Zamar, 2002) as the input;

• Kendall: The proposed method using the Kendall’s tau correlation matrix as the

input.

Here the robust Qn and Sn correlation matrix estimates are calculated by the R package

robustbase (Rousseeuw et al., 2009). We also tried the sparse robust PCA procedure

proposed in Croux, Filzmoser, and Fritz. (2013), implemented in the R package pcaPP.

However, we found that the grid algorithm, which is used in their paper to estimate sparse

eigenvectors, has convergence problem when the dimension is high, which makes the

obtained estimator perform very bad. Therefore, we did not include this procedure in the

draft for comparison.

5.1 Numerical Simulations

In the simulation study we sample n data points from a given meta-elliptical distribution.

Here we set d = 100. We first construct Σ0 using a similar idea as in Yuan and Zhang

(2013): First a covariance matrix is synthesized through the eigenvalue decomposition,

where the first two eigenvalues are given and the corresponding eigenvectors are pre-

specified to be sparse. More specifically, let

We set u1 and u2 as follows:

The latent generalized correlation matrix Σ0 is Σ0 = diagΣ()−1/2 · Σ · diag(Σ)−1/2. We then

consider six different schemes to generate the data matrix :

Scheme 1: Let x1, …, xn be n observations of X ~ Nd(0, Σ0).
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Scheme 2: Let x1, …, xn be n observations of X ~ Nd(0, Σ0), but with 5% entries in each xi

randomly picked up and replaced by −5 or 5.

Scheme 3: Let x1, …, xn be n observations of X ~ NPNd(Σ0; f1, …, f1) with f1(x) = x3.

Scheme 4: Let x1, …, xn be n observations of X ~ MEd(Σ0, ξ1; f0, …, f0) with f0(x) = x and

. Here  and  with . In this setting, X follows a

multivariate t distribution with degree of freedom κ (Fang et al., 1990). Here we set κ = 3.

Scheme 5: Let x1, …, xn be n observations of X ~ MEd(Σ0, ξ2; f0, …, f0) with ξ2 ~ F (d, 1),

i.e., ξ2 follows an F-distribution with degree of freedom d and 1.

Scheme 6: Let x1, …, xn be n observations of X ~ MEd(Σ0, ξ3; f0, …, f0) with ξ3 follows an

exponential distribution with the rate parameter 1.

Here Schemes 1 to 3 represent three different versions of the Gaussian data: (i) The perfect

Gaussian data; (ii) The Gaussian data contaminated by outliers; (iii) The Gaussian data

contaminated by marginal transformations. Schemes 4-6 represent three different elliptical

distributions, which are all heavy-tailed and belong to the meta-elliptical family.

For n = 50, 100, 200, we repeatedly generate the data matrix X according to Schemes 1 to 6

for 1,000 times. To show the feature selection results for estimating the support set of the

leading eigenvector θ1, Figure 3 plots the false positive rates against the true positive rates

for the four different estimators under different schemes.

To illustrate the parameter estimation performance, we conduct a quantitative comparison of

the estimation accuracy of the four competing method. For all methods, we fix the tuning

parameter (i.e., the cardinality of the estimate’s support set) to be 10. Table 2 shows the

averaged distances between the estimated leading eigenvector and θ1, with standard

deviations presented in the parentheses. Here the distance between two vectors

 is defined as .

Both Figure 3 and Table 2 show that when the data are non-Gaussian but follow a meta-

elliptical distribution, Kendall constantly outperforms Pearson in terms of feature selection

and parameter estimation. Moreover, when the data are indeed Gaussian distributed, there is

no obvious difference between Kendall and Pearson, indicating that our proposed rank-

based method is a good alternative to the classical scale-invariant sparse PCA under the

meta-elliptical model.

We then compare Kendall with Sn and Qn. In Scheme 1, for the Gaussian data, Kendall

slightly outperforms Sn and Qn. For the data with outliers, Sn and Qn performs better than

the classical sparse PCA estimates, but are not as robust as Kendall. For different elliptical

distributions explored in Schemes 4 to 6, Kendall has the best overall performance

compared to Sn and Qn. The results for the non-elliptically distributed data, as explored in

Scheme 3, shows a significant difference between our proposed method and the other two

robust sparse PCA approaches. In this case we are interested in, instead of the correlation
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matrix of the meta-elliptically distributed data, the latent generalized correlation matrix,

which Sn and Qn fail to recover.

5.2 Equity Data Analysis

In this section we investigate the performance of the four competing methods on the equity

data explored in Section 2.2. The data come from Yahoo! Finance (finance.yahoo.com). We

collect the daily closing prices for J = 452 stocks that are consistently in the S&P 500 index

from January 1, 2003 to January 1, 2008. This gives us altogether T = 1, 257 data points,

each data point corresponds to the vector of closing prices on a trading day. Let St = [Stt,j]

denote the closing price of stock j on day t. We are interested in the log-return data X = [Xtj]

with Xtj := log(Stt,j/Stt−1,j).

We evaluate the ability of using only a small number of stocks to represent the trend of the

whole stock market. To this end, we run the four competing methods on the log-return data

X and obtain the top four leading eigenvectors. Here the iterative deflation method discussed

in Section 3.3 is exploited with the same tuning parameter k in each deflation step. Let Ak be

the support set of the estimated leading eigenvectors by one of the four methods. We define

 and  as

where I(·) is the indicator function. In this way, we can calculate the proportion of successful

matches of the market trend using the stocks in Ak as:

We visualize the result by plotting (card(Ak), ρAk) in Figure 4, which shows that Kendall

summarizes the trend of the whole stock market better than the other three methods.

Moreover, we examine the stocks selected by the four competing methods. The 452 stocks

are categorized into 10 Global Industry Classification Standard (GICS) sectors, including

Consumer Discretionary (70 stocks), Consumer Staples (35 stocks), Energy (37 stocks),

Financials (74 stocks), Health Care (46 stocks), Industrials (59 stocks), Information

Technology (64 stocks), Telecommunications Services (6 stocks), Materials (29 stocks), and

Utilities (32 stocks). Table 3 provides a more detailed description of these ten categories

with their numbers and abbreviations provided.

We estimate the top four leading eigenvectors using the four competing methods with the

same k = 30 in each deflation step. The obtained non-zero features’ categories are presented

in Table 4. We see that, in general, Kendall has the best ability in grouping the stocks of the

same category together. Therefore, Kendall provides a more interpretable result.
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6 Discussion

We propose a new scale-invariant sparse principal component analysis method for high

dimensional meta-elliptical data. Our estimator is semiparametric but achieves a fast rate of

convergence in parameter estimation, and is robust to both modeling assumption and data

contamination. Therefore, the new estimator can be a good alternative to the classical sparse

PCA method.

Although the rank-based Kendall’s tau statistic has been exploited for principal component

analysis in low dimensions (see, for example, Croux et al. (2002)), our work is

fundamentally different from the existing literature. The main difference can be elaborated

in the following three aspects: (i) We generalize the Kendall’s tau statistic to high

dimensions, while the current literature only focuses on the low dimension settings; (ii) Our

theoretical analysis are fundamentally different from the previous low dimensional analysis,

which exploits classical semiparametric theory under which the dimension d is usually

fixed; (iii) Most existing methods and theories are built upon the Gaussian or elliptical

model, while we consider the meta-elliptical model.

There is another trend in exploiting robust (sparse) PCA (see, for example, Maronna and

Zamar (2002) and Croux et al. (2013)). The empirical comparisons conducted in this paper

indicate that, confined in the meta-elliptical family, the proposed rank-based method can be

more efficient in parameter estimation and feature selection than these additional robust

procedures. Moreover, our proposed method achieves the nearly parametric rate of

convergence in parameter estimation, while to the best of our knowledge the performance of

these robust sparse PCA procedures in high dimensions is mostly unknown.

Vu and Lei (2012) and Ma (2013) considered sparse principal component analysis and

studied the rates of convergence under various modeling and sparsity assumptions. Our

method is different from theirs in two aspects: (i) Their analysis relies heavily on the

Gaussian or sub-Gaussian assumption, which no longer holds under the meta-elliptical

model; (ii) They exploit the Pearson’s sample covariance or correlation matrix as the

algorithm input, while we advocate the usage of the Kendall’s tau correlation matrix in the

meta-elliptical model.

Liu et al. (2012) and Xue and Zou (2012) proposed a procedure called the nonparanormal

SKEPTIC, which exploits the nonparanormal family for graph estimation. The non-

paranormal SKEPTIC also adopts rank-based methods in high dimensions. Our method is

different from theirs in three aspects: (i) We advocate the use of meta-elliptical family, of

which the nonparanormal is a subset; (ii) We advocate the use of the Kendall’s tau, which is

adaptive over the whole meta-elliptical family but instead of the Spearman’s rho statistic;

(iii) Their focus is on graph estimation, in contrast, this paper focuses on principal

component analysis. In a preliminary version of this work (Han and Liu, 2012), they mainly

focused on estimating the first leading eigenvector of the latent generalized correlation

matrix by directly solving Equation (3.4), which is practically intractable. In contrast, we

exploit a computationally feasible procedure (truncated power method) for scale-invariant

sparse PCA, and provide theoretical guarantee of convergence for this algorithm. Moreover,
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our method estimates the latent principal components, which are crucial in practical

applications, and we provide the theoretical analysis of convergence for the corresponding

estimators.

For the principal component estimation algorithm in Section 4.3, when Qg is unknown, we

could estimate f1, …, fd using the following method:

1. Test whether the original data is elliptically distributed by using some existing

techniques (Li et al., 1997; Huffer and Park, 2007; Sakhanenko, 2008). If yes, we

set . Here  and  are the marginal sample mean and

standard deviation for the j-th entry.

2. If not, we construct a set of marginal distribution functions:

3.
For any Qg ∈ Π, we calculate  using Equation (4.3).

4. We transform the data using .

5. We test whether the transformed data is elliptically distributed by using the

techniques exploited in step 1.

We iterate steps 3-5 until we cannot reject the null hypothesis in step 5 for some Qg. This is

a heuristic method whose theoretical justification is left for future investigation. Other future

directions include analyzing the robustness property of the method to more noisy and

dependent data.
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A Appendix

A.1 Properties of the Elliptical Distribution

The next proposition provides two alternative ways to characterize an elliptical distribution

and their proofs can be found in Fang et al. (1990).

Proposition A.1 (Fang et al. (1990)). A random vector Z = (Z1, …, Zd)T satisfies that Z ~

ECd(μ,Σ,ξ) if and only if Z has the characteristic function exp(it′μ)φ(t′Σt), where 

and φ is a properly-defined characteristic function. We denote Z ~ ECd(μ,Σ,φ) in this

setting. If ξ is absolutely continuous and Σ is non-singular, then the density of Z exists and

is of the form:
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where g : [0, ∞) → [0,∞). We denote Z ~ ECd(μ,Σ, g). Here ξ, φ and g uniquely determine

one of the other.

The next proposition provides three important properties of the elliptical distribution.

Proposition A.2. If a random vector Z is elliptically distributed, we have:

• For any , , and any matrix , v + BTZ is elliptically

distributed. In particular, if Z ~ ECd(μ,Σ,ξ), then v + BTZ ~ ECq(v + BTμ,

BTΣB,ξ).

• Let Z ~ ECd(μ,Σ,ξ) and Σ0 be the generalized correlation matrix of Z. If rank(Σ) =

q and , then , , and Cor(Z) = Σ0.

• If Z ~ ECd(0,Σ,φ) with diag(Σ) = Id, then the marginal distributions of Z are the

same.

Proof. The proof of the first two assertions can be found in Fang et al. (1990). To prove the

third assertion, we use Proposition A.1 to obtain the characteristic function of Zj for any

, where  and ej is

the j-th canonical basis in , i.e.,  for 1 ≤ j ≤ d. The result follows from the one-to-

one map between the characteristic functions and the random variables.

A.2 Proof of Theorem 4.1

Proof. Realizing that  is a 2nd order U-statistic and sign (xij − xi′k) (xik − xi′k) is bounded

in [−1; 1], using Equation (5.7) in Hoeffding (1963), we have

Therefore, we have

Taking the union bound, we have
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This completes the proof.

A.3 Proof of Theorem 4.2

Proof. Under the model , we define λj := Λj(Σ0) and θj to be the

corresponding eigenvector for j = 1, …, d. We then define  and let

For all , we have

(A.1)

and

Moreover, by definition,

(A.2)

Combining Equation (A.1) with Equation (A.2), we have

Therefore, letting  be the global optimum to Equation (3.4), we have

(A.3)

The last inequality holds because θ1 is feasible in the optimization constraint in (3.4),

implying that
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Therefore, using Equation (A.3),

(A.4)

where the last inequality is by the Hölder inequality. Letting , we

have

implying that

(A.5)

Therefore, combining Equation (A.4) with Equation (A.5), we get

which is equivalent to saying that

Using Theorem 4.1, we have, with probability at least 1 − d−5/2,

This completes the proof.
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A.4 Proof of Corollary 4.4

Proof. Without loss of generality, we may assume that  because otherwise we can

simply conduct appropriate sign changes in the proof. We first note that card

. if , then . This implies that,

We then have

implying that

(A.6)

Therefore, applying Theorem 4.2, we get

(A.7)

This completes the proof.

A.5 Proof of Theorem 4.7

Proof. Without loss of generality, we assume that . We define

, where . we further define

for some 0 < b < 1. Moreover, we define the event Mn as

Thus, conditioning on Mn, using Theorem 4.6, we have
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(A.8)

Since fj(xj) ~ Nd(0, 1), using Mill’s inequality, we have

(A.9)

Finally, using Mill’s inequality again, we have

(A.

10)

Combining Equations (A.8), (A.9), and (A.10), we have the desired result.
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Figure 1.
Illustration of the asymmetry issue of the log-return stock data.
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Figure 2.
Densities of two 2-dimensional meta-elliptical distributions. (A) The component functions

have the form f1(x) = sign(x)|x|2 and f2(x) = x3, and after transformation follows a Gaussian

distribution. (B) The component functions have the form f1(x) = f2(x) = log(x), and after

transformation follows a Cauchy distribution. In both cases the latent generalized correlation

matrix has all off-diagonal values to be 0.5.
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Figure 3.
ROC curves under Scheme 1 to Scheme 6. Here n = 100 and d = 100.
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Figure 4.
Successful matches of the market trend proportions only using the stocks in the support sets

of the estimated loading vectors. The horizontal-axis represents the cardinalities of the

estimates’ support sets; the vertical-axis represents the percentage of successful matches.
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Table 1

Normality test of the stock log-return data. This table illustrates the number of 452 stocks rejecting the null

hypothesis of normality at the significance level 0.05.

Significance level Kolmogorov-Smirnov Shapiro-Wilk Lilliefors

0.05 428 449 449

0.05/452 269 448 426
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Table 2

Quantitative comparison on the datasets under the six generating schemes. The averaged distances with

standard deviations in parentheses are presented. Here n is changing from 50 to 200 and d is fixed to be 100.

Scheme n Pearson Sn Qn Kendall

Scheme 1 50 0.422(0.555) 0.607(0.473) 0.555(0.259) 0.473(0.266)

100 0.121(0.158) 0.188(0.140) 0.158(0.110) 0.140(0.201)

200 0.068(0.071) 0.072(0.072) 0.071(0.018) 0.072(0.024)

Scheme 2 50 0.911(0.878) 0.882(0.631) 0.878(0.105) 0.631(0.131)

100 0.806(0.715) 0.737(0.264) 0.715(0.169) 0.264(0.213)

200 0.484(0.354) 0.381(0.093) 0.354(0.222) 0.093(0.246)

Scheme 3 50 0.822(0.907) 0.921(0.473) 0.907(0.154) 0.473(0.101)

100 0.562(0.700) 0.737(0.140) 0.700(0.214) 0.140(0.202)

200 0.228(0.356) 0.410(0.072) 0.356(0.156) 0.072(0.255)

Scheme 4 50 0.947(0.679) 0.704(0.678) 0.679(0.095) 0.668(0.227)

100 0.910(0.247) 0.269(0.248) 0.247(0.157) 0.238(0.239)

200 0.873(0.079) 0.084(0.084) 0.079(0.232) 0.074(0.063)

Scheme 5 50 0.977(0.911) 0.910(0.854) 0.911(0.028) 0.854(0.102)

100 0.976(0.718) 0.722(0.532) 0.718(0.028) 0.532(0.214)

200 0.978(0.297) 0.305(0.147) 0.297(0.029) 0.147(0.244)

Scheme 6 50 0.959(0.848) 0.862(0.771) 0.848(0.060) 0.771(0.143)

100 0.931(0.548) 0.569(0.373) 0.548(0.108) 0.373(0.250)

200 0.840(0.156) 0.165(0.103) 0.156(0.223) 0.103(0.170)
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Table 3

The ten categories of the stocks with their numbers and abbreviations provided.

Name Number Abbreviation

Consumer Discretionary 70 CD

Consumer Staples 35 CS

Energy 37 E

Financials 74 F

Health Care 46 HC

Industrial 59 I

Information Technology 64 IT

Telecommunications Services 6 TS

Materials 29 M

Utilities 32 U
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Table 4

The categories of the nonzero terms in the top four leading eigenvectors calculated by the four competing

methods. The abbreviations are listed in Table 3. (Note: 30F means 30 stocks are from the Financials

category.)

Method PC1 PC2 PC3 PC4

Pearson 29F,1I 6CD,5F,8I,1IT,10M 8F,2E,3M,17U 8CD,1F,1I,20IT

Sn 29F,1I 2CD,2F,12I,14M 3I,27IT 3F,27U

Qn 29F,1I 2CD,2F,12I,1IT,13M 2I,28IT 3F,27U

Kendall 30F 15I, 15M 10CD, 10F,10I 3I, 27IT
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