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Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue
destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the
hypoxia-inducible factors (HIFs), HIF-1a (encoded by HIF1A) and HIF-2a (encoded by EPAS1). HIF-2a was markedly up-
regulated in the intimal lining of RA synovium, whereas HIF-1a was detected in a few cells in the sublining and deep layer of
RA synovium. Overexpression of HIF-2a in joint tissues caused an RA-like phenotype, whereas HIF-1a did not affect joint
architecture. Moreover, a HIF-2a deficiency in mice blunted the development of experimental RA. HIF-2a was expressed
mainly in fibroblast-like synoviocytes (FLS) of RA synovium and regulated their proliferation, expression of RANKL (receptor
activator of nuclear factor–kB ligand) and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2a–
dependent up-regulation of interleukin (IL)-6 in FLS stimulated differentiation of TH17 cells—crucial effectors of RA
pathogenesis. Additionally, in the absence of IL-6 (Il62/2 mice), overexpression of HIF-2a in joint tissues did not cause an RA
phenotype. Thus, our results collectively suggest that HIF-2a plays a pivotal role in the pathogenesis of RA by regulating FLS
functions, independent of HIF-1a.

Citation: Ryu J-H, Chae C-S, Kwak J-S, Oh H, Shin Y, et al. (2014) Hypoxia-Inducible Factor-2a Is an Essential Catabolic Regulator of Inflammatory Rheumatoid
Arthritis. PLoS Biol 12(6): e1001881. doi:10.1371/journal.pbio.1001881

Academic Editor: Philippa Marrack, National Jewish Medical and Research Center/Howard Hughes Medical Institute, United States of America

Received February 11, 2014; Accepted May 1, 2014; Published June 10, 2014

Copyright: � 2014 Ryu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Our work was supported by grants from the National Research Foundation of Korea (2007-0056157, 2012M3A9B44028559, and
2013R1A2A1A01009713 to J-SC and 2012-0009418 and 2012-001729 to J-HR), the Korea Healthcare Technology R&D Project (A110274 to J-SC), and Institute
for Basic Science (IBS, to S-HI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors declare that no competing interests exist.

Abbreviations: CIA, collagen-induced arthritis; CM, conditioned medium; FLS, fibroblast-like synoviocytes; HIF, hypoxia-inducible factor; H&E, hematoxylin and
eosin; HUVEC, human umbilical vein endothelial cell; IA, intra-articular; IL, interleukin; MMP, matrix metalloproteinase; MOI, multiplicity of infection; OA,
osteoarthritis; PFUs, plaque-forming units; qRT-PCR, reverse transcription–polymerase chain reaction; RA, rheumatoid arthritis; RANKL, receptor activator of
nuclear factor–kB ligand; TNF, tumor necrosis factor; TRAP, tartrate-resistant acid phosphatase; VEGF, vascular endothelial growth factor.

* E-mail: imsh@ibs.re.kr (S-HI); jschun@gist.ac.kr (J-SC)

. These authors contributed equally to this work.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoim-

mune disease that mainly targets the synovial membrane, resulting

in destruction of the joint architecture. The pathophysiology of RA

involves numerous cell types, including T cells, B cells, macrophag-

es, synoviocytes, chondrocytes, and osteoclasts, all of which

contribute to the process of RA pathogenesis [1]. T-cell–mediated

autoimmune responses play an important role in RA pathogenesis,

in which interleukin (IL)-17–producing T-helper cells (TH17) act as

crucial effectors [1,2]. RA is characterized by synovial hyperplasia

and synovitis with infiltration of immune cells. Synovial tissues

express numerous cytokines that have been directly implicated in

many immune processes of RA pathogenesis [1,3]. Additionally, an

aggressive front of hyperplastic synovium, called the pannus,

invades and destroys mineralized cartilage and bone through the

action of osteoclasts [1,3]. Synovial hyperplasia results from a

marked increase in macrophage-like and fibroblast-like synoviocytes

(FLS). Accumulating evidence indicates that activated FLS are

among the key players in RA joint destruction [4]. FLS actively

contribute to the initiation, propagation, and maintenance of

synovial inflammation through secretion of factors and direct cell–

cell interactions. For instance, cytokines and chemokines produced

by FLS attract T cells to RA synovium, and the interaction of FLS

with T cells results in activation of both cell types. FLS in the

inflamed synovium also contribute to RA pathogenesis by

producing matrix-degrading enzymes involved in cartilage destruc-

tion; RANKL (receptor activator of nuclear factor–kB ligand),

which regulates osteoclast differentiation, leading to bone erosion;

and angiogenic factors associated with blood vessel formation [4].
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Despite therapeutic advances, the etiology of RA pathogenesis has

not yet been entirely elucidated, and effective treatment of RA

remains a significant unmet medical need.

A prominent feature of the inflamed RA synovium is hypoxia

[5–7], suggesting a possible role for hypoxia-inducible factors

(HIFs) in RA pathogenesis. HIFs are members of a transcription

factor family that act as ‘‘master regulators’’ of the adaptive

response to hypoxia [8,9]. Of the three isoforms, HIF-1a (encoded

by HIF1A) and HIF-2a (encoded by EPAS1) are the most

extensively studied. HIF-1a is up-regulated in RA synovium

[10–12], where it appears to be associated with angiogenesis [5–7].

HIF-1a is also expressed in TH17 cells, where it serves to regulate

TH17/Treg balance; a lack of HIF-1a in TH17 cells impairs their

differentiation [13,14]. Additionally, loss of HIF-1a in myeloid

cells reduces the RA pathogenesis caused by K/BxN serum

transfer [15]. Although these results suggest that HIF-1a is an

important mediator of RA pathogenesis, whether HIF-1a is

sufficient to cause RA pathogenesis in vivo has not been previously

demonstrated. Most strikingly, HIF-2a, which is closely related to

HIF-1a, has not yet been investigated for a role in RA

pathogenesis. Indeed, despite many similarities between HIF-1a
and HIF-2a, these two isoforms show different sensitivity to

oxygen tension and display distinct, and sometimes opposing,

cellular activities [8,9]. Here, we present an extensive study of the

function of HIF-2a in experimental inflammatory arthritis in mice.

We also investigated whether the role of HIF-2a is independent of,

complementary to, or redundant with that of HIF-1a in the

development and pathogenesis of experimental RA. We report

here that HIF-2a is an essential catabolic regulator of RA

pathogenesis, independent of the action of HIF-1a.

Results

HIF-1a and HIF-2a Are Differentially Up-Regulated in RA
Synovium

To explore possible functions of HIFs in RA pathogenesis, we

first examined the expression pattern of HIFs by immunostaining

human RA joint sections. HIF-2a was highly expressed in the

intimal lining of human RA synovium, where other markers of

inflamed RA synovium were expressed, including IL-6, matrix

metalloproteinase (MMP)3, and MMP13 (Figure 1A). Indeed,

double immunostaining for HIF-2a and these markers revealed

their co-localization in human RA synovium (Figure 1B). HIF-2a
was also up-regulated in tartrate-resistant acid phosphatase

(TRAP)-positive osteoclasts in bone tissue and chondrocytes in

damaged cartilage, but not in the intact, undamaged part of

human RA cartilage (Figure S1A). In contrast, HIF-1a was

detected only in a few cells in the sublining and deep layer of

human RA synovium (Figure 1A). However, neither HIF-1a nor

HIF-2a was detected in human osteoarthritis (n = 10), psoriatic

arthritis (n = 2), or gouty arthritis (n = 2) synovium (Figure S1B).

These results indicate RA-specific differential up-regulation of

HIF-1a and HIF-2a in synovial tissues.

We extended these results using the collagen-induced arthritis

(CIA) model of RA in DBA/1J mice. This is a commonly used

experimental model of inflammatory joint arthritis caused by a T-

cell–dependent, antibody-mediated autoimmune response direct-

ed against cartilage type II collagen [16]. Compared with

nonimmunized (NI) control joints, joints in CIA mice exhibited

destruction typical of RA (Figure S1C–E). HIF-2a was highly up-

regulated in the region lining the CIA synovium (Figure 1C),

where it was co-localized with the RA-synovium markers, IL6,

MMP3, and MMP13 (Figure 1B). Unlike HIF-2a expression, HIF-

1a was rarely detected in the intimal lining, but was detected in

cells of the sublining and deep layer (Figure 1C). Similar to human

RA joint tissues, HIF-2a was also detected in pannus and damaged

cartilage (Figure S1F). Quantitation of relative HIF expression

levels further confirmed the marked up-regulation of HIF-2a
compared with HIF-1a in human RA and mouse CIA synovia

(Figure 1D). HIF-2a–positive cells were much more abundant in

synovial lining cells (fibroblast-like and macrophage-like synovio-

cytes) compared with sublining macrophages and endothelial cells

in blood vessels of RA synovium (Figure 1D).

Overexpression of HIF-2a, But Not HIF-1a, in Joint Tissues
Causes Experimental RA

The expression patterns of HIF-1a and HIF-2a in RA synovium

suggested differential roles of HIF isoforms. To explore the possible

in vivo functions of HIFs, we overexpressed HIF-1a or HIF-2a in the

knee joint tissues of DBA/1J mice via intra-articular (IA) injection of

Ad-Hif1a or Ad-Epas1 adenoviruses (16109 plaque-forming units

[PFUs]), respectively. Immunostaining of joint tissue sections 3 wk

after IA injection revealed that the respective adenoviruses caused

marked overexpression of HIF-1a and HIF-2a in the synovium,

cartilage, and meniscus of joint tissues (Figure 2A and B). HIF-2a
expression in joint tissues caused typical RA-like phenotypic

manifestations, including synovial hyperplasia and severe synovitis,

determined by hematoxylin and eosin (H&E) staining and scoring of

inflammation (Figure 2C and D); marked cartilage destruction,

determined by safranin-O staining and scored by Mankin’s method

(Figure 2E); pannus formation and invasion into calcified cartilage

and bone, determined by hematoxylin/safranin-O staining and

scoring (Figure 2E); and angiogenesis in the synovium, determined

by immunostaining for CD31 and counting blood vessels in synovia

of knee and ankle joints (Figure 2E). Overexpressed HIF-2a in the

synovium of Ad-Epas1–injected mice was co-localized with the RA-

synovium marker IL6, as determined by double-immunofluores-

cence microscopy (Figure S1G). In contrast to HIF-2a, HIF-1a
overexpression did not cause any changes in joint architecture,

including hallmarks of RA such as synovitis, pannus formation,

angiogenesis, and cartilage destruction (Figure 2C–E). Collectively,

Author Summary

Rheumatoid arthritis (RA) is a systemic autoimmune
disorder characterized by chronic inflammation in joint
tissues leading to destruction of cartilage and bone.
Despite some therapeutic advances, the etiology of RA
pathogenesis is not yet clear, and effective treatment of RA
remains a significant, unmet medical need. Hypoxia is a
prominent feature of inflamed tissue within RA-affected
joints, and earlier work has implicated limited involvement
of hypoxia-inducible factor (HIF)-1 a. We explored the role
of a second HIF family member, HIF-2a, in RA pathogen-
esis. We showed that HIF-2a is markedly increased in the
tissue lining the RA-affected joints. Notably and in contrast
to HIF-1a, when overexpressed in normal mouse joint
tissues, HIF-2a is sufficient to cause RA-like symptoms.
Conversely, an HIF-2a deficiency blocks the development
of experimental arthritis in mice. We discovered further
that HIF-2a regulates RA pathogenesis by modulating
various RA-associated functions of joint-specific fibroblast-
like cells, including proliferation, expression of cytokines,
chemokines, and matrix-degrading enzymes, and bone-
remodeling potential. HIF-2a also increases the ability of
these cells to promote interleukin-6–dependent differen-
tiation of TH17 cells, a known effector of RA pathogenesis.
We thus show that HIF-1a and HIF-2a have distinct roles
and act via different mechanisms in RA pathogenesis.

HIF-2a in Rheumatoid Arthritis
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these results indicate that ectopic expression of HIF-2a, but not

HIF-1a, causes typical RA-like joint destruction in mice, suggesting

distinct functions of HIF-1a and HIF-2a in RA pathogenesis.

HIF-2a Deficiency in Mice Inhibits Experimental RA
We confirmed the role of HIF-2a using HIF-2a–knockout mice

or local deletion of HIF-2a in joint tissues. We first examined HIF-

2a functions using mice with reduced expression of the Epas1

gene encoding HIF-2a. Because homozygous deletion of Epas1

(Epas12/2) is embryonic lethal [17], we used heterozygous

Epas1+/2 mice. We have previously shown that deletion of one

allele of Epas1 is sufficient to inhibit OA cartilage destruction [18].

Whereas Epas1+/2 DBA/1J mice showed reduced expression

levels of HIF-2a mRNA, HIF-1a mRNA levels were not altered in

these mice (unpublished data). Compared with wild-type (WT)

littermates, Epas1+/2 DBA/1J mice showed a significantly reduced

incidence (89.4%67.1% versus 33.2%66.5%, p = 0.0004) and

severity (2.85%60.26% versus 1.10%60.10%, p = 0.004) of CIA

on day 60 after the first injection of type II collagen (Figure 3A).

Epas1+/2 DBA/1J mice under CIA conditions also showed a

significant reduction in all the examined hallmarks of RA. These

include paw swelling and increased ankle thickness (Figure 3B),

elevated serum levels of autoantibodies against type II collagen

(Figure 3C), synovitis (Figure 3D), cartilage destruction (Figure 3E

and F), pannus formation and invasion (Figure 3E and F), and

angiogenesis in inflamed synovium (Figure 3E and F).

We further validated HIF-2a functions in CIA by locally deleting

Epas1 in joint tissues via IA injection of Ad-Cre (16109 PFU) in

Epas1fl/fl mice. Immunostaining of joint sections revealed that Ad-

Cre injection effectively reduced the elevated levels of HIF-2a
induced by CIA in joint tissues, including synovium, cartilage, and

pannus (Figure 4A). Moreover, local deletion of Epas1 in joint tissues

by Ad-Cre injection significantly inhibited RA pathogenesis by

blocking synovitis and synovial hyperplasia, pannus formation and

invasion into calcified cartilage and bone, angiogenesis in inflamed

synovium, and cartilage destruction (Figure 4B and C). These results

collectively indicate that Epas1 knockdown (Epas1+/2) or local

deletion (Ad-Cre) inhibits experimental RA in mice.

HIF-2a Modulates Immune Responses Without Affecting
Immune System Development

Next, we investigated the inhibitory mechanisms of RA

pathogenesis in Epas1+/2 DBA/1J mice by examining immune

responses. Epas1+/2 mice showed normal populations of CD4+

and CD8+ T cells in lymph nodes, as determined by flow

cytometry (Figure 5A). Flow cytometry also revealed no differences

Figure 1. HIF-1a and HIF-2a are differentially up-regulated in RA synovium. (A) Representative images of human RA synovium
immunostained for HIF-1a, HIF-2a, IL6, MMP3, and MMP13 (n = 10). (B) Representative images of human RA and mouse CIA synovial sections (n = 8)
immunostained for HIF-2a and a RA synovium marker (MMP3, MMP13, or IL6) and counterstained with DAPI (triple stained). Insets are enlarged
images of double-stained cells. (C) Representative images of HIF-1a and HIF-2a immunostaining in the knee synovia of CIA and NI control DBA/1J
mice (n = 10). (D) Relative expression levels of HIF-1a and HIF-2a in synovial cells (left) (n = 10). HIF-2a–positive cells were counted in the indicated
compartments of RA synovium (right) (n = 5). Values are means 6 SEM (*p,0.0005). Scale bar, 50 mm.
doi:10.1371/journal.pbio.1001881.g001
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in immune cell populations between WT and Epas1+/2 DBA/1J

mice, including CD4+ and CD8+ T cells in spleen and thymus;

Foxp3-expressing regulatory T cells (Treg) in lymph node, spleen,

and thymus; naı̈ve (CD44lowCD62Lhigh) and memory

(CD44highCD62Llow) CD4+ T cells in lymph node and spleen;

and B220+ B cells and CD11c+ dendritic cells in lymph node and

spleen (Figure S2A–D). Proliferation of CD4+ T cells and B220+ B

cells isolated from lymph nodes and spleens was similar between

WT and Epas1+/2 DBA/1J mice (Figure S2E and F). Additionally,

CD4+ T cells isolated from lymph nodes and spleens of Epas1+/2

mice showed a normal capacity to differentiate into TH1, TH2,

and TH17 cells, as determined by the detection of specific

cytokines (Figure 5B and Figure S2G and H).

Although immune system development was not affected in

Epas1+/2 mice, HIF-2a knockdown in these mice modulated

immune responses under CIA conditions. The population of

IL17A–producing cells in lymph nodes and spleens as well as the

levels of secreted IL17A, which plays a key role in TH17 cell

differentiation and autoimmune responses, were significantly

down-regulated under CIA conditions in Epas1+/2 mice

(Figure 5C). We further validated the effects of Epas1 knockdown

on pathogenic cytokine expression in synovial cells using a total

mixed-cell population isolated from synovial tissues of WT and

Epas1+/2 mice. mRNA levels of the pathogenic cytokines IL1b,

IL6, IL12, IL17A, IL17F, TNFa, and interferon (IFN)-c under

CIA conditions were significantly down-regulated in the total

synovial cell population isolated from Epas1+/2 mice compared

with WT littermates (Figure 5D). Conversely, IA injection of Ad-

Epas1 (16109 PFU) significantly increased mRNA levels of IL6,

IL17A, and IL17F in the total synovial cell population compared

with those in Ad-C–injected mice (Figure 5D). Collectively, our

results indicate that Epas1 knockdown in Epas1+/2 DBA/1J mice

does not alter the development pattern of the immune system, but

does significantly reduce the production of pathogenic cytokines

under CIA conditions.

HIF-2a Is Overexpressed in FLS of RA Synovium
HIF-2a is up-regulated mainly in the intimal lining of RA

synovium, which primarily consists of FLS and macrophage-like

synoviocytes [4]. We therefore examined which cell types

overexpress HIF-2a in inflamed RA synovium. Double-immuno-

fluorescence microscopy of human RA (Figure 6A) and mouse

CIA (Figure 6B) synovia revealed co-localization of HIF-2a with

FLS markers (vimentin or CD55), whereas only a subset of CD68-

positive macrophages expressed HIF-2a. We further examined

HIF-2a expression in primary cultures of the total synovial cell

Figure 2. Overexpression of HIF-2a, but not HIF-1a, in joint tissues causes an RA-like phenotype in mice. DBA/1J mice were IA-injected
with 16109 PFU of empty virus (Ad-C), Ad-Epas1, or Ad-Hif1a. After 3 wk, mice were sacrificed for further analysis. (A and B) Representative images of
HIF-1a (A) and HIF-2a (B) immunostaining in knee joint tissues. (C and D) Scoring of synovial inflammation (n = 20) (C) and representative images of
H&E staining (D). (E) Safranin-O staining and scoring of cartilage destruction (n = 20), safranin-O/hematoxylin staining and quantitation of pannus
formation (n = 15), and CD31 staining and quantitation of blood vessels (n = 15) in Ad-injected knee joints. Ca, cartilage; P, pannus. Values are means
6 SEM (*p,0.001, **p,0.0002). NS, not significant. Scale bars, 50 mm.
doi:10.1371/journal.pbio.1001881.g002
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population isolated from CIA mice; these cells consist of FLS,

macrophages, and dendritic cells, among others (Figure 6C). Most

FLS (,92%) were positive for HIF-2a staining, whereas only

,32% of macrophages were positive for HIF-2a staining

(Figure 6C). To elucidate the role of HIF-2a expression in

macrophages, we stimulated Raw264.7 cells (a murine macro-

phage cell line) with TNFa or lipopolysaccharide (LPS). Both

stimuli caused up-regulation of the inflammatory mediators

COX2 (cyclooxygenase 2) and iNOS (inducible nitric oxide

synthase), without affecting HIF-2a expression (Figure 6D). These

results collectively suggest that HIF-2a is mainly up-regulated in

FLS of RA synovium, where it may play a major role in RA

pathogenesis.

Next, we investigated the mechanisms regulating HIF-2a
expression using primary cultures of mouse FLS. The pro-

inflammatory cytokines IL1b and TNFa induced up-regulation

of HIF-2a in FLS, whereas IL6 and IL17 did not affect HIF-2a
expression (Figure 6E). A pharmacological analysis using inhibitors

of nuclear factor–kappaB (NF-kB) and mitogen-activated protein

(MAP) kinase subtypes indicated that IL1b- and TNFa-induced

Figure 3. CIA is inhibited in Epas1+/2 DBA/1J mice. (A) Incidence and severity of CIA in WT and Epas1+/2 DBA/1J mice without (NI) and with CIA
(n = 20 mice per group). (B) Typical paw images on day 60 after the first immunization and ankle thickness measured with a digital thickness caliper
(n = 20 mice per group). (C) Type II collagen-specific autoantibody production under NI and CIA conditions in the sera of WT and Epas1+/2 DBA/1J
mice (n = 12). (D) H&E staining and scoring of synovial inflammation (n = 10). (E) Representative images of safranin-O staining of articular cartilage,
safranin-O/hematoxylin staining of the pannus, and immunofluorescence microscopy of CD31 in knee joints of WT and Epas1+/2 DBA/1J mice
without (NI) and with CIA. (F) Quantification of results in (E). Mankin score (n = 12), pannus formation (n = 10), and number of blood vessels in the
synovium (n = 10). Ca, cartilage; P, pannus; M, meniscus. Values are means 6 SEM (*p,0.01, **p,0.001, ***p,0.0005). Scale bar, 50 mm.
doi:10.1371/journal.pbio.1001881.g003
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HIF-2a expression in FLS is mediated by the NF-kB pathway, but

not by the MAP kinase pathway (Figure 6F). Because hypoxia is a

prominent feature of the inflamed RA synovium [5–7], we

additionally examined the role of hypoxia in HIF-2a expression in

FLS. Mouse CIA synovium was hypoxic, as determined by

pimonidazole staining (Figure 6G). However, unlike HIF-1a
protein levels, which were markedly elevated in FLS under

hypoxic conditions, HIF-2a protein showed only minimal

accumulation under the same conditions; however, Ad-Epas1

infection under normoxic conditions caused marked expression of

HIF-2a protein (Figure 6G). Collectively, these findings suggest

that pro-inflammatory cytokines, rather than hypoxia, are the

leading cause of HIF-2a expression in FLS under CIA conditions.

HIF-2a Regulates RA-Associated FLS Functions
FLS play a crucial role in RA pathogenesis by producing

various regulatory factors [4]. We therefore explored whether up-

regulated HIF-2a in FLS modulates FLS functions and thereby

RA pathogenesis. Because increased survival and/or proliferation

of FLS contribute to synovial hyperplasia [4], we first examined

HIF-2a regulation of apoptosis and proliferation in these cells. Ad-

Epas1–mediated HIF-2a overexpression in primary cultured FLS

did not cause apoptosis or modulate apoptosis induced by an anti-

Fas antibody (unpublished data) known to cause FLS apoptosis

[4]. However, HIF-2a overexpression significantly increased

proliferation of FLS, and IL1b-induced proliferation was inhibited

in Epas1+/2 FLS (Figure 7A). Moreover, staining for the cell

Figure 4. Local deletion of Epas1 in joint tissues inhibits CIA. Epas1fl/fl mice were IA-injected with Ad-C or Ad-Cre (16109 PFU), immunized
with type II collagen (CIA) or NI, and maintained for 3 wk. (A) HIF-2a in joint tissues was detected by immunostaining (n = 10). (B) Synovitis, cartilage
destruction, pannus formation, and angiogenesis were detected by H&E staining, safranin-O staining, safranin-O/hematoxylin staining, and CD31
immunostaining, respectively. Representative images were obtained from more than 10 independent experiments. P, pannus. (C) Quantification of
synovitis, pannus formation, blood vessels in the synovium, and Mankin score (n.10). Values are means 6 SEM (*p,0.0005). Scale bar, 50 mm.
doi:10.1371/journal.pbio.1001881.g004
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proliferation marker Ki67 revealed the presence of proliferating

cells in the intimal lining of both CIA and Ad-Epas1–infected

synovia; notably, this staining was markedly reduced in Epas1+/2

DBA/1J mice (Figure 7B). Double immunostaining for HIF-2a
and Ki67 indicated that 16% and 24% of HIF-2a–positive cells

were proliferative in inflamed synovia caused by CIA and Ad-

Epas1 injection, respectively (Figure 7C).

Pannus formation and invasion into adjacent cartilage and bone

are important regulatory steps in cartilage and bone erosion,

which is mediated by the actions of osteoclasts [1,3,4]. Osteoclas-

togenesis is regulated by RANKL, which is produced by FLS and

T cells, and requires physical contact of precursor cells with

RANKL-expressing FLS or T cells in RA synovium [3,19]. We

therefore examined a possible role for HIF-2a in FLS regulation of

RANKL expression, osteoclastogenesis, and pannus formation.

HIF-2a overexpression or IL1b treatment of FLS caused

significant up-regulation of RANKL mRNA levels (Figure 7D).

Additionally, immunostaining indicated markedly increased levels

of RANKL protein in CIA synovium of WT mice, an effect that

was reduced in Epas1+/2 mice (Figure 7E). HIF-2a and RANKL

were co-localized in CIA synovium, as determined by double

immunostaining (Figure 7E). Consistent with this, TRAP staining

revealed an increase in the number of multinucleated osteoclasts in

the pannus of the bone–cartilage interface of CIA and Ad-Epas1–

infected joints of WT mice; this too was also significantly reduced

in Epas1+/2 mice (Figure 7F). The role of HIF-2a in osteoclas-

togenesis was further determined using Epas1+/2 precursor cells,

with and without HIF-2a overexpression. Osteoclastogenesis of

Epas1+/2 precursor cells was significantly reduced compared with

that of WT cells (Figure 7G). Moreover, overexpression of HIF-2a
in precursor cells by Ad-Epas1 infection enhanced osteoclastogen-

esis (Figure 7G). These results collectively support the idea that

HIF-2a–mediated production of RANKL in FLS and osteoclas-

togenesis of precursor cells contribute to cartilage and bone

erosion during HIF-2a–induced RA pathogenesis.

HIF-2a Up-Regulates Catabolic Factor Expression in FLS
FLS regulate RA pathogenesis by producing various cytokines,

chemokines, and matrix-degrading enzymes involved in inflam-

mation, chemotaxis, cartilage destruction, and bone erosion [4].

This led us to explore a possible role for HIF-2a in the expression

of these regulatory factors. Ad-Epas1–infected FLS exhibited

Figure 5. Normal immune system development and effector function of CD4+ T cells in Epas1+/2 mice. (A) Representative flow cytometric
analysis of CD4+ and CD8+ T-cell populations in the lymph nodes of WT and Epas1+/2 DBA/1J mice. (B) Populations of TH1, TH2, and TH17 cells
differentiated from uncommitted CD4+ T cells of WT and Epas1+/2 DBA/1J mice. (C) IL17A-producing cells identified by flow cytometry (left), and
levels of secreted IL17A determined by ELISA (right), from lymphocytes (LN) and splenocytes (SP) of WT and Epas1+/2 DBA/1J mice (n = 8 mice per
group) under CIA conditions. (D) mRNA levels of the indicated cytokines in total knee synovial cells isolated from Epas1+/2 DBA/1J mice under CIA
conditions or in Ad-Epas1–injected mice (n = 10). The NI condition and Ad-C injection were used as controls. Values are means 6 SEM (*p,0.01, **p,
0.005, ***p,0.0005).
doi:10.1371/journal.pbio.1001881.g005
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Figure 6. HIF-2a is up-regulated by pro-inflammatory cytokines in FLS of RA synovium. (A and B) Typical immunofluorescence
microscopy images of DAPI, HIF-2a, and FLS markers (vimentin and CD55) or the macrophage marker CD68 in human RA synovium (A) and mouse
CIA synovium (B). (C, Left) Primary culture of total synovial cells isolated from DBA/1J mice. DC, dendritic cells; MW, macrophages. (Center) Typical
immunofluorescence microscopy images of HIF-2a, DAPI, and vimentin or CD68. (Right) The percentage of FLS and macrophages positive for HIF-2a
staining was determined from six microscopic fields (n = 4). (D) Raw264.7 cells were treated with LPS (50 ng/ml) or TNFa (50 ng/ml) for 24 h. mRNA
levels were detected by RT-PCR analysis (n = 6). (E) Primary cultured FLS were treated with IL1b (1 ng/ml), IL6 (100 ng/ml), IL17 (10 ng/ml), or TNFa
(100 ng/ml) for 24 h. mRNA levels of HIF-1a and HIF-2a were quantified by qRT-PCR (n = 6). (F) FLS were treated with PD98059 (PD; 20 mM) to inhibit
ERK, SB203580 (SB; 20 mM) to inhibit p38 MAP kinase, SP600125 (SP; 20 mM) to inhibit JNK, or the indicated concentration (mM) of BAY 11-7085 (BAY)
to inhibit NF-kB. The cells were exposed to IL1b or TNFa for 24 h, and HIF-2a mRNA levels were quantified (n = 6). (G) Mouse CIA synovium was
stained for the hypoxia marker pimonidazole (upper). Primary cultured FLS were maintained under hypoxic conditions or were infected with Ad-
Epas1 at an MOI of 800 for 24 h. HIF-1a and HIF-2a proteins were detected by Western blotting (lower). Values are presented as means 6 SEM (*p,
0.01, **p,0.005, ***p,0.001). Scale bar, 50 mm.
doi:10.1371/journal.pbio.1001881.g006
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significantly increased mRNA levels of matrix-degrading enzymes

(MMP3, MMP9, MMP12, MMP13, and ADAMTS4), chemo-

kines (CCL2, CCL5, CCL7, CXCL1, CXCL2, CXCL4, CXCL5,

and CXCL10), and inflammatory mediators (COX2 and iNOS)

(Figure 8A). Among the cytokines examined (IL1b, IL6, IL11,

IL12, IL17, IL21, LIF, and TNFa), both mRNA and protein levels

of IL6 and TNFa were increased in response to HIF-2a

overexpression (Figure 8B and C). Moreover, IL1b-induced up-

regulation of catabolic factors (matrix-degrading enzymes, cyto-

kines, and chemokines) was abolished by the knockdown of Epas1

with two independent small interfering RNAs (siRNAs) (Figure

S3). In contrast to the effects of HIF-2a, overexpression of HIF-1a
in FLS caused up-regulation of MMP9, IL6, COX2, and VEGF,

but not that of other factors regulated by HIF-2a (Figure 8C).

Figure 7. HIF-2a regulates FLS proliferation, RANKL expression in FLS, osteoclastogenesis, and pannus formation. (A) BrdU-
incorporation assays in FLS infected with Ad-C or Ad-Epas1 (MOI 800) (left), and FLS from WT or Epas1+/2 mice treated with 1 ng/ml of IL1b (right)
(n = 6). (B) Ki67 staining in synovial sections from WT and Epas1+/2 mice without (NI) or with CIA, or from WT mice injected with Ad-C or Ad-Epas1
(MOI 800) (n = 8). (C) Double-immunofluorescence staining for HIF-2a and Ki67 in mouse CIA synovium. Ki67-positive cells among HIF-2a–
overexpressing cells were counted (n = 8). (D) RANKL mRNA levels were quantified in FLS infected with Ad-C or Ad-Epas1 (MOI 800) or treated with
1 ng/ml of IL1b (n = 10). (E) Representative images of RANKL immunostaining in the knee synovium of WT or Epas1+/2 mice without (NI) or with CIA
(Left). Typical immunofluorescence microscopy image of triple-stained CIA synovium (Right). (F) TRAP staining and counting of TRAP-positive
multinucleated cells (n = 10) in the pannus of the bone–cartilage interface in WT and Epas1+/2 mice without (NI) or with CIA, or following injection
with 16109 PFU of Ad-C or Ad-Epas1. (G) TRAP staining during in vitro osteoclastogenesis of precursor cells isolated from WT and Epas1+/2 mice or
WT precursor cells infected with Ad-C or Ad-Epas1 (800 MOI) (Left). Osteoclastogenesis was quantified by measuring the osteoclast area (n = 10)
(Right). Values are means 6 SEM (*p,0.01, **p,0.001). Scale bar, 50 mm.
doi:10.1371/journal.pbio.1001881.g007
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HIF-2a–Induced Up-Regulation of IL6 in FLS Regulates
TH17 Cell Differentiation

TH17 cells are crucial effectors of RA pathogenesis [2,3], and

HIF-1a has been previously shown to regulate TH17 cell

differentiation [13,14]. For instance, enhanced HIF-1a expression

in TH17 cells positively regulates TH17 differentiation by up-

regulating RORct, an isoform of RAR-related orphan receptor

gamma [13]. We therefore examined possible functions of HIF-2a
in TH17 cell differentiation, and thereby RA pathogenesis. We first

examined mRNA levels of HIF-1a and HIF-2a during TH17 cell

differentiation. Compared with precursor CD4+ T cells, differen-

tiated TH17 cells exhibited significant down-regulation of HIF-2a
expression and significant up-regulation of HIF-1a expression

(Figure 9A). Unlike the case with HIF-1a, which enhances TH17

cell differentiation [13], overexpression of HIF-2a in precursor

CD+ T cells did not affect TH17 cell differentiation (Figure 9B),

suggesting that HIF-2a in CD4+ T cells does not directly modulate

TH17 cell differentiation.

It is well established that IL6 plays a key role in TH17 cell

differentiation [2,3]. Consistent with this, in vitro TH17 cell

differentiation was dependent on the addition of exogenous IL6

protein (Figure 9C). Given the marked overexpression of IL6 in

FLS induced by HIF-2a, we explored possible functions of HIF-

2a–regulated, FLS-derived IL6 in TH17 cell differentiation by

treating CD4+ precursor T cells with conditioned medium (CM)

prepared from Ad-C (control)- or Ad-Epas1–infected FLS. TH17

cell differentiation was evaluated by monitoring IL17A production

using an enzyme-linked immunosorbent assay (ELISA). As shown

in Figure 9C, addition of CM from Ad-Epas1–infected FLS from

WT mice induced TH17 cell differentiation, even in the absence of

exogenous IL6 protein. The specific role of IL6 in CM was

confirmed by preparing CM from FLS of Il62/2 mice or by

adding IL6 neutralizing antibody to the CM. Compared with CM

from WT FLS, CM of Ad-Epas1–infected FLS from Il62/2 mice

did not affect in vitro TH17 cell differentiation (Figure 9C).

Furthermore, addition of a neutralizing antibody against IL6, but

not TNFa, blocked stimulation of TH17 cell differentiation by the

CM of Ad-Epas1–infected FLS (Figure 9D). We additionally

confirmed TH17 cell differentiation by monitoring mRNA levels of

IL17A and IL17F using quantitative reverse transcription–

polymerase chain reaction (qRT-PCR) analysis (Figure S4).

Immunostaining of synovial sections also revealed the presence

Figure 8. HIF-2a up-regulates the expression of cytokines, chemokines, and catabolic enzymes in FLS. (A) qRT-PCR analysis (n$8) of
catabolic enzymes and chemokines in FLS infected with Ad-C (800 MOI) or with Ad-Epas1 at the indicated MOI for 24 h. (B) qRT-PCR analysis (n$8) of
mRNA levels of HIF-2a, IL6, and TNFa (Left), and ELISA of secreted IL6 and TNFa proteins (Right) in FLS infected with Ad-C (800 MOI) or with Ad-Epas1
at the indicated MOI for 24 h. (C) FLS were infected with Ad-C, Ad-Epsa1, or Ad-Hif1a (800 MOI) for 24 h. The indicated proteins were detected by
Western blotting (n = 5). Values are means 6 SEM (*p,0.01, **p,0.001).
doi:10.1371/journal.pbio.1001881.g008
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Figure 9. HIF-2a–derived IL6 in FLS regulates TH17 cell differentiation and RA pathogenesis. (A) HIF-1a and HIF-2a mRNA levels in CD4+ T
cells and differentiated TH17 cells, determined by qRT-PCR (n = 5). (B) Mouse CD4+ T cells were transfected with empty vector (EV) or Epas1-expressing
vector, and cultured under neutral or TH17-skewing conditions. TH17 cell differentiation was evaluated by monitoring IL17A production (n = 4). (C)
Precursor CD4+ T cells were left untreated or were treated with antibodies against CD3 and CD28 (Abs), Mix (i.e., TGFb, IL2, and antibodies against IL4,
IFNc, and IL12), the indicated amount of IL6, or CM from WT FLS infected with Ad-C or Ad-Epas1 (Ad-E) at an MOI of 800 (left), or WT and Il62/2 FLS
infected with Ad-Epas1 (Ad-E; 800 MOI) (Right). TH17 cell differentiation was evaluated by monitoring IL17A production (n = 8). (D) TH17 cell
differentiation in the presence of Abs, Mix, or CM from WT FLS infected with Ad-Epas1 (Ad-E) and/or the indicated amounts of neutralizing antibody
against IL6 or TNFa was evaluated by monitoring IL17A (n = 6). (E and F) Synovial inflammation, pannus formation, angiogenesis, and cartilage
destruction were detected by joint tissue staining and quantified in WT and Il62/2 DBA/1J mice injected with Ad-C or Ad-Epas1 (16109 PFU) or
without (NI) or with CIA. Values are means 6 SEM (*p,0.01, **p,0.001, ***p,0.0005). Scale bar, 50 mm.
doi:10.1371/journal.pbio.1001881.g009
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of IL17A-producing cells in mouse synovium infected with Ad-

Epas1 or under CIA conditions, whereas no positive immuno-

staining was observed in Ad-C–infected or NI synovium (Figure

S5A–C). Indeed, IL17A-positive cells were located in close

proximity to HIF-2a–positive cells in human RA and mouse

CIA synovia, as determined by double immunostaining (Figure

S5D).

HIF-2a Does Not Cause a RA Phenotype in Il62/2 Mice
The above results suggest that FLS-derived IL6 plays an

important role in HIF-2a regulation of experimental RA by

regulating TH17 cell differentiation. To confirm this, we investi-

gated IL6 functions in HIF-2a–induced experimental RA using

Il62/2 mice. Consistent with the inhibition of CIA by Il6 knockout

[20,21], we also observed significantly greater inhibition of

synovitis, pannus formation and invasion, cartilage destruction,

and angiogenesis in inflamed synovium under CIA conditions in

Il62/2 DBA/1J mice compared with WT littermates (Figure 9E

and F). More importantly, the development of RA-like phenotypic

manifestations, including synovitis, pannus formation and inva-

sion, cartilage destruction, and angiogenesis, induced in inflamed

synovium by IA injection of Ad-Epas1 was markedly diminished in

Il62/2 DBA/IJ mice compared with WT mice (Figure 9E and F).

Our results collectively suggest that FLS-derived IL6 plays an

important role in TH17 cell differentiation and thereby contributes

to HIF-2a regulation of experimental RA.

Discussion

Our current findings provide two novel insights into the

regulation of RA pathogenesis by HIF pathways: the catabolic

role of HIF-2a in RA pathogenesis and the differential actions of

HIF-1a and HIF-2a in this disease.

In the first case, we demonstrate an essential role for HIF-2a in

the pathogenesis of RA. Despite circumstantial evidence for the

hypoxic status of RA synovium [5–7] and increased expression of

HIF-2a in the synovial lining of human RA patients [9], little is

currently known about the role of HIF-2a in RA pathogenesis.

The results of our loss-of-function studies utilizing Epas1 knock-

down in mice (Epas1+/2) or local deletion in Epas1fl/fl mice by Ad-

Cre injection strongly support our conclusion that HIF-2a is

necessary for RA pathogenesis. This conclusion is reinforced by

the marked up-regulation of HIF-2a observed in RA synovia of

humans and mouse models of RA as well as the RA-like phenotype

revealed in gain-of-function studies involving IA injection of Ad-

Epas1. In RA joint tissues, HIF-2a is up-regulated in various

tissues, including synovium, pannus, cartilage, meniscus, and

TRAP-positive osteoclasts. IA injection of Ad-Epas1 also caused

up-regulation of HIF-2a in these tissues. Because numerous cell

types in joint tissues contribute to the process of RA pathogenesis

[1], up-regulated HIF-2a in any of these tissues could contribute to

RA pathogenesis. However, because HIF-2a levels were most

markedly increased in synovial cells, which are also the primary

targets of adenovirus infection, we characterized HIF-2a functions

in synovial tissue in the regulation of RA development. In RA

synovial tissue, HIF-2a was up-regulated in most FLS in the

synovium lining compartment, although some other cell types,

such as macrophages, also exhibited HIF-2a up-regulation.

Although we cannot rule out a contribution of these other cell

types, we were able to demonstrate that HIF-2a regulates RA-

associated FLS functions in experimental RA pathogenesis. These

include proliferation; expression of cytokines, chemokines,

and matrix-degrading enzymes; RANKL expression and osteo-

clastogenesis; IL6 production; and IL6-dependent TH17 cell

differentiation. Among these, IL6-dependent TH17 cell differen-

tiation is a crucial effector of RA pathogenesis. In this context, we

demonstrated that IL6 present in CM prepared from FLS caused

TH17 cell differentiation. Moreover, IL17A-positive cells were

located in close proximity to HIF-2a–positive cells, suggesting that

IL6 production mediated by HIF-2a in the inflamed RA synovium

affects differentiation of neighboring TH17 cells. Additional

support for this relationship is provided by our demonstration

that global deletion of Il6 abolished HIF-2a–induced RA

pathogenesis. Although it remains possible that production of

IL6 by cell types in synovial tissue besides FLS could also

contribute to the regulation of TH17 cell differentiation, estab-

lishing this definitively would likely require a conditional FLS-

specific Il6-knockout model, which, to our knowledge, has not yet

been developed.

The second novel finding of this study is that HIF-1a and HIF-

2a have distinct roles and act via different mechanisms in RA

pathogenesis. HIF-1a is up-regulated in RA synovium [10–12],

where it is associated with angiogenesis [5–7]. It has previously

been demonstrated that HIF-1a regulates RA pathogenesis by

directly modulating TH17 cell functions [13,14]. In the current

study, HIF-1a expression, in contrast to that of HIF-2a, was

detected in a small number of cells in the sublining and deep layer

of RA synovium in both humans and experimental mouse models

of RA, a result consistent with other reports [10,11]. We did not

extensively explore the underlying mechanisms of this differential

expression of HIF isoforms in the current study. However, HIF-1a
and HIF-2a show different sensitivity to oxygen tension and

display distinct, and sometimes opposing, cellular activities [8,9].

Indeed, we found in this study that sensitivities to hypoxia and to

pro-inflammatory cytokines differed between HIF-1a and HIF-2a
in FLS. These differences may reflect the differential expression

pattern of HIF-2a and HIF-2a in RA synovium. Nevertheless,

ectopic expression of HIF-1a in joint tissues by IA injection of Ad-

Hif1a did not cause an RA-like phenotype, suggesting that HIF-1a
overexpression is not sufficient to induce RA pathogenesis. In

striking contrast, HIF-2a overexpression was sufficient to activate

RA pathogenesis and did so by regulating FLS functions.

Collectively, our results suggest that HIF-2a regulates RA

pathogenesis by acting globally to modulate the RA pathogenesis

program, including angiogenesis and FLS functions, whereas HIF-

1a contributes to RA pathogenesis by modulating the effector

functions of myeloid and T cells. Moreover, the observation that

HIF-2a deficiency, which does not affect HIF-1a expression, is

sufficient to inhibit experimental RA underscores the specific roles

played by HIF-2a.

RA and OA are the most common types of joint arthritis. We

have previously shown that HIF-2a is a catabolic regulator of OA

cartilage destruction [18,22–24], demonstrating that HIF-2a
causes OA pathogenesis by up-regulating catabolic enzymes such

as MMP3 and MMP13 in chondrocytes, and further showing that

chondrocyte-specific Col2a1-Epas1 TG mice exhibit spontaneous

cartilage destruction with no evidence of synovitis [18]. Although

RA and OA phenotypes share certain features, such as cartilage

destruction, their etiology and pathogenesis are completely

different. RA and OA also differ with respect to outcomes, cell

types associated with the pathogenesis, and therapeutic approach-

es. For instance, OA is a degenerative joint disease (‘‘wear and

tear’’ arthritis) that begins with the destruction of surface articular

cartilage, subchondral bone sclerosis, and osteophyte formation in

a single joint. In this type of arthritis, mechanical stresses,

including joint instability and injury, and factors that predispose

toward OA, such as aging, are important causes of pathogenesis

[25,26]. In contrast to OA, RA is a systemic autoimmune disorder,
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which manifests as chronic inflammation that results in destruction

of cartilage and bone tissues [2–4]. The inflammatory process

initially affects a single joint, but the disease usually progresses to

affect nearly all joints [27]. Thus, our results indicate that, despite

their different etiologies and pathogenesis, both RA and OA are

regulated by HIF-2a via completely different mechanisms: HIF-2a
regulates OA pathogenesis by up-regulating matrix-degrading

catabolic enzymes in articular chondrocytes, whereas it appears to

regulate RA pathogenesis by regulating angiogenesis, various

functions of FLS, and IL6-dependent TH17 cell differentiation.

In summary, our current studies suggest that HIF-2a is an

essential catabolic regulator of RA pathogenesis that acts by

modulating various RA-associated FLS functions. Because the

etiology of RA pathogenesis has not yet been entirely elucidated

and effective treatment of RA remains a significant unmet medical

need, HIF-2a may serve as an effective therapeutic target in RA

treatment. In this context, an important question that remains to

be evaluated is whether recently developed small-molecule

inhibitors of HIF-2a [28,29] inhibit RA pathogenesis in vitro and

in vivo. Additionally, because HIF-1a and HIF-2a appear to

regulate RA pathogenesis through different mechanisms, both

HIF isoforms could be alternative therapeutic targets in the

treatment of RA disease.

Materials and Methods

Ethics Statement
The use of human materials was approved by the Institutional

Review Board of Chonnam National University Hospital and

Wonkwang University Hospital, and written informed consent was

obtained from all individuals before the operative procedure. Mice

were housed in specific pathogen-free barrier facilities and were

used in accordance with protocols approved by the Animal Care

and Ethics Committees of the Gwangju Institute of Science and

Technology.

Human Arthritic Joint Tissues
Human RA, psoriatic arthritis, gouty arthritis, and OA joint

tissues were collected from patients undergoing knee arthroplasty

(Tables S1, S2, S3) and then embedded in paraffin. All RA

patients had a median disease duration of ,6 y, high disease

activity (i.e., median DAS of 5.61), and received medications,

including a variety of disease-modifying antirheumatic drugs

(Table S1). Because joint tissues were obtained from patients

undergoing knee arthroplasty, our samples represent relatively

late-stage RA.

Mice and Experimental Arthritis
Male DBA/1J, C57BL/6, Epas1+/2, Epas1fl/fl, and Il62/2 mice

were used for experimental RA studies. The C57BL/6 strains of

Epas1+/2, Epas1fl/fl, and Il62/2 mice were described previously

[18,22]. Epas1+/2, Epas1fl/fl, and Il62/2 (C57BL/6) mice were

backcrossed against the DBA/1J strain for eight generations to

generate Epas1+/2 DBA/1J, Epas1fl/fl DBA/1J, and Il62/2 DBA/

1J mice, respectively. CIA was produced in WT and Epas1+/2

DBA/1J mice using a standard protocol [16]. Briefly, mice were

intradermally injected at the base of the tail with incomplete

Freund’s adjuvant alone (control) or Freund’s adjuvant containing

100 mg of collagen type II; a booster injection was given 21 d later.

Epas1fl/fl DBA/1J mice were IA-injected with Ad-C or Ad-Cre

(16109 PFU) on days 0, 3, and 6, followed by a booster injection

with collagen type II. Mice were maintained for an additional

2 wk. The incidence and severity of RA were evaluated on the

indicated days after the first immunization. Severity was evaluated

using a clinical score (grade 0–4) of paw swelling based on the level

of inflammation in each of the four paws [16]. Joint tissues from

mice were fixed, decalcified with 0.5 M EDTA (pH 8.0),

embedded in paraffin, and sectioned at 5-mm thickness. Synovitis

was evaluated by H&E staining of joint sections, and synovial

inflammation (grade 0–4) was scored as described by Tang et al.

[30]. The pannus in joint tissues adjacent to cartilage and bone

was visualized by H&E staining with or without safranin-O

staining of cartilage, and pannus formation was scored (grade 0–4)

as described by Tang et al. [30]. Cartilage destruction was

examined by safranin-O staining and scored using Mankin’s

method, as previously described [18,31].

Immunohistochemistry and Immunofluorescence
Microscopy

Human and mice joint tissues were sectioned at 5-mm thickness

for immunohistochemical staining. Antigen retrieval was per-

formed by incubating sections with 0.1% trypsin for 40 min at

37uC or with citrate buffer for 20 min at 95uC. The following

primary antibodies were used for immunohistochemistry: rabbit

anti–HIF-2a and rabbit anti-RANKL (Santa Cruz), rabbit anti-

MMP3 and anti-MMP13 (Abcam), goat anti-IL6 (R&D Systems),

rabbit anti-IL17A (Abcam), mouse anti-HIF-1a (Sigma), and rat

anti-CD31 (Dianova). For double-immunofluorescence labeling of

human and mouse joint tissues, the following primary antibodies

were used: rabbit anti–HIF-2a (Novus Biologicals for human

tissues and Santa Cruz for mouse tissues), rabbit anti-MMP3

(Abcam), mouse anti-MMP13 (Calbiochem, for human synovia),

rabbit anti-MMP13 (Abcam, for mouse synovia), goat anti-IL6

(R&D Systems), mouse anti-vimentin (BD Biosciences), rabbit anti-

CD55 (Santa Cruz), rabbit anti-CD68 (Abcam, for human

synovia), rat anti-CD68 (Abcam, for mouse synovia), rabbit anti-

TRAP (Santa Cruz), rabbit anti-VEGF (Santa Cruz), rabbit anti-

IL17A (Santa Cruz), rabbit anti-Ki67 (Abcam), and rabbit anti-

RANKL (Santa Cruz). Expression levels of HIF-2a in RA

synovium were quantified using Image J software. The percentage

of cells expressing HIF-2a was analyzed in synovial lining cells

(fibroblast-like and macrophage-like synoviocytes), sublining mac-

rophages, and endothelial cells [32]. Cell types were distinguished

according to their characteristic morphology and confirmed by

immunoreactivity with anti-vimentin (FLS), anti-CD68 (macro-

phages), and anti-CD31 (endothelial cells) antibodies. For immu-

nofluorescence staining of total synovial cells or FLS cultured on

coverslips, the following antibodies were used: rabbit anti–HIF-2a
(Novus Biologicals), goat anti-IL6 (R&D Systems), rabbit anti-

CD68, and mouse anti-vimentin (BD Biosciences).

FLS Culture, CM Preparation, and Proliferation Assays
Total synovial cells were isolated from knee joint synovium of

CIA mice. Synovial tissues were minced and digested in

collagenase for 4 h at 37uC. The cells were plated on coverslips

in RPMI-1640 medium and incubated for 4 d. FLS were isolated

from NI and CIA joint tissues of WT and Il62/2 mice [33]. FLS

between passage 4 and 8 were used for further analysis. Pure FLS

(.90% CD90+/,1% CD14+) were identified by flow cytometry

using antibodies against the fibroblast marker CD90 and the

macrophage marker CD14 (Abcam). For the preparation of CM,

FLS were infected with Ad-C or Ad-Epas1 at a multiplicity of

infection (MOI) of 800 for 2 h and incubated on 35-mm culture

dishes containing 1 ml of RPMI-1640 medium. CM was used to

treat CD4+ precursor T cells during differentiation into TH17

cells. FLS proliferation in culture was quantified by measuring

BrdU incorporation during DNA synthesis. Proliferating cells in
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synovial sections were identified by detecting Ki67 using an

antibody obtained from Novus Biologicals.

T-Cell Differentiation and Proliferation
CD4+ T cells from WT and Epas1+/2 mice were purified from

lymph nodes and spleens. TH cell differentiation was induced by

plating cells (26106 cells/ml) on culture dishes coated with anti-

CD3 antibody (1 mg/ml) in the presence of soluble anti-CD28

antibody (2 mg/ml) under the following TH cell-skewing condi-

tions: TH1 cells, IL12 (10 ng/ml) and anti-IL4 antibody (10 mg/

ml); TH2 cells, IL4 (20 ng/ml) and 10 mg/ml of antibodies against

IFNc and IL12; TH17 cells, tumor growth factor (TGF)-b (3 ng/

ml), IL6 (30 ng/ml), and 10 mg/ml of antibodies against IL4,

IFNc, and IL12. IL2 (100 U/ml) was added after 24 h, and cells

were cultured for 6 d. Antibodies and cytokines were purchased

from BD Biosciences or PeproTech. The cells were stimulated

with PMA (50 ng/ml), ionomycin (1 mM), and brefeldin A (1 mg/

ml; eBioscience). TH cell differentiation was evaluated by flow

cytometry after staining for intracellular cytokines and by

detecting cytokines by ELISA and qRT-PCR. Where indicated,

activated CD4+ T cells were transfected by electroporation with

empty vector or vector carrying Epas1. The cells were cultured

under neutralizing conditions (10 mg/ml of antibodies against IL4

and IFNc) or TH17 cell-skewing conditions for 4 d. The effects of

HIF-2a overexpression on skewed CD4+ T cells were evaluated by

detecting IL17A production by ELISA. For cell proliferation

assays, CD4+ T and B220+ B cells were isolated from lymph nodes

and spleens of WT and Epas1+/2 DBA/1J mice. T-cell prolifer-

ation was induced by stimulating cells with anti-CD3 antibody

(10 mg/ml), and B-cell proliferation was induced by stimulating

cells with LPS (10 mg/ml), LPS plus IL4 (5 ng/ml), or antibodies

against IgM (20 mg/ml; Jackson ImmunoResearch) and CD40

(10 mg/ml; BioLegend). Proliferation was assessed by measuring

[3H]thymidine (0.5 mCi/well) incorporation during the last 18 h of

a 72-h culture period.

Hypoxia in FLS and Joint Tissues
For detection of the hypoxic status of mouse CIA synovium,

mice immunized with type II collagen were intraperitoneally

injected with hypoxyprobe-1 (pimonidazole HCl; Hypoxyprobe

Inc.) at a dosage of 60 mg/kg body weight and sacrificed 6 h after

injection. Paraffin-embedded joint tissues were sectioned at 5-mm

thickness, and pimonidazole was detected by immunofluorescence

microscopy, according to the manufacturer’s instructions. For

hypoxic culture of mouse FLS, cells were exposed to hypoxia for

12, 18, or 24 h in a GasPak anaerobic chamber (BBL GasPak

Pouch; Becton Dickinson) at 37uC, as described previously [18].

The proportion of oxygen in each chamber was #1%.

Flow Cytometric Analysis
Leukocytes were prepared from lymph nodes draining the

inflamed joint, spleen, and thymus of NI and CIA mice. Synovial

cells were harvested by digesting synovial tissues with collagenase.

The cells were incubated with primary antibodies for 15 min at

4uC. Antibodies against CD4, CD8, CD44, Foxp3, B220, and

CD11c were purchased from eBioscience; the anti-CD62L

antibody was from BD Pharmingen. Nonspecific staining was

ascertained using isotype-matched control antibodies. TH cells

were fixed in fixation/permeabilization buffer for 30 min;

resuspended in 100 ml of permeabilization buffer; incubated for

30 min at 4uC with Alexa 488- or phycoerythrin (PE)-conjugated

anti-IFNc (eBioscience), fluorescein isothiocyanate (FITC)-conju-

gated anti-IL4, PE-conjugated anti-IL17A or isotype control

antibodies (eBioscience); and analyzed by flow cytometry using

EPICS XL and EXPO32 software (Beckman Coulter).

ELISA of Cytokines and Autoantibody Production
Representative cytokines involved in RA pathogenesis (IFNc,

TNFa, IL4, and IL17A) and produced by TH subsets were

detected using ELISA kits (eBioscience), according to the

manufacturer’s protocol. IL6 and TNFa secreted into serum-free

culture media by FLS infected with Ad-C or Ad-Epas1 were

quantified by ELISA. Collagen type II–specific antibodies were

measured by ELISA. Sera from NI and CIA mice were added into

96-well plates coated with type II collagen (5 mg/ml), incubated

overnight at 4uC, washed, and incubated for 1 h with alkaline

phosphatase-labeled monoclonal antibodies against mouse IgG1,

IgG2a, or IgG2b (Immunology Consultants Lab). Wells were

developed using p-nitrophenyl phosphate as a substrate, and the

resulting color reaction was quantified using an ELISA plate

reader.

Bone Marrow Culture, Osteoclastogenesis, and TRAP
Staining

Bone marrow cell culture, osteoclastogenesis, and TRAP

staining were performed as described previously [34]. Briefly,

bone-marrow–derived macrophages were isolated from WT or

Epas1+/2 mice, seeded in 48-well plates (46104 cells/well), and

cultured for 4 d (Ad-C and Ad-Epas1 infection in WT cells) or 5 d

(WT and Epas1+/2 precursor cells) with M-CSF (macrophage

colony stimulating factor; 30 ng/ml) and RANKL (100 ng/ml) to

induce osteoclastogenesis. The surface area of TRAP-stained

multinuclear osteoclasts containing three or more nuclei was

measured using an Osteomeasure system (Osteometrics). TRAP

activity was also determined in paraffin sections of joint tissues

from NI and CIA mice or mice IA-injected with 16109 PFU of

Ad-C or Ad-Epas1. The numbers of TRAP-positive osteoclasts and

their precursor cells were counted in a blinded fashion in all

regions of pannus-formed bone–cartilage interface and synovium

for each knee joint.

siRNA, RT-PCR, qRT-PCR, and Western Blotting
PCR primers and experimental conditions are summarized in

Table S4. Two different siRNA sequences that silenced Epas1

effectively were used in this study (Table S5). Nonsilencing,

scrambled siRNA was used as a negative control. Cells were

transfected for 6 h with siRNA using Lipofectamine 2000

(Invitrogen), and then infected with Ad-Epas1 or treated with

IL1b. In qRT-PCR, the relative levels of target mRNA were

normalized to those of glyceraldehyde 3-phosphate dehydroge-

nase. The following antibodies were used for Western blotting:

rabbit anti-MMP2, -3, -9, -12, -13, and -14 (Epitomics); rabbit

anti-ADAMTS4 (Abcam); goat anti-IL6 (R&D Systems); rabbit

anti-ADAMTS5 (Thermo Scientific); rabbit anti-iNOS, rabbit

anti-VEGF, goat anti-RANKL, and goat anti-TNFa (Santa Cruz);

and mouse anti-COX2 (Cayman Chemical).

Statistical Analysis
The nonparametric Mann–Whitney U test was used for the

analysis of data based on an ordinal grading system, such as

synovitis, pannus, and Mankin scores. For results obtained in

qRT-PCR assays, ELISAs, and analyses of blood vessel numbers,

joint thickness, TRAP-positive cells, BrdU incorporation, thymi-

dine incorporation, and apoptotic cell numbers, data were first

tested for conformation to a normal distribution using the

Shapiro–Wilk test and then were analyzed by Student’s t test
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(pair-wise comparisons) or analysis of variance (ANOVA) with post

hoc tests (multicomparison), as appropriate. Significance was

accepted at the 0.05 level of probability (p,0.05).

Supporting Information

Figure S1 Up-regulation of HIF-2a in RA joint tissues of

humans and mice. (A) Human RA bone sections were immuno-

stained for HIF-2a and TRAP, and counterstained with DAPI.

Damaged and undamaged parts of human RA cartilage were

stained for HIF-2a (n = 4). (B) HIF-2a immunostaining in

osteoarthritis (OA; n = 10), gouty arthritis (GA; n = 2), and psoriatic

arthritis (PsA; n = 2) synovial sections. (C) Clinical score in DBA/1J

mice immunized with type II collagen (CIA) or NI (n = 20 mice per

group). (D) Sections of knee and ankle joints of NI and CIA mice

obtained 6 wk after the first immunization. (Left) H&E staining;

(Right) synovial inflammation scores (n = 15). (E) Joint sections

were collected 6 wk after the first injection and stained with

safranin-O (n = 15) to detect cartilage destruction. (F) Typical

images of HIF-2a immunostaining in joint sections of DBA/1J

mice 6 wk after the first immunization (n = 15). (G) Typical image

of triple-stained (HIF-2a, IL6, and DAPI) synovial sections from

mice IA-injected with Ad-Epas1 (16109 PFU). Values are means

6 SEM. C, cartilage; S, synovium; M, meniscus; P, pannus; Sb,

subchondral bone. Scale bar, 50 mm.

(TIF)

Figure S2 Epas1 knockdown in mice (Epas1+/2) does not affect

immune system development. (A–D) Leukocytes were isolated

from the indicated tissues of naı̈ve WT and Epas1+/2 DBA/1J

mice. Cells were stained for markers of various immune cell types,

and immune cell populations were determined by flow cytometry

and quantified (n.10 mice). CD4+ helper T cells and CD8+

cytotoxic T cells (A); Foxp3-expressing regulatory T cells (Treg) (B);

naı̈ve (CD44lowCD62Lhigh) and memory (CD44highCD62Llow)

CD4+ T cells (C); B220+ B cells and CD11c+ dendritic cells (D).

(E and F) CD4+ T cells (E) and B220+ B cells (F) were isolated from

lymph nodes and spleens from WT and Epas1+/2 DBA/1J mice

(n.8 mice). Proliferation of cells cultured for 3 d in the absence or

presence of the appropriate T- or B-cell stimulants was assessed by

[3H]thymidine incorporation assays. Results are expressed as

counts per minute (CPM). (G and H) CD4+ T cells were purified

from the lymph nodes and spleens of WT and Epas1+/2 DBA/1J

mice. TH cell differentiation was induced under TH1-, TH2-, or

TH17-skewing conditions. Recombinant IL2 (100 U/ml) was

added after 24 h, and cells were cultured in complete medium

for 6 d. Cells were restimulated with PMA, ionomycin and

brefeldin A, or left untreated, and then stained for intracellular

cytokines. The indicated cytokines were detected by ELISA in

untreated cells (G) and restimulated cells (H) (n = 6). Values are

presented as means 6 SEM.

(TIF)

Figure S3 Knockdown of Epas1 by siRNA inhibits IL1b-induced

catabolic factor expression in primary culture FLS. (A and B) FLS

were left untreated (None) or were treated with 100 nM control

siRNA (C-siRNA) or the indicated amounts of two different Epas1-

specific siRNAs—siRNA-1 (A) or siRNA-2 (B)—and then were

exposed to IL1b for an additional 24 h. mRNA levels of the

indicated catabolic factors were quantified by qRT-PCR (n = 10).

Values are means 6 SEM (*p,0.05, **p,0.01, ***p,0.001

compared with C-siRNA treatment).

(TIF)

Figure S4 IL6 produced by FLS regulates TH17 cell differen-

tiation. TH17 cell differentiation was evaluated by detecting

mRNA levels of IL17A (A) and IL17F (B) (n = 6). Precursor CD4+

T cells were left untreated or were treated with antibodies against

CD3 and CD28 (Abs), Mix (i.e., TGFb, IL2, and antibodies

against IL4, IFNc, and IL12), the indicated amount of IL6, or CM

from WT FLS infected with Ad-C or Ad-Epas1 (800 MOI), or WT

and Il62/2 FLS infected with Ad-Epas1 (800 MOI). TH17 cell

differentiation was evaluated by monitoring IL17A expression (left

panels). TH17 cell differentiation in the presence of CM from WT

FLS infected with Ad-Epas1 and/or the indicated amounts of

neutralizing antibodies against IL6 or TNFa was evaluated by

monitoring IL17A (right panels). Values are means 6 SEM (*p,

0.05, **p,0.005, ***p,0.0005).

(TIF)

Figure S5 Epas1 knockdown in mice (Epas1+/2) inhibits IL17

expression. (A) CIA was produced in WT and Epas1+/2 DBA/1J

mice, and IL17 protein was detected in NI and CIA synovial

sections after 6 wk by immunohistochemistry. (B) The knee joints

of WT and Epas1+/2 DBA/1J mice were injected with Ad-C or

Ad-Epas1 (16109 PFU). After 3 wk, synovial sections were

immunostained for IL17 and counterstained with hematoxylin.

(C) IgG was used as a negative immunostaining control.

Representative images are shown (n = 6). (D) Typical images of

triple-stained (HIF-2a, IL17A, and DAPI) human RA synovium

and mouse CIA synovium (n = 6). Scale bar, 50 mm.

(TIF)

Table S1 Clinical characteristics of RA patients with synovial

biopsy.

(DOCX)

Table S2 Clinical characteristics of two patients with gouty

arthritis.

(DOCX)

Table S3 Clinical characteristics of two patients with psoriatic

arthritis.

(DOCX)

Table S4 PCR primers and conditions.

(DOCX)

Table S5 siRNA sequences.

(DOCX)
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