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Abstract

One of the major concerns of recent studies is the correct discrimination between vegetative and minimally conscious state
as the distinction between these two conditions has major implications for subsequent patient rehabilitation. In particular, it
would be advantageous to establish communication with these patients. This work describes a procedure using EEG to
detect brain responses to imagery instruction in patients with disorders of consciousness. Five healthy subjects and five
patients with different disorders of consciousness took part in the study. A support vector machine classifier applied to EEG
data was used to distinguish two mental tasks (Imagery Trial) and to detect answers to simple yes or no questions (pre-
Communication Trial). The proposed procedure uses feature selection based on a nested-leave-one-out algorithm to reduce
the number of electrodes required. We obtained a mean classification accuracy of 82.0% (SD 5.1%) for healthy subjects and
84.6% (SD 9.1%) for patients in the Imagery Trial, and a mean classification accuracy of 80.7% (SD 11.5%) for healthy subjects
and 91.7% (SD 7.4%) for patients in the pre-Communication Trial. The subset of electrodes selected was subject and session
dependent.
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Introduction

Recent improvements in intensive care have led to an increase

in the number of patients who survive severe head trauma,

intracranial haemorrhage or non-traumatic anoxic brain injuries.

Although some of these patients make a good recovery, the

remainder show consciousness disorders on two different levels. In

the worst case, patients remain in a persistent vegetative state (VS);

others show minimal but definite behavioural evidence of self or

environmental awareness, a condition defined as ‘‘minimally

conscious state’’ (MCS) [1] [2].

The correct discrimination between VS and MCS has major

implications for subsequent care and rehabilitation, but the rate of

misdiagnosis has been estimated at between 15% and 40% of cases

[3]. Several new techniques, including functional magnetic

resonance imaging (fMRI), cognitive event-related potentials

(ERPs) and quantitative EEG analysis (QEEG) are currently

being developed to assess patients correctly.

Boly and colleagues developed an fMRI paradigm of reliable

voluntary activation in response to an imagery task [4]. They

found two imagery tasks which elicit extremely reliable, robust and

statistically distinguishable patterns of activation in specific regions

of the brain: spatial navigation imagery, imagining moving from

room to room in your own home, and motor imagery, imagining

playing tennis. After this preliminary study, Owen and colleagues

used Boly et al.’s paradigms to show that a patient who seemed to

be entirely vegetative might be aware, since her blood oxygen-level

was modulated by the various mental imagery tasks [5]. With the

same technique, Monti and colleagues assessed 54 patients with

consciousness disorders using Boly et al.’s imagery tasks as a means

of communicating yes or no answers to simple yes or no questions

by imaging one task for yes and the other for no [6]. Despite the

very promising results obtained by these studies, fMRI-based

applications remain challenging for many reasons: 1) high costs; 2)

limited scanner availability; 3) the inactive state of these patients;

4) the frequent uncontrolled, involuntary movements inside the

scanner; 5) the substantial physical stress to patients on transfer to

the fMRI facility. Furthermore, metal implants, including plates

and pins, which are common in most traumatically injured

populations, rule out the use of fMRI.

By contrast, electroencephalographic (EEG)-based paradigms

have many advantages over fMRI for monitoring patients with

altered consciousness. Because of its low cost, non-invasiveness and

portability, a dedicated bedside system for these patients is feasible.

Some previous studies used EEG-based brain computer interface

(BCI) systems to validate the scientific reliability of EEG-related

procedures in discriminating mental imagery tasks in disabled

people [7]. These studies demonstrated that EEG-signals could be

produced and controlled by thinking about specific imagery tasks,

thereby confirming that this activity could also serve as a new form

of communication in patients with disorders of consciousness.

With a paradigm similar to that of Monti et al., Cruse and

colleagues used EEG to detect command-following in vegetative

state patients undertaking two motor imagery tasks (image moving

hand and toe). They used EEG-signals recorded by 25 electrodes

located over the motor area and a support vector machine (SVM)
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to classify the two tasks, obtaining a classification accuracy of 61–

78% [8]. In a second study, Cruse and colleagues optimized their

technique using only four fixed electrodes and confirmed the

classification accuracy of their previous study [9]. Cruse et al.’s

results were discussed by Goldfine et al. because of the difficulty of

the tasks and the critical reliance on certain statistical assumptions.

They reanalysed the data with a method independent of such

assumptions and reported no evidence for covert consciousness

[10]. Using Fisher’s linear discriminant approach and two

different tasks with respect to those used by Cruse et al. (image

swimming and image walking in one’s own home), Goldfine et al.

investigated whether spatially and spectrally localized changes in

EEG power spectra could identify responses to command in

healthy subjects and patients with severe brain injury. They

demonstrated that imagining the two imagery tasks changed the

EEG power spectrum at multiple channels and frequency bands in

healthy subjects and patients [11]. We disagree with Goldfine et

al.’s consideration on the difficulty of Cruse et al.’s tasks, and think

that Goldfine et al.’s tasks are more difficult. For this reason, we

used Cruse et al.’s tasks in our study. John and colleagues

established the reproducibility of differential EEG source locali-

zation during requested imagery tasks in vegetative state patients

[12], as had been established for fMRI. Lulé et al. proposed an

auditory P3-based BCI to detect command-following in patients

with disorders of consciousness [13]. The latest study by De

Massari et al. demonstrated the possibility of yes-no communica-

tion with an amyotrophic lateral sclerosis (ALS) subject using an

EEG signal [14]. This study included 15 healthy control subjects.

De Massari et al. developed a semantic classical conditioning

paradigm able to discriminate between conditioned yes or no

responses in the cortex, and thus enable basic affirmative and

negative communication in all subjects. Classification accuracy in

the discrimination of answers was 64% in healthy subjects and

62% in the ALS patient. Another study by De Massari et al. found

no reliable communication in a completely locked-in state (CLIS)

patient, but satisfactory BCI performance in a locked-in state (LIS)

patient obtaining an accuracy up to 70% [15]. Kotchoubey and

colleagues described a CLIS patient whose slow EEG activity

significantly differed between trials when he was asked to try to

move the left compared to the right hand [16]. In healthy

participants, motor imagery also produces clearly distinguishable

modulation of EEG sensorimotor rhythms (SMRs), similar to those

seen during motor execution. Kübler and colleagues showed that

LIS patients with ALS could learn to modulate their SMRs with .

70% accuracy, but did not test VS patients with this paradigm

[17].

Results obtained in the above studies are often discrepant but

confirm the usefulness of EEG to reliably detect awareness in

patients with a clinical diagnosis of VS. Therefore, EEG may serve

as an important tool for the assessment of awareness components

in patients with disorders of consciousness in the clinical setting. In

the light of these findings, we set out to improve classification

accuracy in yes-no communication with subjects, while reducing

the number of electrodes required. We report here the results of a

feasibility study conducted on a group of five healthy subjects and

five patients with different levels of disorders of consciousness who

underwent EEG recording during the execution of two mental

imagery tasks. Without any assumption about the positioning of

electrodes, the main aim of the study was to see whether some

mental activation patterns could be discriminated using only EEG

data and simple power parameters extracted from the EEG. A

preliminary investigation was conducted on healthy subjects.

Results obtained were used to design the experiments with

patients. With a view to clinical application, the first step of the

study was to simplify the set-up for the acquisition of EEG data by

reducing the number of electrodes. The second aim of the study

was to evaluate the reliability of a classification procedure to

distinguish between the electrode activation patterns of the two

mental states evoked by the two imagery tasks. The third was to

evaluate the reliability (and hence practical feasibility) of the

classification results during communication with the subjects, using

the EEG signal to detect answers to simple yes or no questions.

Methods

Subjects
Five control subjects and five patients with different levels of

consciousness disorders took part in the study. The five control

subjects (age 26 to 37) were healthy and free of medication and

any central nervous system disorder.

Table 1 lists the demographic and clinical information of the

five patients [18–19]. In addition, Figure 1 shows the power

spectra of patients in resting condition as extracted from 120 s

signal recording.

Protocol
Healthy subjects and imagery tasks. The experiment

comprised two sessions repeated on two consecutive days at the

same time of day. Each session included two trials: an Imagery

Trial and a pre-Communication Trial. The Imagery Trial

consisted of ten one minute repetitions of two tasks: one imagining

a movement of the right hand and the other imagining a

movement of the right foot. The subjects were instructed to

mentally simulate the movements (kinaesthetic motor imagery).

We chose this internal imagery because several studies demon-

strated that good recognition rates are only achieved when the

‘imaginer’ uses the strategy of kinaesthetic motor imagery (first-

person process), whereas recognition is almost impossible when the

subject forms a visual image of another’s action (third-person

process) [20]. The sequence of hand and foot imagery was

randomized. In the pre-Communication Trial the subjects were

asked simple yes or no personal questions (Text S1). Subjects were

instructed to imagine for 30 seconds a movement of the right hand

for an affirmative answer and a movement of the right foot for a

negative answer. The pre-Communication Trial comprised six

questions repeated five times. The entire experiment was

performed with closed eyes. The subjects’ answers were collected

after the experiment.

Patients. The experiment consisted of one session comprising

the same two trials used for the healthy subjects: the Imagery Trial

and the pre-Communication Trial. The Imagery Trial consisted of

seven 30 second repetitions of the two imagery tasks. In the pre-

Communication Trial the patients were asked the same simple yes

or no questions used for healthy subjects. The six questions were

repeated twice. The patients’ answers were collected after the

experiment through their relatives. Fewer repetitions were made in

patients because of their limited attention span.

The healthy participants and the families of the patients

included in the study provided their written informed consent to

participate in the study. The Ethical Committee of the Maggiore

Hospital and Bologna Health Trust approved the study and

consent procedure.

Recordings and signal preprocessing
EEG was recorded from 31 electrodes (Fp1, Fp2, AF3, AF4, F3,

F4, F7, F8, Fc1, Fc2, Fc5, Fc6, Fz, C3, C4, Cp1, Cp2, Cp5, Cp6,

Cz, P3, C4, PO3, PO4, Pz, T3, T4, T5, T6, O1, and O2)

positioned according to the international 10–20 layout using a
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Neurowave System (Khymeia, Italy). EEG signals, referenced to

linked ear lobes, were sampled at 256 samples/s, and preliminarily

band-pass filtered between 3 Hz and 60 Hz. Trial datasets

underwent i) manual identification and rejection of artefactual

segments, and ii) data cleaning with independent component

analysis [21].

For each section, the epochs after the fifth second were eligible

for the classification process. Power spectral density (PSD) was

extracted from two second epochs without overlap. A modified

periodogram method, based on FFT-algorithm and Blackman

Harris window, was used. Subsequently, we averaged eight values

of the extracted PSD with a six second overlap, thus obtaining one

PSD for every 16 seconds. A 16-second epoch length PSD

represents a good compromise between reliability and sensitivity

with respect to EEG signal variations [22]. The power in four

frequency bands was extracted from the calculated PSD value:

theta (4–8 Hz), alpha (8–13 Hz), beta (13–25 Hz), and gamma

(25–40 Hz). We restricted the analysis to these four bands because

these are supposed to be the most active during the performed

tasks [23] [24]. Parameter was defined as the group of the powers in

theta, alpha, beta and gamma bands extracted for each 16-second

epoch and each electrode.

For each subject and each session, there are 31 sets of

parameters, one for each electrode. Ten parameters were included

in each set for the Imagery Trial and five for the pre-

Communication Trial. Each value of the variable described above

was labelled with the corresponding imagery task.

Search for the best site
The first aim of the study was to simplify the set-up for the

acquisition of EEG data with a view to clinical use of the proposed

method. To reduce the number of electrodes, a one-way analysis

of variance (ANOVA) on two levels (hand and foot) was performed

with a significance level p,0.05. ANOVA analysis was carried out

for each subject, each session and each electrode-band combina-

tion of the Imagery task. The total number of ANOVAs executed

was 1240 (5 subjects 62 sessions 631 electrodes 64 bands). We

then selected the electrodes showing a significant difference

between hand and foot imagination in at least one frequency

band for each subject and each session (see Table S1) assigning a

unit score to the selected electrodes. Finally, we ordered the

electrodes on the basis of the total maximum score of 10 (5 subjects

and 2 sessions). Best electrodes (BE) for successive analyses were

selected as the eight electrodes with the highest score. After

selection of the BE an ANOVA analysis was carried out on two

levels (hand and foot) with a significance level p,0.05. The

ANOVA was performed for each patient and each BE-band

combination of the pre-Communication Trial. The total number

of ANOVAs executed was 160 (5 patients 6 8 electrodes 6 4

bands). This analysis aimed to evaluate if the BE selected on the

healthy subject also provided a significantly different activation in

the two imagery tasks in the patients.

Classification performance
The second and third aims of the study were 1) to evaluate the

possibility of classifying the two mental states corresponding to the

two imagery tasks, through an analysis of the Imagery Trial, and 2)

to establish a means of communicating with the subject by

detecting his/her answer to simple yes or no questions, by

analysing the pre-Communication Trial. We thought that the two

trials involve different cognitive processes. During the Imagery

Trial the subject imagines a definite behaviour, without other

contingent activities. During the pre-Communication Trial the

subjects are involved in additional mental processes, i.e., initiating

and sustaining the will to answer through the imagery activities.

Moreover, content-dependent additional emotions and memory-

related activations could not be excluded a priori. For these reasons

we considered the two trials separately.

Imagery Trial. A linear SVM classifier (SVMc) was used to

find the best hyperplane capable of discriminating between the

two classes with the maximum possible margin [25], since this is

known to increase the generalization capability [26]. The

parameters used for the SVM classifier were a soft margin equal

to 1, a linear kernel function and a least-square method to find the

separating hyperplane. To obtain an unbiased estimation with

small sample sizes, nested leave-one-out cross validation was

employed to determine the classifier’s generalization error across

the entire dataset [27]. The external leave-one-out cross validation

(LOO CV) was used to evaluate the final discriminant ability of

the classifier through the classification accuracy. This external

LOO CV splits the dataset into N different combinations of

training and testing sets (TRi, TSi), where N is the size of the

dataset. An internal LOO CV was performed on each resulting

TRi to find the best subset related to that specific training set. The

aim of this work was to select the best group of electrodes to

maximize the classification accuracy. For this reason, all possible

combinations of these electrodes were considered after preliminary

selection of the eight BE. These combinations are all single BE (8),

all BE couples (28), all BE triples (56), all the groups of four BE

(70), all groups of five BE (56), all groups of six BE (28), all groups

of seven BE (8), and all BE considered together. The number of

electrodes included in each group was defined as ‘‘cardinality’’ (1,

2, 3, 4, 5, 6, 7, 8).

An exhaustive search was performed in each internal LOO CV

(all subsets of all cardinalities among the BE) to find the subset

optimizing the classification performance (see Figure 2). We

defined the features of the classification process as the powers of

the 32 electrode-band couples (4 bands 6 8 electrodes). To make

an exhaustive analysis for each subject and patient, and each

session of the Imagery Trials, we trained and tested the classifiers

using 4-8-12-16-20-24-28-32 features (4 bands 6 1-8 electrodes)

using all the BE combinations. In each internal loop we trained

and tested 8-28-56-70-56-28-8-1 SVMc respectively. The output

of the classifiers trained with the Imagery Trial data defined the

imagery classification accuracy (ICA). The ICA is the rate of

correctly classified parameters (each parameter is the group of the

four powers in theta, alpha, beta and gamma bands) in the

Imagery Trial using the features selected by the internal loop of

the nested LOO. We compared the ICA for both healthy subjects

and patients with the random classification level computed with

the theoretical method proposed by Müller-Putz et al., with a

significance level of 0.05 [28].

Pre-Communication Trial. As for the Imagery Trial, we

used a linear SVM classifier and a nested cross validation. In this

Trial the N different combinations of datasets in which we split the

data are the questions and not the single parameters; for the

Figure 1. Examples of the EEG PSD in the 5 patients in resting state. The figure shows the PSD spectrum in the frontal (Fz), central (Cz) and
parietal (Pz) regions. The alpha peak is visible only in spectra of patient 1, i.e. the only patient in conscious state. All other spectra are characterized by
an attenuation of the alpha rhythm. In these spectra there was relatively greater power at lower frequencies and diminished power at higher
frequencies. The predominant rhythms are delta and theta, which represent the most prominent abnormality in awake EEGs on VS-MCS patients.
doi:10.1371/journal.pone.0099289.g001
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healthy subject N = 30, for the patients N = 12. For each question

there are five parameters, so we define the cross validation

procedure as Leave-Five-Out Cross Validation (LFO CV). The

external LFO CV splits the dataset into N different combinations

of training and testing sets (TRi, TSi), where N is the number of

questions. An internal LFO CV was performed on each resulting

TRi to find the best subset related to that specific training set. An

exhaustive search was performed in each internal LFO CV (all

subsets of all cardinalities among the BE) to find the subset

optimizing the classification performance (see Figure 2). As for the

imagery trial, we defined the features of the classification process

as the powers of the 32 electrode-band couples (4 bands 6 8

electrodes). To make an exhaustive analysis for each subject and

patient, we trained and tested the classifiers with 4-8-12-16-20-24-

28-32 features (4 bands 6 1-8 electrodes) using all the BE

combinations. In each internal loop we trained and tested 8-28-56-

70-56-28-8-1 SVMc respectively. The external LFO CV was used

to evaluate the final discriminant ability of the classifier through

the classification error rate.

The output of the classifiers trained with the pre-Communica-

tion Trial data defined the communication classification accuracy

(CCA). The CCA was computed not in terms of correctly classified

parameters, as for the Imagery Trial, but in terms of correctly

classified answers. Each answer comprised five parameters, then

the class to which answers are attributed is decided by counting the

assignment of the parameters in the two classes (yes/no) according

to a majority criteria. CCA computation was used to estimate how

accurately the classifier will perform with respect to future

questions. As for the Imagery Trial, we compared the CCA for

both healthy subjects and patients with the random classification

level computed with the theoretical method proposed by Müller-

Putz et al., with a significance level of 0.05 [28].

Software tools
MATLAB language and toolboxes were used for data

processing and analysis. In particular, we used the Signal

Processing Toolbox to preprocess the recorded data, and the

Bioinformatics Toolbox for the SVMc classification.

Results

Search for the best site
Table S1 lists the significant electrodes in at least one band for

each subject and each session. As shown in Figure 3, the eight BE

selected were: C4, C3, PO4, O2, T4, O1, Fc6 and Cp1. These

electrodes will be used in the following analyses. Table S2 shows

the couple BE-band with a significantly different activation in the

two imagery tasks for the patients in the pre-Communication

Trial.

Classification performance
For each subject and each patient, each session and each trial,

we extracted the mean power in theta, alpha, beta and gamma

bands for the BE and we trained and tested the classifiers using

these features. Figure 4 shows an example of the features used for

the classification process for one healthy subject and one patient.

Table 2 shows the mean and standard deviation of the best

classification accuracy obtained for the healthy subjects and the

patients for each cardinality in the Imagery Trial and in the pre-

Communication Trial. Tables S3 and S4 show the complete

results on the best classification accuracies obtained for each

subject, each patient, each session and each cardinality for the

Imagery Trial and pre-Communication Trial, respectively. Con-

sidering the best configuration for each subject and each patient,
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we computed the mean ICA and the mean CCA. The mean ICA

of the best configurations for each session was 82.0% (SD 5.1%)

for healthy subjects and 84.6% (SD 9.1%) for patients. The mean

CCA of the best configurations for each session was 80.7% (SD

11.2%) for healthy subjects and 91.7% (SD 7.4%) for patients (see

Figure 5). In each case the ICA and CCA were greater than the

random classification level with a significant level of 0.05. Table S5

lists the electrode configurations maximising the classification

accuracy for each subject, each session and each trial.

Discussion

Search for the best site
Neuroanatomical correlation. We did not use a specific

algorithm for source localization, so only a qualitative analysis of

the detected electrode sites can be made. We found that the BE

are mainly located in the centro-parietal and parieto-occipital

cortex. This confirms the results of a previous study demonstrating

activation of motor cortex, temporo-occipital, parieto-occipital

areas and occipital lobe during the execution of motor imagery

tasks. Solodkin et al. used fMRI and structural equation modelling

to study the activation pattern during motor execution and motor

imagery [29]. They demonstrated a predominant activation of the

motor and premotor cortex but also an activation of the occipital

cortex during the imagery task. Ishizu et al. demonstrated that the

act of imaging hand movement activates the extrastriate body area

in the lateral occipital cortex [30]. Lebon et al. studied the role of

the inferior parietal cortex in the motor circuits, explaining that

the inferior parietal lobe is part of an inhibitory network that may

prevent unwanted movement during imagery tasks [31]. Szameitat

and colleagues investigated the functional neuroanatomical

correlates of motor imagery [32]. The participant imagined motor

tasks involving the whole body, e.g. swimming: activation was

apparent in Brodmann areas 4 and 6, corresponding to the motor

cortex. Munzert and colleagues demonstrated activation of the

motor area during imagery of dance and gymnastic movements

[33]. The pre-motor cortex plays important roles in the planning

paradigm, programming and execution of motor acts. Imagined

and executed movements often require the same activation to be

performed [34], suggesting they are generated through analogous

computational steps in the brain. This implies that imagined

movements also include a planning/preparation phase before the

imagination. The parietal cortex is an important sensory

integration hub and its different sub-regions, projecting to various

brain areas including the premotor and motor cortex, play

important roles during motor execution. In particular the postero-

parietal cortex is involved in the visuo-motor transformation

process.

Clinical relevance. Although EEG has many practical

advantages over fMRI, correct positioning of the electrodes is

time-consuming and requires skilled personnel. Several studies

[35–41] investigating selection of the minimum number of

channels for classification purposes in BCI systems were able to

reduce the number of electrodes required to between 4 and 12. All

studies with motor imagery tasks used a pre-fixed set of electrodes

positioned over the motor cortex. We did not make any a priori

assumptions on the positioning of the electrodes, so the electrodes

selected were not localized in a single area on the scalp.

Nevertheless, the use of fewer electrodes simplifies preparation

by unskilled personnel. The preliminary choice of the eight

electrodes in healthy subjects, selecting the optimum subject-

specific subset also proved suitable for patients and guaranteed a

higher classification accuracy of their answers.

Figure 2. Explanation of the features selection procedure; TRi~ith testing set, TSi~ith testing set.
doi:10.1371/journal.pone.0099289.g002

Figure 3. Best electrodes (BE) selected by the ANOVA analysis.
All marked electrodes registered a significantly different activation
during the two tasks for each healthy subject and each session in at
least one frequency band.
doi:10.1371/journal.pone.0099289.g003
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Classification performance
We initially analysed the Imagery Trial finding a mean ICA of

82.0% (SD 5.1%) for healthy subjects and 84.6% (SD 9.1%) for

patients considering the BE configuration for each subject and

each session. A high ICA in the classification of the two tasks

demonstrates that both healthy subjects and patients were able to

perform the tasks. Since the two tasks can be reliably differenti-

ated, we think that the patients’ (and subjects’) level of cognitive

activity is sufficient to allow attempts to communicate.

The pre-Communication Trial analysis evaluated the possibility

of detecting answers to simple yes or no questions. The search for

the best configuration specific for each subject and each session

from the BE allowed us to distinguish between the two answers

with a mean CCA of 80.7% (SD 11.2%) for healthy subjects and

91.7% (SD 7.4%) for patients.

The search for the optimum subset from the eight BE shows

that the best ICA and the best CCA were obtained with different

electrode configurations. This variability was found in all subjects

and all sessions. In the Imagery Trial, the classification perfor-

mance for both healthy subjects and patients improved using more

than four electrodes, while the use of five electrodes yielded the

highest mean accuracy. In the pre-Communication Trial, the

classification performance for both healthy subjects and patients

improved using two electrodes. The proposed procedure allowed

us to fix a robust and statistically significant common subset for all

subjects (BE), but we also considered the inter and intra-subject

Figure 4. Example of the features used in the classification process for subject 3 in session 2 and patient 2. The features are the powers
in theta, alpha, beta and gamma bands extracted by the BE for the two motor imagery tasks.
doi:10.1371/journal.pone.0099289.g004
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variability by selecting a subject and session specific subset. In a

future practical application of our protocol, each communication

session will be preceded by a configuration session in which the

classification algorithm selects the optimum electrode subset from

the fixed BE. Comparing the performance of the healthy subjects

with that of the patients we found a higher classification accuracy

in the patients. This finding could depend on the simplified brain

activity of the patients that allows a simpler representation during

the two imagery tasks. The healthy subjects could be thinking

about many things besides the imagery task, whereas the patients

perhaps could only perform the task by concentrating on it, thus

decreasing spurious variability that would lead to decreased ICA

and CCA. Lastly, the patients could be more motivated in

conducting the experiment.

Conclusions

This study evaluated the possibility to classify two mental states

corresponding to two imagery tasks, using non-event-related EEG

techniques, and to use them for communication purposes. Firstly,

we outlined a general, automated procedure to identify the BE

sites in terms of statistical significance of the PSD features in the

two tasks. We paid particular attention to issues related to

discrimination between and communication with patients affect-

ed by different levels of consciousness disorders. This preliminary

study involved just five healthy subjects and five patients and

hence did not aim to define a standard protocol for clinical

assessment. The proposed automated procedure provided good

classification accuracy for the two investigated imagery tasks,

while identifying suitable and clearly defined sites for EEG

spectral parameters classification. These promising results suggest

further studies and investigations, namely: 1) increasing the

number of patients who are vegetative or minimally conscious; 2)

developing an online procedure to establish communication with

the patients.

Figure 5. Mean and SD of the classification accuracy of the best configurations for the healthy subjects (h-s) and patients (p) in the
Imagery (Im) and pre-Communication (Com) Trials. The classification accuracy was the mean of the accuracy obtained using the best
configuration (in terms of electrodes selected by the nested CV procedure) for each subject and each patient. The figure also shows the random
classification level computed for healthy subjects and patients and each trial.
doi:10.1371/journal.pone.0099289.g005

Table 2. Mean and standard deviation (SD) of the best classification accuracy obtained for the healthy subjects and the patients
for each cardinality in the Imagery Trial and in the pre-Communication Trial.

CLASSIFICATION ACCURACY % (Mean±SD)

Electrodes one two three four five six seven eight

IMAGERY TRIAL

Subjects 67.265.1 74.166.0 77.166.3 79.265.4 81.7±5.1 79.865.3 79.665.0 76.865.1

Patients 63.468.8 76.168.4 78.969.3 81.968.8 83.367.8 83.6±8.5 83.6±10.3 82.46 9.6

PRE-COMMUNICATION TRIAL

Subjects 66.4617.2 73.7±14.5 71.1615.8 66.4614 68.1612.9 66.4612.1 65.4616 68.368.6

Patients 66.7620.4 80.1±17.2 66.7615.6 65.163.7 63.469.5 68.4610.8 70.1612.6 66.8611.7

doi:10.1371/journal.pone.0099289.t002
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Table S2 The Table shows the results of ANOVA analysis

performed for each patient (P) and each BE-band (C4 O2 T4 C3

O1 Fc6 Cp1 PO4 – Theta Alpha Beta Gamma) combination of the

pre-Communication Trial (p,0.05). The ANOVA analysis allowed

to find the BE-band couples with a significantly different activation

during the two imagery tasks, then during the two answers ‘‘yes’’ (y)

and ‘‘no’’ (n). The table reports also if the power increases or decreases

depending on the answers. It is possible to observe that Theta, Alpha

and Gamma bands contribute likewise in the discrimination of the two

answers. The Table shows also that ‘‘yes’’ answer, that corresponds to

the hand movement imagery, increases the power in the low

frequency bands, while ‘‘no’’ answer, that corresponds to the foot

movement imagery, increases the power in the high frequency bands.

(DOCX)

Table S3 Best classification accuracy obtained for each subject,

each patient, each session and each cardinality for the Imagery Trial.
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Table S4 Best classification accuracy obtained for each subject,

each patient, each session and each cardinality for the pre-

Communication Trial.
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Table S5 Electrode configurations maximizing classification

accuracy for each subject, each patient, each session and each trial.
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Text S1 List of the questions made to the healthy subjects and

patients in the pre-Communication Trial.
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