
Copyright © 2014 The Korean Movement Disorder Society  1

Cell Therapy  
Strategies vs.  
Paracrine Effect  
in Huntington’s  
Disease
Wooseok Im, Manho Kim

Department of Neurology, Seoul National University Hospital, Seoul, Korea

Received: October 10, 2013    Revised: January 1, 2014    Accepted: January 26, 2014
Corresponding author: Manho Kim, MD, PhD, Department of Neurology, Seoul National 
University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-
gu, Seoul 110-744, Korea
Tel: +82-2-2072-2193   Fax: +82-2-3672-7553   E-mail: kimmanho@snu.ac.kr

ABSTRACT

Huntington’s disease (HD) is a genetic neurodegenera-
tive disorder. The most common symptom of HD is ab-
normal involuntary writhing movements, called chorea. 
Antipsychotics and tetrabenazine are used to alleviate 
the signs and symptoms of HD. Stem cells have been 
investigated for use in neurodegenerative disorders to 
develop cell therapy strategies. Recent evidence indi-
cates that the beneficial effects of stem cell therapies 
are actually mediated by secretory molecules, as well 
as cell replacement. Although stem cell studies show 
that cell transplantation provides cellular improvement 
around lesions in in vivo models, further work is re-
quired to elucidate some issues before the clinical ap-
plication of stem cells. These issues include the precise 
mechanism of action, delivery method, toxicity and 
safety. With a focus on HD, this review summarizes cell 
therapy strategies and the paracrine effect of stem cells.
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INTRODUCTION

Huntington’s disease (HD) is an autosomal dom-
inant neurodegenerative disorder. It is caused by an 
abnormal number of coronary angiography (CAG) 
trinucleotide repeats in the Huntingtin gene (HTT), 
which encodes a 350 kDa ubiquitously expressed 
protein, Huntingtin (Htt).1 HD is characterized by 
movement disorder, cognitive impairment, demen-
tia, and affective disturbances.2 HD patients have 
more than 40 CAG repeats and show abnormal in-
voluntary writhing movements. Juvenile HD pa-
tients have more than 60 CAG repeats.1,3 The age of 
onset of HD is typically between 35 and 44 years old.

A HTT comprising more than 40 CAG repeats is 
translated into mutant Huntingtin (mHtt) protein, 
which causes the death of medium spiny neurons in 
the striatum. Normal Htt is ubiquitously expressed 
and is essential for embryonic development.4 The 
mechanism of neuronal cell death by mHtt has not 
been clearly established although previous studies 
report that it has been linked with mitochondrial 
dysfunction, transcriptional dysregulation, altered 
protein-protein interactions, abnormal protein ag-
gregations, and excitotoxicity.5-7 

TREATMENT OF HUNTINGTON’S
DISEASE

Many pharmacological drugs are used in the treat-
ment of HD (Table 1). The treatment paradigm for 

HD patients depends on 3 main clinical domains: 
movement, psychiatric, and cognitive abnormalities. 
Tetrabenazine is the most commonly used drug for 
chorea. Antipsychotic agents, including Haloperi-
dol, Pimozide, and Clozapine, are used to treat pa-
tients with psychiatric/behavioral comorbidities. 
Rivastigmine and Donepezil are the preferred treat-
ments for improving cognitive function. These treat-
ments are the result of limited evidence presented 
in the literature. Furthermore, comparison of the 
available treatment studies is problematic due to 
differences in study populations, variable outcomes, 
the use of different instruments, and the confound-
ing effects of drugs.

CELL THERAPY FOR 
HUNTINGTON’S DISEASE

The pharmacological treatment of HD can allevi-
ate symptoms, but it cannot cure the disease. Cell 
therapy strategies have been actively studied as a po-
tential cure for HD. The ultimate goal of cell thera-
py is the replacement or neuroprotection of dead or 
dying cells. Cell therapy strategies can be classified 
into two broad categories based on the use of either 
fetal tissues/cells or stem cells. Studies using fetal 
brain tissue were performed using animal models of 
HD prior to 1990. Several clinical trials on HD pa-
tients have been performed with fetal tissues or cells. 
However, effective recovery has not been reported 
in any clinical trials, although some studies showed 

Table 1. Pharmacological drugs on symptoms of HD

Treatment of chorea
Antidopaminergic agents8,9 Tetrabenazine

Antipsychotic agents10-17 Haloperidol, Pimozide, Clozapine, Olanzapine, Ziprasidone,  
  Aripiprazole, Risperidone, Quetiapine

N-methyl-D-aspartic acid receptor  
  antagonists18,19 Amantadine, Memantine

Omega-3 fatty acids20 Ethyl-eicosapentaenoic acid
Treatment of cognitive dysfunction 
  associated with HD 

Cognition21,22 Rivastigmine, Donepezil
Treatment of behavioral disturbances 
  associated with HD

Depression23-26 Fluoxetine, Venlafaxine, Mirtazapine, Clozapine
Psychosis27 Risperidone

Irritability, agitation28-33 Olanzapine, Quetiapine, Sertraline, Buspirone, Valproate,  
  Propranolol

HD: Huntington’s disease.
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that fetal tissue transplantation provided cellular 
improvement around lesions.34,35 Moreover, fetal tis-
sue transplantation led to localized effects only and 
did not persist long-term.34,36 

Stem cells are being studied in various disease 
models, in preference to fetal tissue or cells due to 
the limited availability of the latter. Stem cell research 
focuses primarily on neurodegenerative disorders. 
Several types of stem cells, such as embryonic stem 
cells (ESCs), bone marrow mesenchymal stem cells 
(BM-MSCs), neural stem cells (NSCs), adipose stem 
cells (ASCs), and induced pluripotent stem cells 
(iPSCs), are used to develop cell therapy strategies. 

Embryonic stem cells are pluripotent, and mouse 
ESCs can differentiate into neurons, astrocytes, and 
oligodendrocytes.37 It has been reported that human 
ESCs (hESCs) can differentiate into neurons in the 
lesions of HD animal models, attenuating progres-
sive symptoms.38 Despite these benefits of hESCs, 
complications arising from their use include immune 
rejection, ethical concerns, and tumor formation.38 
On the other hand, somatic stem cells such as BM-
MSCs, NSCs, ASCs, and iPSs are ideal sources for 
clinical trials because these stem cells do not present 
the above mentioned immune rejection and ethical 
problems. 

Murine and human NSCs (hNSCs) have been stu-
died in vivo as cell therapy sources for HD. A study 
involving an hNSC treated HD animal group inves-
tigated the migration of transplanted hNSCs around 
a lesion site. Following tail vein or ventricle injection, 
a significantly greater volume of striatum was ob-
served in the treatment group compared to the con-
trol group. Other studies reported that transplanted 
NSCs differentiated into neurons, oligodendrocytes, 
and predominantly, astrocytes, in in vivo HD mod-
els, resulting in partial functional recovery.38-42 

Bone marrow mesenchymal stem cells and ASCs 
are easily obtained multipotent somatic stem cells 
that can be differentiated into neuronal cells. More-
over, these stem cells have the ability to secrete neu-
roprotective factors, such as growth factors, chemo-
kines, and cytokines. Recent studies have shown that 
intrastriatal transplantation of BM-MSCs reduced 
striatal atrophy, although transplanted cells only sur-
vived for up to 7 days in transgenic HD mice. BM-
MSCs can be genetically modified to provide sus-
tained and long-term delivery of neuroprotective 
factors, which increase neurogenesis and protect 

against cell death.43-45 Genetically modified MSCs 
are currently under consideration for use in the treat-
ment of neurodegenerative disorders, including 
HD.46

Adipose stem cells are a feasible source for cellu-
lar therapy due to ease of isolation, manipulation, 
and a strong safety profile in the clinic. The intrastri-
atal transplantation of normal human ASCs reduced 
lesion volumes in an HD rat model.47 To examine 
the long-term effect of ASC transplantation and in-
vestigate the possibility of autologous ASC trans-
plantation in HD patients, HD patient-derived ASCs 
have been investigated over a period of 4 months in 
the YAC128 model.48 The results showed similar 
expression levels of growth factors, such as brain de-
rived neurotrophic factor (BDNF), hepatocyte gr-
owth factor (HGF), vascular endothelial growth fac-
tor (VEGF), and leukemia inhibitory factor (LIF), 
in HD ASCs compared with normal human ASCs. 
However, no long-term effects of transplantation 
with either HD or normal ASCs were observed in 
YAC128.

Embryonic stem cells have two limitations re-
garding their clinic application: the ethical issues 
surrounding their use and allogenic immune rejec-
tion. iPSCs provide a potential solution because they 
have the ability to differentiate into various cell types 
and can be induced from the fibroblasts of an HD 
patient.49,50 iPSCs from an HD patient with 72 CAG 
repeats have been efficiently induced to form gam-
ma-Aminobutyric acid neurons and were functional 
following transplantation into a rat model of HD.51 

STEM CELL PARACRINE EFFECT 
BASED THERAPY 
IN HUNTINGTON’S DISEASE

Although stem cells have the ability to differentiate 
into any type of cell, recent studies indicate that the 
beneficial effects of stem cell therapies actually occur 
via secretory molecules in addition to cell replace-
ment, the so-called paracrine effect.47,52 Stem cells 
secrete a variety of growth factors, cytokines, and 
chemokines that regulate their biology in an auto-
crine/paracrine manner, and they interact with the 
surrounding microenvironment.53,54 VEGF, HGF, in-
sulin-like growth factor-1 and -2 (IGF-1, -2) and stro-
mal-derived factor-1 secreted from stem cells are 
important to neuronal survival, neurogenesis, and 
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mitochondrial activation via a bystander-like mech-
anism.47,55,56 These positive effects on recipient neural 
cells result in protection and repair, leading to the 
inhibition of HD progression (Figure 1).

Adipose stem cells are multipotent somatic stem 
cells. They secrete multiple antiapoptotic growth 
factors, including VEGF, HGF, BDNF, basic fibro-
blast growth factor, and IGF-1.57-59 One solution to 
the problem of stem cell availability may be the para-
crine effect of ASCs.

The paracrine effects of human ASCs on HD pa-
thology were investigated in cell culture experiments 
and HD R6/2 mouse models.47 Transplantation of 
ASCs resulted in reduced lesion volume and fewer 
apoptotic striatal cells in the HD rat model com-
pared with control animals. The ASC transplanted 
group showed significant improvement in apomor-
phine-induced rotation tests via the paracrine effect. 
ASCs have been injected into the R6/2 HD mouse 
model, and treated mice exhibited a significantly 
longer survival time than control mice.

The paracrine effect of ASCs in the R6/2 HD mo-
use model was also investigated.60 ASC extracts were 
isolated and used to treat R6/2 mice via intraperito-
neal injection. The results were similar to those ob-
tained from stem cell transplantation, suggesting 
that the injection of these stem cell extracts could 
also slow HD progression.60

Taken together, the use of growth factors in HD 
could be an ideal stem cell strategy to protect against 
neuronal death, given that stem cells from an HD 
patient have the genetic components for autologous 
transplantation therapies. To implement this therapy, 
further works are required to elucidate the precise 

mechanism of the paracrine effects of ASC extracts. 
Prior to clinical application, thorough in vivo stud-
ies examining the delivery method, toxicity, and 
pharmacokinetics of therapeutic candidates are re-
quired.

CONCLUSION

Pharmacological drugs to cure HD are in develop-
ment. Most of these drugs do not demonstrate sig-
nificant effects, although several drugs are currently 
undergoing clinical trials. Stem cell therapy is an ef-
fective strategy for curing HD, and many preclinical 
trials show encouraging results. Although the precise 
mechanism of the stem cell paracrine effect has not 
been completely elucidated, this strategy has poten-
tial for clinical application. 
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