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Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. The proper connectivity of zones is
critical for motor coordination and motor learning, and in several neurological diseases cerebellar circuits degenerate in zonal patterns.
Despite recent advances in understanding zone function, we still have a limited understanding of how zones are formed. Here, we focused
our attention on Purkinje cells to gain a better understanding of their specific role in establishing zonal circuits. We used conditional
mouse genetics to test the hypothesis that Purkinje cell neurotransmission is essential for refining prefunctional developmental zones
into sharp functional zones. Our results show that inhibitory synaptic transmission in Purkinje cells is necessary for the precise pattern-
ing of Purkinje cell zones and the topographic targeting of mossy fiber afferents. As expected, blocking Purkinje cell neurotransmission
caused ataxia. Using in vivo electrophysiology, we demonstrate that loss of Purkinje cell communication altered the firing rate and
pattern of their target cerebellar nuclear neurons. Analysis of Purkinje cell complex spike firing revealed that feedback in the cerebellar
nuclei to inferior olive to Purkinje cell loop is obstructed. Loss of Purkinje neurotransmission also caused ectopic zonal expression of
tyrosine hydroxylase, which is only expressed in adult Purkinje cells when calcium is dysregulated and if excitability is altered. Our results
suggest that Purkinje cell inhibitory neurotransmission establishes the functional circuitry of the cerebellum by patterning the molecular
zones, fine-tuning afferent circuitry, and shaping neuronal activity.
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Introduction
Cerebellar circuits are wired into a patterned map. The map is
organized into parasagittal domains called zones (Apps and
Hawkes, 2009; White and Sillitoe, 2013a). While zonal organiza-
tion has been shown to be critical for motor coordination (Horn
et al., 2010; Graham and Wylie, 2012), motor learning (Attwell et
al., 1999; Mostofi et al., 2010), and motor circuit degeneration
(Welsh et al., 2002; Sarna and Hawkes, 2003; Strømme et al.,
2011), we still have a poor understanding of how functional zones
are formed. The normal function of zones and their differential
sensitivity to disease seem to depend on Purkinje cell molecular

phenotype (Wadiche and Jahr, 2005; Paukert et al., 2010; Ebner et
al., 2012). Purkinje cells, the only output neurons of the cerebel-
lar cortex, express zonal molecular markers such as zebrinII (Sil-
litoe and Hawkes, 2013) and they project topographically
organized axons to the cerebellar nuclei (Sugihara, 2011). Be-
cause climbing and mossy fiber inputs also respect zonal bound-
aries (Ruigrok, 2011), connectivity around the Purkinje cell
forms a cortico-nucleo-olivary loop that lies at the heart of cere-
bellar function and motor behavior (Angaut and Sotelo, 1987;
Lang et al., 1996; Bengtsson et al., 2004; Witter et al., 2013). We
know that to form these circuits, genetic and cellular differentia-
tion programs must first establish a prefunctional embryonic
map comprised of crude zones (Sotelo, 2004; Apps and Hawkes,
2009; White and Sillitoe, 2013a). How this crude map segregates
into precisely wired functional zones remains largely unknown.
Here, we tested whether circuit activity influences functional
zone formation.

Purkinje cells are inhibitory; they release GABA and modulate
the activity of neurons in the cerebellar nuclei (Ito, 1984; Gauck
and Jaeger, 2000; Uusisaari and Knöpfel, 2011; Person and Ra-
man, 2012). However, it is not known how Purkinje cell synaptic
communication influences zone development. Understanding
how zones form is critical for solving how cerebellar circuits de-
velop into functional adult networks. One possibility is that Pur-
kinje cell activity influences zone patterning. Based on this idea,
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we sought to test the hypothesis that chemical synaptic signaling
itself controls the separation of Purkinje cells into molecularly
distinct zones, the topographic wiring of afferents into specific
zones, and ultimately the firing properties of neurons that are
linked into zonal modules. To test our hypothesis, we devised a
conditional genetic approach to constitutively block inhibitory
synaptic transmission of Purkinje cells, thereby eliminating cer-
ebellar cortical communication with the cerebellar nuclei. This
strategy enabled us to investigate whether Purkinje-cerebellar
nuclei neurotransmission shapes the formation of adult func-
tional zones and how it affects cerebellar nuclei and Purkinje cell
spike-firing properties, and ultimately, motor behavior. To sys-
tematically examine these circuit properties we combined our
genetic approach with molecular zonal analyses, neural circuit
tracing, in vivo electrophysiology, and behavioral paradigms.
This study sheds new light on the role of Purkinje cell synaptic
transmission for the development of cerebellar circuits and it
provides a new approach to test the role of cerebellar corticonu-
clear communication in motor and non-motor behavior (Briel-
maier et al., 2012; Tsai et al., 2012; Reith et al., 2013).

Materials and Methods
Mice. All the studies were performed under an approved Institutional
Animal Care and Use Committee animal protocol according to the insti-
tutional guidelines at Baylor College of Medicine. We compared L7Cre;
Vgatflox/flox conditional mutant mice to Vgatflox/flox control littermates of
either sex throughout the study, and note that L7Cre and L7Cre;Vgatflox/�

mice do not exhibit motor behavior defects (see Results). Noon on the
day a vaginal plug was detected was considered embryonic day 0.5 (E0.5).
The day of birth was designated as postnatal day 0 (P0), and mice that were
P28 or older were considered mature. All the mice used in this study were
between 1 and 3 months old. Genotyping for the L7Cre allele was performed
using standard Cre primers (Sillitoe et al., 2008, 2010), and genotyping for
the Vgatflox allele was performed according to Tong et al. (2008).

Tissue preparation and cutting. For perfusion fixation, animals were
deeply anesthetized with 2, 2, 2-tribromoethanol (Avertin), and then
perfused through the heart with 0.1 M PBS (pH 7.2), followed by 4%
paraformaldehyde (PFA) diluted in PBS. The brains from the perfused
mice were postfixed for 24 – 48 h in 4% PFA and then cryoprotected
stepwise in PBS-buffered sucrose solutions (15 and 30% each time until
the brain sunk). Serial 40-�m-thick coronal or sagittal sections were cut
on a cryostat, and then collected and processed free floating in PBS.

Body and brain weight measurement and quantification. Body weights
of six control and six L7Cre;Vgatflox/flox mice were measured at age P30.
Afterward, they were deeply anesthetized with isoflurane, decapitated,
and the brain quickly dissected. The brain was immediately weighed and
included anterior brain tissue starting from the olfactory bulbs to brain-
stem tissue including the medulla—tissue past the flexure at the inferior
olive was excluded. The cerebellum was then dissected away from the rest
of the brain and weighed separately. Body, whole-brain, and cerebellum
weight distributions in control and L7Cre;Vgatflox/flox mice were com-
pared using Student’s t test.

Immunohistochemistry. Immunohistochemistry was performed as de-
scribed previously (Sillitoe et al., 2003, 2010; Reeber et al., 2011; White
and Sillitoe, 2013b). Briefly, tissue sections were thoroughly washed,
blocked with 10% normal goat serum (NGS; Sigma) for 1 h at room
temperature and then incubated in 0.1 M PBS containing 10% NGS, 0.1%
Tween 20, and the primary antibodies (see below for details) for 16 –18 h
at room temperature, shaking gently. The tissue sections were then washed
three times in PBS and incubated in secondary antibodies (see below for
details) for 2 h at room temperature, again shaking gently. The tissue was
rinsed again and immunoreactivity revealed as described below.

Monoclonal anti-zebrinII (Brochu et al., 1990) was used directly
from spent hybridoma culture medium at a concentration of 1:250
(gift from Dr. Richard Hawkes, University of Calgary). ZebrinII recog-
nizes an antigen on the Aldolase C protein (Ahn et al., 1994) and it is a
well established marker for Purkinje cell zones. Rabbit polyclonal anti-

phospholipase C � 4 (PLC�4; 1:150; catalog #sc-20760) was purchased
from Santa Cruz Biotechnology and it revealed an identical pattern of
Purkinje cell zones to what has previously been described (Sarna et al.,
2006). Rabbit polyclonal anti-HSP25 (StressGen) was used diluted at
1:500 and our studies using this antibody resulted in a tissue-staining
pattern identical to that previously reported in wild-type mice (Arm-
strong et al., 2000, 2001). Mouse monoclonal anti-vesicular glutamate
transporter 2 (VGLUT2; 1:500; catalog #MAB5504) was purchased from
Millipore Bioscience Research Reagents and it was used to visualize
climbing and mossy fiber terminals (Hisano et al., 2002; Reeber and
Sillitoe, 2011; Gebre et al., 2012). Rabbit polyclonal anti-vesicular gluta-
mate transporter 1 (VGLUT1; 1:500; catalog #135 302) was purchased
from Synaptic Systems and was used to visualize parallel fibers and mossy
fiber terminals (Gebre et al., 2012). Mouse monoclonal anti-calbindin-
D28K (calbindin; 1:10,000; catalog #CD38), rabbit polyclonal anti-
parvalbumin (1:1000; catalog #PV25), and rabbit polyclonal anti-calretinin
(1:500; catalog #CR7699/3H) were purchased from Swant. Rabbit anti-
GABAR�6 is a granule cell marker that was purchased from Millipore; we
used it at a concentration of 1:500 (catalog #AB5610). Mouse monoclo-
nal anti-NFH (also called anti-SMI-32; 1:1500) was purchased from Co-
vance. Anti-SMI-32 recognizes the nonphosphorylated form of NFH
(see manufacturer product datasheet for details), which on tissue sec-
tions labels the soma, dendrites, and axons of adult Purkinje cells, and
also basket cell axons and pinceaux (Demilly et al., 2011). Rabbit anti-
neurogranin (1:500) was raised against full-length recombinant rat neu-
rogranin protein (Millipore Bioscience Research Reagents; catalog
#AB5620). Neurogranin recognizes Purkinje cells in the developing
cerebellum and Golgi cells in the adult cerebellum (Singec et al., 2003;
Larouche et al., 2006). Rabbit polyclonal anti-cocaine- and amphetamine-
related transcript peptide (CART 55-102; catalog #H-003-62) was used at
a concentration of 1:250 to detect climbing fibers (Reeber and Sillitoe,
2011) and it was purchased from Phoenix Pharmaceuticals. The CART
signal was amplified using a biotinylated secondary antibody and the
Vectastain Elite ABC method from Vector Laboratories (Reeber and Sil-
litoe, 2011). Rabbit anti-tyrosine hydroxylase was purchased from Cal-
biochem/Millipore (catalog #657012) and it used at a concentration of
1:500. The rabbit polyclonal antibody against the vesicular GABA trans-
porter (VGAT; 1:500; catalog #PA1-4701) from Pierce/Thermo Scientific
and guinea pig polyclonal anti-VGAT (Synaptic Systems; 1:500) were
used to mark inhibitory GABAergic cerebellar synapses. We identified
Purkinje cell terminal puncta by labeling coronal cut tissue sections with
a Purkinje cell marker called carbonic anhydrase VIII (Hirota et al., 2003;
Rong et al., 2004; Jiao et al., 2005; CAR8). We used a rabbit-polyclonal
CAR8 antibody (1:500) that was purchased from Santa Cruz Biotechnol-
ogy (catalog #sc-67330).

We visualized immunoreactive complexes either using diaminobenzi-
dine (DAB; 0.5 mg/ml; Sigma) or fluorescent secondary antibodies. For
the DAB reaction, we used horseradish peroxidase (HRP)-conjugated
goat anti-rabbit and goat anti-mouse secondary antibodies (diluted
1:200 in PBS; DAKO) to bind the primary antibodies. Staining for fluo-
rescent immunohistochemistry was performed using donkey anti-
mouse, anti-rabbit, or anti-guinea pig secondary antibodies conjugated
to Alexa 488 or 555 fluorophores (Invitrogen), all diluted to 1:1500.
Tissues sections were coverslipped using either Entellan mounting media
(for DAB; Electron Microscopy Sciences) or FLUORO-GEL with Tris
buffer (Electron Microscopy Sciences). We tested the specificity of the
secondary antibodies by processing the tissue sections in the absence of
primary antibodies. No signal was detected in such control experiments
indicating that the staining we observed was not due to nonspecific sig-
nals from the Alexa or HRP-conjugated antibodies (data not shown).

In situ hybridization. Mice were anesthetized with isoflurane, the
brains rapidly removed from the skull and immersed in OCT, and then
they were immediately flash frozen by placing the tissue molds into liquid
nitrogen. Sagittal sections (25 �m) were cut through the cerebellum and
the sectioned slices placed directly onto electrostatically coated glass
slides (Probe On Plus Fisher Brand; Fisher Scientific). The tissue was
probed with a Vgat (SLC32A1) mRNA probe using an automated in situ
hybridization procedure as described previously (Yaylaoglu et al., 2005;
see also genepaint.org).
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Fluorescent Nissl histology. Free-floating tissue sections (40 �m) were
washed in PBS and 0.1% Tween 20 for 10 min, and then washed for 5 min
twice in PBS. The tissue was then incubated in NeuroTrace fluorescent
Nissl stain (Invitrogen) diluted to 1:1000 in PBS for 20 min. Sections
were then washed for 5 min twice in PBS, then for 10 min in PBS and
0.1% Tween 20 and again twice in PBS before being washed overnight at
4°C in PBS. We mounted the stained tissue sections with FLUORO-GEL
mounting media (Electron Microscopy Sciences) before imaging. For
dual staining of calbindin and NeuroTrace, we added NeuroTrace to the
secondary antibody mixture.

Neural tracing. Anterograde tracing was performed according to pre-
vious protocols (Sillitoe et al., 2010; Reeber et al., 2011). Approximately
50 nl of a 2% solution of wheat germ agglutinin (WGA) conjugated to
Alexa Fluor 555 (catalog #W32464, Invitrogen) was pressure injected
into the lower thoracic upper lumbar spinal cord of adult mice (n � 5 for
each genotype). After a 48 h survival period the mice were anesthetized as
described above and then perfused with 4% PFA (described above). After the
perfusion, the WGA-Alexa traced tissue was cut and mounted for imaging
using the Zeiss Apotome.2 acquisition system (see below). The tissue was
imaged on the same day it was cut to capture the brightest signal.

Behavioral testing. Gait abnormalities were assessed using footprint
analysis (Girirajan et al., 2008). The hindfeet of the mice were painted
with red and blue nontoxic acrylic paint (Americana) before they walked
on a strip of white paper taped along the floor of a 50 cm custom-made
Plexiglas tunnel. The distances between footprints were measured to
obtain “stride,” “sway,” and “stance” lengths (Girirajan et al., 2008). The
measures were averaged for each mouse, and compared using Student’s
t test. The p values for each measure are reported in the results. A total of
10 Vgatflox/flox control mice and 10 L7Cre;Vgatflox/flox mice were tested.

The mice were also tested on an accelerating rotarod (model 47600;
Ugo Basile Biological Research Apparatus), which was set to accelerate
from 4 to 40 rpm over a period of 300 s. Each mouse was monitored for
latency to fall (or three consecutive rotations if they gripped and rode
around on the rod). A total of 19 Vgatflox/flox control mice and 20 L7Cre;
Vgatflox/flox mutant mice were tested using a paradigm of three trials per
day, conducted on 3 consecutive days, with 10 min rest time given in their
home cages between trials. Between-group differences were statistically
evaluated by Student’s t test. Between-trial differences were statistically
evaluated with repeated-measures ANOVA.

In vivo electrophysiology. In preparation for in vivo electrophysiology,
the mice were anesthetized with an intraperitoneal injection of ketamine/
dexmedetomidine (50 and 0.5 mg/kg, respectively) and then during the
recording session maintained with �0.25% isoflurane. Anesthetized mice
were placed into a stereotaxic frame and a small craniotomy (�2 mm) was
performed over the cerebellum. Single-unit recordings were attained with
2–5 M� Tungsten electrodes (Thomas Recording) that are controlled by a
motorized micromanipulator (MP-225; Sutter Instrument).

The signals were bandpass filtered at 0.3–13 kHz, amplified with an
ELC-03XS (NPI) amplifier, and digitized into Spike2 (CED). Analysis of
the raw traces was performed with Spike2, Excel, and MATLAB. Purkinje
cells were identified by the presence of both simple and complex spikes,
the latter of which are a characteristic action potential that results exclu-
sively from excitatory climbing fiber input and causes a subsequent pause
of �20 ms in simple spikes. Simple and complex spikes were sorted
independently and analyzed for frequency (Hz � spikes/s) and for the
interspike interval (ISI) coefficient of variance [CV � (SD of ISIs)/(mean
of ISIs)]. Cerebellar nuclei neurons were identified by the absence of
complex spikes and by stereotaxic coordinates (see below for details).
The CV2 (CV2 � 2�ISIn�1 � ISIn�/(ISIn�1 � ISIn; Holt et al., 1996) was
also calculated for mutant and control cells. All numerical results are
reported as mean � SEM. Statistical analyses were performed with un-
paired, two-tailed Student’s t tests. Significance is indicated in graphs for
*p � 0.05, **p � 0.01, or ***p � 0.001, respectively. The number of cells
in each analysis is indicated with “n � XX.”

Electrophysiological recording and anatomically marking the cerebellar
nuclei. In this study, we used stereotaxic coordinates to record from the
middle and lateral cerebellar nuclei (Paxinos and Watson, 2004; Sillitoe
et al., 2011; also called the interposed and dentate, respectively). Within a
radius of 0.50 mm around a central point relative to bregma (�6.4 mm

anteroposterior, �1.3 mm lateral, and 2.5–3 mm deep) we made multi-
ple electrode tracks to record from both nuclei. After recording, we used
a Nanoject II (Drummond) to pressure inject 25 nl of 2% WGA conju-
gated to Alexa fluorophore 555 tracer (WGA-Alexa 555) into the record-
ing spot using the exact same coordinates but this time using a pulled
glass pipette. WGA-Alexa 555 is rapidly taken up by neurons at the in-
jection spot and therefore only requires 3– 6 h to intensely mark local
neuronal populations (Reeber et al., 2011, 2012). We found this method
to be ideal for reliably marking the cerebellar nuclei as a way of mapping
the recording sites. Marked cerebellar nuclei were analyzed using 40-
�m-thick tissue sections that were coverslipped with FLUORO-GEL.
The WGA-Alexa 555 was viewed using a Zeiss CY3 filter set as previously
described (Reeber et al., 2012).

Imaging and data quantification. Photomicrographs of tissue sections
were captured using Zeiss AxioCam MRm (fluorescence) and AxioCam
MRc5 (DAB-reacted tissue sections) cameras mounted on a Zeiss Axio
Imager.M2 microscope. Images of tissue sections were acquired and an-
alyzed using either Zeiss AxioVision software (release 4.8) or Zeiss ZEN
software (2012 edition). After imaging, the raw data were imported into
Adobe Photoshop CS5 and corrected for brightness and contrast levels.
Schematics were drawn in Adobe Illustrator CS5.

For the number of zebrinII-expressing cells in lobule VIII, we counted
Purkinje cells in the P1�, P1�, and P2� zones, which is �400 �m
cerebellar cortex on either side of the midline. Only cells in the rostral half
of lobule VIII were counted, and the number of zebrinII cells was nor-
malized to the total number of Purkinje cells located within zebrinII �
PLC�4 zones. The results are reported as a percentage, and we used the
unpaired Student’s t test for significance. Differences between mutants
and controls were considered significant if p � 0.05. Three mutants and
three controls were used for these cell counts.

Molecular layer thickness was measured within the primary fissure
(between lobules V and VI) on sagittal sections. Molecular layer thick-
nesses from five sections separated by �200 �m around the midline were
analyzed using an unpaired Student’s t test to compare three mice of each
genotype. Differences between mutants and controls were considered
significant if p � 0.05.

Images for the quantification of VGAT-immunoreactive terminals
were acquired using the ApoTome, a commercially available form of
structured illumination microscopy by Zeiss (Weigel et al., 2009). High-
resolution z-stacks were acquired with a constant interstack interval and
maximum projections were generated using the Zeiss ZEN software.
Quantification of VGAT puncta was performed from the projections
using built-in functions in the image processing software Fiji (Schindelin
et al., 2012). Briefly, a minimum fluorescence intensity threshold was
applied consistently across groups to normalize background signals. The
corrected images were converted from a 32-bit format into a binary format,
to assign each VGAT puncta a value of 1. Particles in close proximity to each
other were resolved using a built-in Watershed algorithm. Density of VGAT
puncta was then quantified using an Analyze Particles algorithm. To deter-
mine whether the loss of VGAT expression occurred specifically in Purkinje
cell terminals, double immunolabeling for CAR8 and VGAT was performed.
Images were acquired with high power using a Zeiss Axio Imager microscope
with ApoTome, as described earlier. Regions showing CAR8 and VGAT-
immunopositive puncta surrounding large cerebellar nuclear neurons were
cropped and isolated as regions of interest. After background subtraction,
colocalization between CAR8 and VGAT-immunopositive terminals was
determined by measuring the Pearson’s correlation coefficient (R) with the
Coloc2 plugin in Fiji. We compared the number of terminals that coex-
pressed VGAT � CAR8 in control versus mutant mice. Three control mice
and four mutants were used for this analysis.

Results
We blocked Purkinje cell synaptic signaling by preventing the
loading of neurotransmitters into synaptic vesicles by crossing
L7Cre mice (Lewis et al., 2004) with a conditional “floxed” allele of
Vgat (Tong et al., 2008). VGAT is widely expressed in GABAergic
and glycinergic neurons in the brain and it is essential for loading
GABA into presynaptic vesicles for inhibitory neurotransmission
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(McIntire et al., 1997; Chaudhry et al., 1998; Fujii et al., 2007; Saito et
al., 2010). To establish our model, we first investigated whether only
Purkinje cells are targeted by the approach, and then we assessed
whether losing Purkinje cell VGAT function perturbs cerebellar pat-
terning, motor behavior, and in vivo cell function.

L7Cre;Vgatflox/flox mice do not express Vgat mRNA or VGAT
protein in Purkinje cells
Endogenous L7 is expressed in Purkinje cells starting from ap-
proximately E14 in mouse (Oberdick et al., 1993). The L7Cre

transgenic mouse line used in this study exhibits Cre-induced
reporter recombination by approximately E17 (Lewis et al.,
2004). Vgat transcript expression appears by approximately
E10.5 (Oh et al., 2005) and VGAT protein at approximately E15
(Boulland and Chaudhry, 2012). Purkinje cells are born between
E10 and E13 in mouse (Miale and Sidman, 1961). We postulated
that crossing the L7Cre line to a Vgatflox allele should eliminate
Vgat expression early starting from late embryogenesis, and adult
Purkinje cells should completely lack Vgat gene expression. To
test this prediction, we compared conditional L7Cre;Vgatflox/flox

mutant mice to Vgatflox/flox control littermates (these genotypes
were compared throughout the study). In situ hybridization con-
ducted in 4-week-old mice revealed that Vgat mRNA is abolished
from adult L7Cre;Vgatflox/flox Purkinje cells, while Vgatflox/flox Pur-
kinje cells strongly express the RNA (Fig. 1). We confirmed the
cellular specificity of our approach by demonstrating that the
absence of Vgat mRNA in Purkinje cells is accompanied by a
persistence of expression in stellate cells, baskets cells, and Golgi
cells, which are all cerebellar cortical interneurons that use VGAT
for GABAergic signaling (stellate/basket cells � expression in the
molecular layer, and Golgi cells � arrows in the granular layer of
Fig. 1C,D).

We next tested for protein expression using immunohisto-
chemistry, and we found that VGAT was diminished in terminals

surrounding the neurons of the cerebellar nuclei, the projection
targets of Purkinje cell axons (Fig. 2). Quantification of VGAT-
immunoreactive puncta confirmed that L7Cre;Vgatflox/flox mutant
mice have significantly fewer VGAT-immunopositive terminals
within the cerebellar nuclei compared with the control littermates
(control � 13.05 puncta/100 �m2 � 4.15 and mutant � 4.18 punc-
ta/100 �m2 � 2.78; p � 4.68 	 10�5; Fig. 2). To determine whether
the remaining VGAT-immunoreactive puncta in the cerebellar
nuclei belonged to Purkinje cells, we colabeled coronal cut tissue
sections with the Purkinje cell marker CAR8 and VGAT. We
found that in control Vgatflox/flox mice CAR8-immunoreactive
Purkinje cell terminals had colocalized expression with VGAT
(Fig. 2E; mean Pearson’s correlation coefficient, r � 0.40), in
contrast to the L7Cre;Vgatflox/flox mice, which showed distinct
puncta for those expressing CAR8 compared with the remaining
puncta that expressed VGAT (Fig. 2F; r � 0.07, and the difference

Figure 1. Purkinje cell-specific removal of Vgat. A, In control animals (Vgatflox/flox), all vermis
Purkinje cells (pcl) express Vgat. Inset, Vgat expression in the hemispheres. B, L7Cre deletes Vgat
from Purkinje cells. Inset, Loss of Purkinje cell Vgat expression in the hemispheres. The arrows
point to the Purkinje cell layer. C, Higher power image from the box in A. D, Higher power image
from the box in B. L7Cre;Vgatflox/flox mutant mice lack Vgat mRNA expression specifically in
Purkinje cells. In L7Cre;Vgatflox/flox mice, Vgat mRNA is still expressed in Golgi cells (open arrows)
in the granular layer (gl) and in stellate and basket cell interneurons in the molecular layer (ml).
Lobules are labeled with Roman numerals (Larsell, 1970). Scale bars: A, B, 200 �m; C, D, 20
�m.

Figure 2. The number of VGAT-expressing axon terminals is reduced in the cerebellar nuclei.
A, Coronal section of a Vgatflox/flox cerebellum showing VGAT expression in the cerebellar nuclei.
B, Coronal section of an L7Cre;Vgatflox/flox cerebellum showing loss of VGAT expression in the
cerebellar nuclei. FN, fastigial nucleus; IN, interposed nucleus. Scale bar, 100 �m. C, High-
magnification differential interference microscopic (DIC) image of immunoperoxidase-stained
cerebellar nuclei from Vgatflox/flox mice. D, High-magnification DIC image of the cerebellar nuclei
from L7Cre;Vgatflox/flox mice. Scale bar, 10 �m. C�, Enlarged image from boxed region in C,
showing cerebellar nuclei somata surrounded by VGAT-immunoreactive terminals. D�, En-
larged image from boxed region in D, showing reduced VGAT expression around the somata of
the mutant cerebellar nuclei. E, Control cerebellum stained with the Purkinje cell marker CAR8
(green) and VGAT (magenta), showing colocalized puncta surrounding the soma of a cerebellar
nuclear neuron. F, In the mutants, CAR8 and VGAT do not overlap. Scale bar, 5 �m. The asterisks
in C�, D�, E, and F mark the somata of cerebellar nuclei neurons. G, Grayscale image of a Purkinje
cell with VGAT-immunoreactive synapses in the molecular layer of Vgatflox/flox mice. H, Gray-
scale image of a Purkinje cell with VGAT-immunoreactive synapses in the molecular layer of
L7Cre;Vgatflox/flox mice. The asterisks in G and H mark Purkinje cell somata. Scale bar, 5 �m. I, J,
Grayscale images of immunostained cerebellar nuclei used for quantification of puncta in
Vgatflox/flox (I ) and L7Cre;Vgatflox/flox (J ) mice. Each puncta was counted as a VGAT-
immunoreactive synaptic terminal. Scale bar, 10 �m. K, Summary plot showing VGAT synapse
density in the cerebellar nuclei of L7Cre;Vgatflox/flox mice compared with control Vgatflox/flox mice.
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between controls and mutants was significant, p � 0.0001). The
remaining VGAT puncta in the cerebellar nuclei of L7Cre;Vgatflox/flox

mice likely belong to local GABAergic inhibitory interneurons,
and not to Purkinje cells. In accordance with the Vgat in situ data
(Fig. 1), VGAT protein remained heavily expressed in the
GABAergic terminals of cortical inhibitory interneurons in the
molecular layer (control � 19.07 puncta/100 �m 2 � 7.38 and
mutant � 23.85 puncta/100 �m 2 � 7.05; p � 0.27; Fig. 2). In
addition, VGAT-expressing basket cell pinceaux remained promi-
nent on the base of Purkinje cells in the mutant mice (Fig. 2G,H,
asterisks). These data demonstrate that Vgat mRNA is deleted exclu-
sively from Purkinje cells in L7Cre;Vgatflox/flox mutant mice and, ac-
cordingly, VGAT protein expression is eliminated from Purkinje cell
terminals that contact neurons in the cerebellar nuclei. The other
GABAergic neurons in the cerebellar cortex are not affected in the
mutants as they still express VGAT in their terminals.

L7Cre;Vgatflox/flox mutant mice have impaired motor behavior
Defects in Purkinje cell development and survival cause severe
impairments in motor function (Gerlai et al., 1996; Dusart et al.,
2006; Gold et al., 2007; Lalonde and Strazielle, 2007). We charac-
terized the basic motor behavior of our mutants because we an-
ticipated that loss of Vgat and the resulting loss of Purkinje cell
synaptic transmission would cause motor dysfunction. Open
field visual inspection revealed that the mutant mice have diffi-
culties maintaining a straight line of locomotion, and have poor
balance, often falling to one side (Movie 1). In fact, in many
instances they overcompensate and then fall to the other side.
When they do this, both limbs on one of side of the body simul-
taneously extend outward. We observed the disequilibrium-like
and limb extension phenotypes in 100% of the L7Cre;Vgatflox/flox

mutant mice that were analyzed (n � 45). None of the L7Cre and
L7Cre;Vgatflox/� mice showed these behavioral defects (Movie 2).

To quantitatively assess the extent and severity of motor dys-
function in L7Cre;Vgatflox/flox mutant mice, we used two motor
behavior paradigms: footprint analysis and accelerating rotarod.
We found that L7Cre;Vgatflox/flox mice had significantly different
stride lengths compared with control littermates (Vgatflox/flox �
5.449 � 0.084 cm; L7Cre;Vgatflox/flox � 2.927 � 0.063; p � 0.0001;

n � 10 mice for each genotype; Fig. 3B). They also had signifi-
cantly different stance widths (Vgatflox/flox � 3.94 � 0.039 cm;
L7Cre;Vgatflox/flox � 3.25 � 0.044; p � 0.0006; n � 10 mice for each
genotype; Fig. 3B). However, L7Cre;Vgatflox/flox mice do not have
significantly different sway length (Vgatflox/flox � 2.71 � 0.032
cm; L7Cre;Vgatflox/flox � 2.79 � 0.0384; p � 0.5826; n � 10 mice
for each genotype; Fig. 3B). We also found that L7Cre;Vgatflox/flox

mutant mice performed poorly on an accelerating rotarod paradigm
[Vgatflox/flox � 241.44 � 11.81 s (n � 19) and L7Cre;Vgatflox/flox �
72.50 � 4.47 s (n � 20); p � 4.5 	 10�6; Fig. 3C]. But interestingly,
both control and mutant mice showed significant improvement
over the nine trials as measured by comparing the differences
using a repeated-measures ANOVA(Vgatflox/flox � F(8,144) �
15.69, p � 0.0001; L7Cre;Vgatflox/flox � F(8,152) � 5.202, p �
0.0001; Fig. 3C). We next examined whether “zonal” circuit
structure is affected and how the in vivo firing properties of Pur-
kinje cells and their target cerebellar nuclei neurons are altered in
mice that do not have Purkinje cell neurotransmission.

ZebrinII, HSP25, and afferent zones are mispatterned in
L7Cre;Vgatflox/flox mutant mice
The cerebellum is compartmentalized into parasagittal compart-
ments called zones (Fig. 4; Apps and Hawkes, 2009). The preci-
sion of zonal connectivity provides a structural framework for
understanding how circuits operate during ongoing motor func-
tion and motor learning (Attwell et al., 1999; Wadiche and Jahr,
2005; Horn et al., 2010; Mostofi et al., 2010; Cerminara and Apps,
2011; Graham and Wylie, 2012). Although there has been prog-
ress in understanding how zones are genetically controlled dur-
ing development (Croci et al., 2006; Sillitoe et al., 2008), there is
still limited data about how activity in the cerebellar circuit influ-
ences the formation of zones into precisely wired functional cir-
cuits. To address this gap in our knowledge, we used zebrinII
zonal patterning as a readout for how silencing Purkinje cell
GABAergic neurotransmission might affect compartmental ar-

Movie 1. A control Vgatflox/flox mouse and an L7Cre;Vgatflox/flox mutant mouse. Note the ex-
tended limbs of the mutant when it falls to its side.

Movie 2. Control L7Cre;Vgatflox/� and L7Cre mice. Neither mouse exhibits motor behavior
deficits.

Figure 3. L7Cre;Vgatflox/flox mice exhibit severe motor impairments. A, Sample footprints
from Vgatflox/flox and L7Cre;Vgatflox/flox mice. B, Quantification of footprints reveals significantly
shorter stride lengths and stance widths in L7Cre;Vgatflox/flox mice compared with the control
littermates. Sway length was not significantly different. C, Accelerating rotarod performance
was significantly diminished in L7Cre;Vgatflox/flox mice compared with the control littermates;
***p � 0.001.

White et al. • Cerebellar Zonal Patterning J. Neurosci., June 11, 2014 • 34(24):8231– 8245 • 8235











chitecture. We found that adult L7Cre;Vgatflox/flox mutant mice
had the correct number of zebrinII zones (Figs. 4, 5; n � 4 con-
trols and 6 mutants). However, compared with control litter-
mates, the boundaries of the zones in the mutant mice were
poorly defined (Fig. 4). ZebrinII zonal boundaries were defective
in both the posterior (Fig. 4) and anterior lobules (Fig. 5). In
lobule VIII of the posterior zone, the medial and lateral edges of
the P2� and P3� zones are not sharply delineated, and they

blend into the neighboring zebrinII P1� and P2� zones (Fig. 4).
This is especially apparent when the sections are stained with
both zebrinII and PLC�4, which labels zebrinII-negative zones
(Fig. 4). In the mutants some Purkinje cells express both markers
(Fig. 4E,F). As for zebrinII, the PLC�4 zone boundaries are
poorly defined (Fig. 4C–E). Moreover, the overall level of zebri-
nII and PLC�4 expression is diffuse in L7Cre;Vgatflox/flox mutants
compared with control littermates (Fig. 4). The alteration in ze-
brinII patterning is less severe in the anterior lobules. For exam-
ple, in lobule III of the anterior zone the zebrinII P2� zones lack
crisp lateral edges, although similar to control mice the center-
to-center distance between P1� and P2� is �500 �m (Fig. 5). Of
a total of six stained L7Cre;Vgatflox/flox mice, we found only one
with mild posterior zebrinII zonal defects. Cell counts of
zebrinII-expressing cells revealed that within the P1�, P1�, and
P2� zones of lobule VIII, 67.9 � 2.6% of Purkinje cells expressed
zebrinII in control mice, whereas in the mutants 86.4 � 6.4%
expressed zebrinII (p � 0.0498). These results show that despite
the presence of a zebrinII map, the zone boundaries within the
map are not all sharply refined, especially in the posterior lobules

Figure 4. Zonal organization is altered in L7Cre;Vgatflox/flox mice (posterior lobules). A, Sche-
matic whole-mount diagram of the cerebellum showing zebrinII and PLC�4 expression pat-
terns in lobules VIII and IX. A, anterior; P, posterior. B, Sagittal schematic of the cerebellum. C,
Coronal section of a Vgatflox/flox cerebellum showing zebrinII (green) and PLC�4 (magenta)
expression. C�, C�, Separated panels of PLC�4 and zebrinII, respectively, from C. ZebrinII-
positive zones are marked as P1�, P2�, and P3� using the standard zebrinII zone nomen-
clature. Examples of well defined zone boundaries are marked with arrowheads. D, ZebrinII and
PLC�4 zones in the L7Cre;Vgatflox/flox mice. D�, D�, Separated panels of PLC�4 and zebrinII,
respectively, from D. Note that some zones are obvious in the mutant, as indicated by the
asterisks in C and D. Scale bar, 200 �m. E, High-power image of the box in C. E�, E�, Separated
panels of PLC�4 and zebrinII, respectively, from E. F, High-power image of the box in D. F�, F�,
Separated panels of PLC�4 and zebrinII, respectively, from F. Scale bar, 20 �m. G, Coronal
section of a Vgatflox/flox cerebellum showing the zonal organization of spinocerebellar mossy
fiber inputs to the granular layer of posterior lobules VIII and anterior IX. Mossy fiber terminal
bands are numbered. H, Coronal section of a L7Cre;Vgatflox/flox cerebellum showing poor zonal
organization of mossy fiber afferents in the posterior lobules. Scale bar, 200 �m.

Figure 5. Zonal organization is altered in L7Cre;Vgatflox/flox mice (anterior lobules). A, Sche-
matic whole-mount diagram of the cerebellum showing zebrinII and PLC�4 expression in the
anterior lobules. A, anterior; P, posterior. B, Sagittal schematic of the cerebellum. C, Coronal
section cut through a Vgatflox/flox cerebellum showing zones in the anterior lobules II–III.
ZebrinII-positive zones are marked as P1� and P2�. D, Coronal section cut through an L7Cre;
Vgatflox/flox cerebellum showing poor zonal boundaries. “White” staining represents overlap-
ping zebrinII/ PLC�4 expression (marked with brackets). C�, C�, D�, D�, Separated panels from
C and D. E, Coronal section of a Vgatflox/flox cerebellum showing the zonal organization of
spinocerebellar mossy fiber inputs in the anterior lobules. Mossy fiber terminal bands are num-
bered. F, Coronal section showing spinocerebellar zones in an L7Cre;Vgatflox/flox mutant mouse.
Scale bar, 250 �m.
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where there are more zebrinII-expressing cells in the mutant
mice. Phenotypic differences between anterior and posterior lob-
ules are likely due to differences in the onset of L7Cre expression
(Lewis et al., 2004), which reaches higher levels earlier in the
posterior lobules (for further discussion about the differences see
below and also Fig. 6).

ZebrinII is uniformly expressed in lobules VI–VII and IX–X.
Therefore, to determine whether loss of Purkinje cell neurotrans-
mission alters zone refinement in all lobules we used HSP25 as a
marker. In control mice, HSP25 reveals zones in the vermis of
lobules VI–VII and IX–X (Armstrong et al., 2000, 2001), and
these zones are complementary to the expression of NFH (Demi-
lly et al., 2011). In L7Cre;Vgatflox/flox mutants, HSP25 and NFH
zones in lobule VI are only subtly affected (Fig. 6C,D, arrowhead)
compared with lobule X (Fig. 6E,F). In lobule X of L7Cre;Vgatflox/flox

mutants, we found that the boundaries of HSP25 zones were not
sharply defined (arrows in Fig. 6 mark the boundary in controls;
n � 6 mice for each genotype) and although the width of the
zones varies upon location in both control and mutants, it is
significantly increased after loss of Purkinje cell neurotransmis-

sion [Vgatflox/flox � 191.38 � 37.33 �m (n � 3) and L7Cre;Vgatflox/flox

� 469.92 � 176.42 �m (n � 4); p � 0.047; Fig. 6]. NFH zones
were also extended beyond their normal boundaries (Fig. 6G
,
H
). The regional differences between central and nodular lob-
ules likely arise because, temporally, the cellular maturation pro-
gram in the central lobules lags behind other regions of the
cerebellum (Altman and Bayer, 1997; White and Sillitoe,
2013a,2013b). In this particular mouse line L7Cre expression dur-
ing late embryogenesis is more intense posteriorly than it is an-
teriorly, and then during postnatal development the anterior
lobules start to express the transgene more intensely (Lewis et al.,
2004). The central lobules are least affected in our data because of
late morphogenesis whereas the anterior lobules are not severely
altered because of late Cre onset. Therefore, the severity in zone
defects � posterior/nodular lobules � anterior lobules � central
lobules. Our data also indicate that regardless of the molecular
identity of a Purkinje cell zone, the sharpness of zones through-
out the cerebellum relies on intact Purkinje cell inhibitory neu-
rotransmission. Next we decided to examine whether the
topography of the cerebellar input pathways is altered since
the patterning of the target domains, the Purkinje cell zones, is
disrupted.

Mossy fibers carry sensory signals to the cerebellum from
more than three dozen brainstem and spinal cord nuclei (Fu et
al., 2011). Among the largest of these pathways is the spinocere-
bellar tract, which emerges from all levels of the spinal cord to
supply the cerebellum with proprioceptive and fine touch signals
(Bosco and Poppele, 2001). Spinocerebellar mossy fibers termi-
nate in zones that respect the zebrinII pattern (Gravel and
Hawkes, 1990; Reeber et al., 2012). During embryonic and early
postnatal development, mossy fibers directly contact Purkinje
cells (Mason and Gregory, 1984; Takeda and Maekawa, 1989;
Manzini et al., 2006; Kalinovsky et al., 2011). Although the basic
topography of the mossy fiber terminal projection plan is shaped
by a genetic code (Sillitoe et al., 2010), and perhaps under the
direct control of Purkinje cells (Sotelo, 2004), it remains un-
known how the adult afferent zones attain mature patterns with
clearly segregated terminal field domains (Reeber et al., 2011).
We wondered whether Purkinje cell neurotransmission might
also play a role in defining the precision of zonal connectivity of
mossy fiber projections. To test this, we injected WGA-Alexa 555
into the lower thoracic upper lumbar spinal cord of adult L7Cre;
Vgatflox/flox mutants and littermate controls to map the topogra-
phy of the spinocerebellar tract. The spinocerebellar tract is an
ideal model for understanding zonal topography, because its map
has a relatively simple organization that has been extensively de-
scribed (Sillitoe et al., 2010; Reeber et al., 2011). Compared with
controls, the mutant map was poorly resolved such that individ-
ual clusters were not properly segregated. Spinocerebellar fibers
were therefore ectopically located in zones that are normally oc-
cupied by adjacent forelimb cuneocerebellar terminals (Fig. 4;
Gebre et al., 2012). However, the anterior–posterior targeting,
which is normally restricted to lobules I–V and VIII–IX, was
intact (Sillitoe et al., 2010; Reeber et al., 2011; Gebre et al., 2012;
Fig. 4). The lack of clear afferent zones is reminiscent of the lack of
a clear zebrinII pattern, providing support for our hypothesis that
intact Purkinje cell synaptic transmission is essential for afferent
map formation. Moreover, in accordance with the zebrinII phe-
notype, the anterior termination domain (lobules I–V; Fig. 5) was
less affected than the posterior domain (lobules VIII–IX). This
result indicates that the patterning of early arriving anterior ax-
ons is subtly altered, whereas the later arriving posterior axons are

Figure 6. Zonal organization is altered in L7Cre;Vgatflox/flox mice (central and nodular lob-
ules). A, B, Whole-mount (A) and sagittal (B) schematics of the cerebellum. A, anterior; P,
posterior. C, E, Coronal tissue sections from a control mouse cut through lobule VI (C) and lobule
X (E) and stained with HSP25 (green) and NFH (magenta). D, F, Coronal tissue sections from an
L7Cre;Vgatflox/flox mutant mouse cut through lobule VI (D) and lobule X (F ). Scale bars: D, F, 200
�m. G, H, Enlarged images from the boxes in E and F. G�, G�, H�, H�, Separated channels for
NFH and HSP25 in lobule X. The boundaries of HSP25 zones are poorly defined in the mutant,
compared with the obvious boundary in control mice (yellow arrows). Scale bar, 50 �m.
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severely mispatterned in the absence of GABAergic Purkinje cell
activity (Arsénio Nunes and Sotelo, 1985).

The defective patterning of Purkinje cell zones and mossy
fiber topography, and their apparent temporal sensitivity, made
us wonder whether other fundamental anatomical features, such
as the molecular distribution patterns in different cell types and
lobule morphology, develop properly when Purkinje cell inhibi-
tory neurotransmission is blocked.

Purkinje cell-specific deletion of Vgat does not alter the gross
morphology or the molecular expression patterns in different
cell types of the cerebellum
To examine the gross anatomy of the L7Cre;Vgatflox/flox mutant
mice, we began by recording the whole-brain weight and cerebel-
lar weight, as well as body weight (Fig. 7). There was a slight but
significant difference in body weight in mutant mice (Vgatflox/flox �
20.783 � 0.452 g and L7Cre;Vgatflox/flox � 17.904 � 0.607 g; p �
0.0055; n � 6 mice for each condition; Fig. 7). There was no
statistical difference in overall brain weight (Vgatflox/flox �
0.4795 � 0.0067 g and L7Cre;Vgatflox/flox � 0.4716 � 0.0051 g; p �
0.375; n � 6 mice for each condition; Fig. 7) or cerebellar weight
(Vgatflox/flox � 0.0588 � 0.0005 g and L7Cre;Vgatflox/flox �
0.0578 � 0.0007 g; p � 0.2435; n � 6 mice for each condition; Fig.
7). We next examined cerebellar lobule patterning using fluores-
cent Nissl staining on sagittal tissue sections to compare all lob-
ules in the same cutting plane. The normal mouse cerebellum,
like all mammals, contains 10 major lobules (Larsell, 1952, 1970)
that are temporally generated (Sudarov and Joyner, 2007). Simi-
lar to littermate controls, all 10 lobules were present in adult
L7Cre;Vgatflox/flox mutant mice, and their shape and size were un-
altered (Fig. 7). We next tested whether loss of Vgat might induce
more subtle alterations in the architecture of the cerebellum. We
measured the thickness of the molecular layer, which is a sensitive
measure for developmental and disease-associated defects that
disrupt Purkinje cell dendrite size and/or the placement of Pur-
kinje cells within a perfect monolayer (Hansen et al., 2013). We
did not detect any difference in the molecular layer thickness

(Vgatflox/flox � 150.316 � 2.119 �m and L7Cre;Vgatflox/flox �
152.334 � 4.165 �m; p � 0.669; n � 3 mice for each genotype;
Fig. 7). These data suggest that Purkinje cell inhibitory neu-
rotransmission is dispensable for establishing the gross architec-
ture and pattern of the lobules, and it is not required for the
proper layering or the apical-basal expansion of the three layers of
the cerebellar cortex.

Since each of the major cerebellar cell types is generated in a
spatial and temporal manner (Sudarov et al., 2011), and because
the molecular expression of specific cell populations might be
affected more than others (Figs. 4, 5), we wondered whether loss
of circuit activity could negatively impact the molecular expres-
sion profile across the cerebellar circuit. To determine whether
the major cerebellar cell types could be identified based on their
molecular expression, we performed an in-depth immunohisto-
chemical analysis in control mice and L7Cre;Vgatflox/flox mutant
mice to detect whether blocking GABA neurotransmission in-
duces generalized patterning defects. Using a panel of cell-
specific antibodies we found that the major cell types in the
mutants had a protein expression profile identical to controls and
both mossy and climbing fiber afferent terminals projected ex-
tensively in the mutants (Fig. 8). Moreover, the expression of
calbindin, which is localized to all Purkinje cells in the normal
cerebellum (De Camilli et al., 1984; Celio, 1990), was indistin-
guishable between control and mutant mice suggesting that loss
of Vgat does not cause Purkinje cell degeneration (Fig. 8A,A�).
Given that L7Cre;Vgatflox/flox mice contain all the major cell types
with expression patterns showing a relatively normal tri-laminar
distribution (Fig. 8), we next tested how activity in these cells is
altered in adult mice.

Deletion of Purkinje cell Vgat induces abnormal firing
activity in the cerebellar nuclei
Purkinje cells project to two target cell populations: the cerebellar
nuclei in the core of the cerebellum and the vestibular nuclei in
the dorsal brainstem (Sillitoe et al., 2011; Fig. 9). We predicted
that loss of Purkinje cell GABA neurotransmission might cause
an increase in the firing rate of the target cells. To test this predic-
tion, we measured cerebellar nuclei activity by recording the
spike-firing properties of neurons in the interposed and dentate
nuclei in vivo (Fig. 9). Using extracellular recordings, we demon-
strate that, indeed, loss of GABA neurotransmission at Purkinje
cell to cerebellar nuclei synapses causes an increase in firing fre-
quency, but only in 8/37 recorded neurons (rate increases �2 SDs
above the control mean; Fig. 9; 21.6% of the total cells recorded).
Interestingly, although on average the overall frequency as a pop-
ulation was not significantly increased [Vgatflox/flox � 34.603 �
3.433 Hz (n � 21) and L7Cre;Vgatflox/flox � 39.645 � 3.571 Hz
(n � 37); p � 0.239; Fig. 9], separating the mutant cells based on
firing pattern unveiled specific firing defects. We found that mu-
tant cerebellar nuclei neurons could be divided into two groups
based on CV, which is a measure of firing regularity. An overall
comparison of CV between control cells and mutant cells reveals
a significant CV increase in the mutants, which indicates a de-
crease in regularity [Vgatflox/flox � 0.457 � 0.053 (n � 8) and
L7Cre;Vgatflox/flox � 1.05 � 0.264 (n � 7); p � 0.0338; Fig. 9]. In
mutants, 10/37 nuclear neurons showed an increase in irregular-
ity in spiking �2 SDs of the control mean CV (Fig. 9). When
spike-firing rate and regularity were directly compared within the
mutant cell population, we resolved a low CV group with a high
firing frequency [Vgatflox/flox � 34.603 � 3.433 Hz (n � 21) and
Low CV L7Cre;Vgatflox/flox � 47.531 � 3.733 Hz (n � 27); p �
0.0142; Fig. 9] and a high CV group with a low firing frequency

Figure 7. The gross morphology of the cerebellum is unaltered after blocking Purkinje cell
GABAergic neurotransmission. A, A mid-sagittal section from a control cerebellum. Purkinje
cells are labeled with calbindin (magenta) and the granular layer is particularly highlighted by
the fluorescent Nissl stain (green). B, A mid-sagittal section from a mutant cerebellum. Scale
bars: A, B, 200 �m. C, An example image showing how the cerebellar cortical measurements
were taken from within the primary fissure. Scale bar, 200 �m. D, Quantification of body
weight, brain weight, cerebellar weight, and molecular layer thickness. Ml, molecular layer; pcl,
Purkinje cell layer; gl, granular layer; ***p � 0.01.
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[Vgatflox/flox � 34.603 � 3.433 Hz (n � 21) and High CV L7Cre;
Vgatflox/flox � 21.516 � 5.017 Hz (n � 10); p � 0.0454; Fig. 9]. The
CV of the Low CV and High CV groups are each significantly
different from the control [Vgatflox/flox � 0.457 � 0.053 (n � 21)
and Low CV L7Cre;Vgatflox/flox � 0.266 � 0.038 Hz (n � 10); p �
0.0047; Fig. 9] and [Vgatflox/flox � 0.457 � 0.053 (n � 21) and
High CV L7Cre;Vgatflox/flox � 3.159 � 0.583 (n � 27); p � 0.0012;
Fig. 9]. Analysis of the firing pattern with CV2, which measures
the similarity of neighboring ISIs, revealed an intrinsic regularity
of the mutant’s spike activity, with neighboring ISIs tending to be
more similar than in control mice [CV2 Vgatflox/flox � 0.396 � 0.028
(n � 21) and CV2 L7Cre;Vgatflox/flox � 0.177 � 0.015 (n � 37); p �
1.17 	 10�7; Fig. 9], regardless of mutant cell grouping [CV2
Vgatflox/flox � 0.396 � 0.028 (n � 21) and CV2 Low CV L7Cre;
Vgatflox/flox � 0.152 � 0.014 (n � 10); p � 1.52 	 10�8; Fig. 9]
and [CV2 Vgatflox/flox � 0.396 � 0.028 (n � 21) and CV2 High CV
L7Cre;Vgatflox/flox � 0.246 � 0.031 (n � 27); p � 0.00148; Fig. 9].
The lower CV2 suggests that the cerebellar nuclear cells in the
mutants have a stronger tendency for rhythmic firing than cells of
control mice. This was confirmed by autocorrelation analysis,
which shows a flat histogram for the spike train autocorrelation
of control mice but multiple side peaks for the spike trains of
mutant mice (Fig. 9E). The first side peaks in mutant autocorre-
lation histograms are centered at �15 ms, signifying a high-
frequency occurrence of ISIs of that duration, corresponding to a
preferred spike rhythm of �66 Hz.

Purkinje cell spike activity is altered in
L7Cre;Vgatflox/flox mutant mice
The cerebellar circuit consists of a tri-
synaptic loop from the Purkinje cell to
cerebellar nuclei neurons to inferior olive
neurons and back to Purkinje cells (the
cortico-nucleo-olivary circuit; Fig. 10D,
Libster and Yarom, 2013). This loop is
thought to maintain an equilibrium in the
circuit (Kenyon et al., 1998) in that de-
creased Purkinje cell firing should result
in a disinhibition of the inhibitory nucleo-
olivary pathway and decrease olivary neu-
ron firing, resulting in decreased complex
spike firing in Purkinje cells. Based on re-
cent data (Chaumont et al., 2013; Witter
et al., 2013), we predicted that eliminating
GABAergic signals from Purkinje cells
would feed back onto Purkinje cells and as
a consequence alter their own firing prop-
erties. To test this possibility, we mea-
sured Purkinje cell firing frequency and
Purkinje cell firing patterns by recording
from single units in vivo. We first analyzed
simple spike-firing frequency and found
that compared with control mice the
overall firing rate was unchanged in L7Cre;
Vgatflox/flox mutant mice (Vgatflox/flox �
44.416�2.70Hz,n�27andL7Cre;Vgatflox/flox

� 47.019 � 3.37 Hz, n � 27; p � 0.522;
Fig. 10B). However, 12/27 Purkinje cells
from L7Cre;Vgatflox/flox mice had a signifi-
cant increase in the ISI CV (calculated as
at least 2 SDs above the control CV), indi-
cating that in 44% of the recorded mutant
cells the regularity in simple spike firing
was decreased compared with the more

regular spike firing seen in the cells of control mice (Vgatflox/flox �
0.419 � 0.043 and L7Cre;Vgatflox/flox � 1.942 � 0.497; p � 0.0055;
Fig. 10B). Analysis of Purkinje cell CV2 revealed no significant
difference between control and mutant littermates (Vgatflox/flox �
0.376 � 0.022 and L7Cre;Vgatflox/flox � 0.408 � 0.025; p � 0.355;
Fig. 10B). Therefore, despite the increased prevalence of long
pauses in Purkinje cells from L7Cre;Vgatflox/flox mice that cause the
increase in CV, the intrinsic regularity (CV2) and rhythmicity
were unchanged. Unlike the High CV and Low CV groups of the
cerebellar nuclei, the High CV and Low CV Purkinje cell groups
do not show any significant differences between any measures other
than CV. The CV is statistically different between the two groups
(L7Cre;Vgatflox/flox Low CV � 0.352 � 0.0458 and L7Cre;Vgatflox/flox

High CV � 3.922 � 0.818; p � 0.00112). However, simple spike
Frequency is not statistically different (L7Cre;Vgatflox/flox Low
CV � 50.005 � 5.232 Hz and L7Cre;Vgatflox/flox High CV �
43.288 � 3.819 Hz; p � 0.310).

In contrast to simple spike firing, the average complex spike-
firing frequency was significantly decreased (Vgatflox/flox � 1.14 �
0.071 Hz and L7Cre;Vgatflox/flox � 0.540 � 0.066 Hz; p � 5.552 	
10�8; Fig. 10C) with 12/27 cells firing complex spikes at a fre-
quency of �2 SDs below the control mean (Fig. 10C). The com-
plex spike CV, however, was not significantly different between
control and L7Cre;Vgatflox/flox mutant mice (Vgatflox/flox � 0.756 �
0.036 Hz and L7Cre;Vgatflox/flox � 0.770 � 0.068 Hz; p � 0.864;
Fig. 10C). The High CV and Low CV Purkinje cell groups do not

Figure 8. Cellular expression patterns are unaltered in L7Cre;Vgatflox/flox mutant mice. A, A�, Staining with calbindin reveals
normal Purkinje cell organization and a lack of degeneration. B, B�, Parvalbumin is expressed by inhibitory neurons in the
cerebellum. C, C�, NFH is expressed in Purkinje cells and basket cells. D, D�, VGLUT1 is expressed by mossy fibers and parallel fibers.
E, E�, VGLUT2 is expressed in climbing fibers that terminate in the molecular layer and mossy fibers that terminate in the granular
layer. F, F�, CART is heavily expressed by climbing fibers in lobule X. G, G�, GABAR�6 is expressed by granule cells. H, H�,
Neurogranin is expressed by Golgi cells in the adult cerebellum. I, I�, Calretinin is expressed by unipolar brush cells in lobule X. J, All
parts are taken from midline sagittal sections. K, The images were captured from regions within the primary fissure between lobule
V and VIa (upper box) except for F, F�, I, and I�, which are from lobule X (lower box). Scale bar, 20 �m applies to all parts. Ml,
molecular layer; pcl, Purkinje cell layer; gl, granular layer.
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show any significant differences between
any complex spike measures. Complex
spike frequency is not statistically different
(L7Cre;Vgatflox/flox Low CV � 0.533 � 0.107
Hz and L7Cre; Vgatflox/flox High CV �
0.549 � 0.071 Hz; p � 0.906) and neither
is complex spike CV (L7Cre;Vgatflox/flox

Low CV Purkinje cell � 0.853 � 0.124
and L7Cre;Vgatflox/flox High CV Purkinje
cell � 0.699 � 0.027; p � 0.248).

The overall variability in L7Cre;Vgatflox/flox

Purkinje cell firing may be explained in
part by the normal variability in intrinsic
Purkinje cell firing (Kim et al., 2012; Snow
et al., 2014). Despite the loss of Vgat in all
Purkinje cells, only certain populations
have significant firing defects, whereas
other populations are either less affected
or even statistically indistinguishable from the
control cells. We next sought to determine
whether the changes in Purkinje excitabil-
ity and the mispatterning of Purkinje cell
zones are linked by a common underlying
defect.

Ectopic expression of tyrosine
hydroxylase in zones of Purkinje cells
indicates calcium dysregulation in
L7Cre;Vgatflox/flox mutant mice
We examined tyrosine hydroxylase ex-
pression to determine whether a relation-
ship exists between zonal mispatterning
and defective Purkinje cell firing. During
normal mouse development, tyrosine hy-
droxylase is transiently expressed in Pur-
kinje cells (Hess and Wilson, 1991), but as
circuit formation finalizes, it is downregu-
lated, coincident with emerging zebrinII
zones that mark pattern maturity (Arm-
strong and Hawkes, 2000). Mutations in
calcium channels, specifically, result in
zones of ectopic tyrosine hydroxylase ex-
pression (Fureman et al., 1999, 2003;
Jeong et al., 2001; Sawada et al., 2010), and
also a failure to sharpen zebrinII zones
(Miyazaki et al., 2012). Tyrosine hydrox-
ylase is a measure of altered Purkinje cell
excitability (Fureman et al., 1999), which
depends heavily on calcium, and without
proper calcium control complex spike firing
is obstructed and ataxia ensues (Gao et al.,
2012; Todorov et al., 2012). Strikingly, in
ataxic L7Cre;Vgatflox/flox mice, we also found strong tyrosine hy-
droxylase expression in zones of ectopic Purkinje cells (Fig. 11).
Interestingly, consistent with the zebrinII mispatterning and the
mistargeting of posterior mossy fibers, we observed the most
intense and widespread tyrosine hydroxylase expression in the
posterior lobules (Fig. 11), and mainly within zebrinII-
expressing zones (Fig. 11G,H). Although in the anterior lobules,
ectopic expression was similarly restricted to narrow zebrinII-
like zones (Fig. 11). The restriction of ectopic tyrosine hydroxy-
lase expression to zebrinII zones, even though other molecular
zones are altered (Fig. 6), is reminiscent of several disease models

that have preferential degeneration of particular zonal patterns
(Sarna and Hawkes, 2003). Our data are also intriguing because
tyrosine hydroxylase zones are used as a zonal molecular readout
for calcium dysregulation (Sawada and Fukui, 2001), which
could be one mechanism that contributes to poor zone refine-
ment in the absence of Purkinje cell Vgat.

Discussion
We used the cell-specific expression of the L7 gene to drive Cre
recombinase expression in Purkinje cells to remove exon II of the
Vgat gene (Tong et al., 2008). This deletion selectively blocks

Figure 9. L7Cre;Vgatflox/flox mutant mice exhibit abnormal firing of cerebellar nuclei neurons. A, An example of a cerebellar
nuclei recording site marked by tracer injection. B, Sample raw in vivo electrophysiology traces from control and mutant cerebellar
nuclei neurons. C, Quantification of firing frequency, CV and CV2 of control and mutant cerebellar nuclei neurons. D, Correlation
between CV and firing frequency. The pie graph shows the percentage of L7Cre;Vgatflox/flox cells either less than or greater than 2 SDs
above the control CV. E, Autocorrelograms of control and mutant nuclear cell spike trains reveal a flat autocorrelation histogram for
control mice but multiple, equidistant side peaks with the primary peak centered at �15 ms for mutant mice; *p � 0.05, **p �
0.01, and ***p � 0.001.
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Purkinje cell GABA neurotransmission and causes ataxia. Anal-
ysis of the conditional mutant mice revealed that Purkinje cell
inhibitory function is essential for patterning Purkinje cell mo-
lecular zones and spinocerebellar afferent topography. Our data

also show that tyrosine hydroxylase is up-
regulated in Purkinje cells, suggesting that
altered excitability after blocking Purkinje
cell signaling is in part zonally restricted.
Because Purkinje cell function is central to
the pathogenesis of several diseases in-
cluding ataxia (Orr, 2012), dystonia (Cal-
deron et al., 2011; Wilson and Hess,
2013), and tuberous sclerosis (Tsai et al.,
2012; Reith et al., 2013), our approach
presents a viable strategy for dissecting the
normal function of Purkinje cells and their
pathophysiology in motor and non-motor
developmental disorders (D’Angelo and
Casali, 2012).

Previous studies have demonstrated
essential roles for genes such as engrailed1
(Sillitoe et al., 2008), engrailed2 (Kue-
merle et al., 1997; Baader et al., 1999; Sil-
litoe et al., 2008), and Ebf2 (Croci et al.,
2006) during zone formation. In contrast,
in vitro assays suggested that neural activ-
ity does not influence zebrinII compart-
mentation (Seil et al., 1995). Our current
data suggest that at least some aspects of
zone patterning are dependent on synap-
tic neurotransmission in vivo. We found
that in L7Cre;Vgatflox/flox mice zones failed
to form refined boundaries with sharp
edges that clearly differentiate Purkinje
cells of different molecular phenotypes.
The pattern of mossy fiber termination
zones was also poorly separated into de-
fined compartments. Interestingly, the
defective mossy fiber patterns were remi-
niscent of the wild-type early postnatal
pattern (Sillitoe et al., 2010; Reeber et al.,
2011), suggesting that neural activity is es-
sential for zonal patterning to progress
during postnatal development. It is inter-
esting that our data are consistent with the
results of Tolbert et al. (1994). They found
that chronically blocking cerebellar corti-
cal activity with the NMDA antagonist
APV or the GABA agonist muscimol, both
of which would reduce Purkinje cell neu-
rotransmission, prevented spinocerebel-
lar zone refinement (Tolbert et al., 1994).
We propose that genetic cues are essential
for establishing the correct pattern of
zones, whereas inhibitory Purkinje cell
neurotransmission shapes zonal connec-
tivity by delineating zone boundaries.

Support for a role of neural activity in
zonal patterning has also been shown in
mice containing a Purkinje cell-specific
deletion of the CaV2.1 P/Q-type Ca 2�

channel, which causes defects at zebrinII
zonal boundaries (Miyazaki et al., 2012).

CaV2.1 is a major source of Ca 2� transients that contribute to the
firing and waveform shape of the Purkinje cell action potential.
Similar to our mutants its loss results in poorly defined zebrinII
boundaries and ectopic tyrosine hydroxylase expression (Figs. 4,

Figure 10. L7Cre;Vgatflox/flox mutant mice exhibit abnormal Purkinje cell activity. A, Sample raw in vivo electrophysiology traces
from control and mutant Purkinje cells. Complex spikes(CS) are indicated with asterisks. Right column shows examples of averaged
complex and simple spikes (SS) from control and mutant cells, demonstrating the reliability in the Purkinje cell signal for measuring
spikes in vivo. B, Quantification of firing frequency, CV, and CV2 of simple spikes. The pie graph shows the percentage of cells either
less than or greater than 2 SDs above the control CV. C, Quantification of firing frequency and CV of complex spikes. The pie graph
shows the percentage of cells either greater than or less than 2 SDs below the control frequency. D, A schematic of the tri-synaptic
loop and the spike waveforms that reflect each cellular component; ***p � 0.001.
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Fig. 11). Our data, however, show that the ectopic tyrosine hy-
droxylase expression can be triggered by feedback defects at the
circuit level and not only by channel mutations within the Pur-
kinje cell. At the cellular level, in tottering mutants ectopic ty-
rosine hydroxylase expression was originally attributed to an
increase in Ca 2� levels (Sawada and Fukui, 2001). In contrast, in
our L7Cre;Vgatflox/flox mice the lower complex spike activity may be
associated with low Ca 2� levels. But, since Purkinje cells in gain-
of-function and loss-of-function tottering alleles express ectopic
tyrosine hydroxylase (Miki et al., 2008), either an increase or a
decrease in Ca 2� can lead to ectopic tyrosine hydroxylase
expression.

There are several possible mechanisms for how activity might
alter zones. The loss of, or the disruption of, proper Purkinje cell
firing may affect the development of sagittal zone patterning by
eliminating traveling waves through the developing cerebellum
(Watt et al., 2009). In this case, direct Purkinje cell-to-Purkinje
cell communication could influence zone formation through in-
hibitory GABA function, or potentially even through an early
excitatory GABA connection (although the excitatory to inhibi-
tory switch in Purkinje cell GABA function is still poorly under-

stood; Sotelo, 2008). But, in addition to a tri-synaptic loop effect
through the inferior olive (Chaumont et al., 2013; Witter et al.,
2013; Fig. 10D; and see below), Purkinje cell zonation may be
shaped by mossy fiber activity, for instance, via the interposed
nucleus to red nucleus connection, which loops back to the cer-
ebellum by way of the rubrocerebellar tract. And since mossy
fibers directly contact developing Purkinje cells (Mason and
Gregory, 1984; Takeda and Maekawa, 1989; Kalinovsky et al.,
2011), the alterations in simple spike CV that we observed (Fig.
10) could be the result of early defects in mossy fiber input.

The electrophysiological consequences of selectively blocking
inhibition in all Purkinje cells have not been examined in vivo,
although one prediction is that cerebellar nuclear neurons would
increase their firing rate in response to loss of inhibition (Shak-
kottai et al., 2004). Our data support this prediction as a subset of
recorded cerebellar nuclear neurons did fire at a significantly
higher frequency (Fig. 9). We also observed cells with a signifi-
cantly higher CV and a lower overall firing rate. The firing char-
acteristics of mutant neurons were distributed over a wider than
normal range but with similar mean values to cells in control
mice (Fig. 9C). This could be caused by different types of cerebel-
lar nuclear neurons showing cell type-specific differences in re-
sponse to loss of Purkinje cell inputs. The cerebellar nuclei are in
fact heterogeneous clusters consisting of three main cell types:
glutamatergic projection neurons, inhibitory projection neurons,
and inhibitory GABAergic/glycinergic interneurons (Uusisaari and
Knöpfel, 2011). Notably, direct contact from Purkinje cells only ex-
ists on the two classes of projection neurons but not on the interneu-
rons (Uusisaari and De Schutter, 2011). It is possible that the
diversity in responses we observed reflects the connectivity between
pairs of Purkinje cells and cerebellar nuclear neurons (McDevitt et
al., 1987). Also, the additional inputs from mossy fiber and climbing
fiber collaterals that some cerebellar nuclei neurons receive (Shinoda
et al., 1992; Sugihara, 2005) may well contribute to the diversity in
responses. Therefore, because Purkinje cells are not always the dom-
inant input to a nuclear neuron, loss of GABA neurotransmission
may unlock different responses because of persistent afferent inputs
and differences in neuronal identity.

Loss of Purkinje cell GABAergic function also disrupted the
firing of Purkinje cells themselves (Fig. 10). This is likely because
Purkinje cells project to the cerebellar nuclei, which project to the
inferior olive, which projects back to Purkinje cells to form a
closed loop circuit (Fig. 10). Strikingly, simple spike-firing fre-
quency was unaltered whereas complex spike-firing frequency
was decreased. In contrast, the regularity in spike firing was de-
creased for simple spikes and unchanged for complex spikes.
These data suggest that loss of Purkinje cell inhibition obstructed
feedback from the inferior olive, but surprisingly the decrease in
complex spike frequency did not affect the modulation of resting
state simple spike activity. However, our data are consistent with
the normal simple spike firing and altered regularity in the totter-
ing mouse, an extensively studied ataxic mutant that lacks CaV2.1
function (Hoebeek et al., 2005). The findings from our study
suggest that the lower complex spike rate in the L7Cre;Vgatflox/flox

mice is sufficient to maintain a basal level of simple spike firing.
However, the lack of an increased simple spike frequency is some-
what in contrast to previous work in which reversible inactivation
of the inferior olive with lignocaine or destruction of the inferior
olive with a microlesion (which decreases complex spike firing)
caused an increase in simple spike firing and a switch to an irreg-
ular pattern (Cerminara and Rawson, 2004). Moreover, lesioning
the inferior olive alters simple spike modulation during vestibu-
lar function (Barmack and Yakhnitsa, 2003). The main difference

Figure 11. L7Cre;Vgatflox/flox mutant Purkinje cells express ectopic tyrosine hydroxylase (TH).
A, Schematic diagram of the cerebellum shown in whole mount. A, anterior; P, posterior. B,
Sagittal schematic of the cerebellum. The lobules are numbered with Roman numerals. C,
Tyrosine hydroxylase expression was not detected in the anterior lobules of control mice.
D, L7Cre;Vgatflox/flox mutant mice ectopically express tyrosine hydroxylase in narrow zebrinII-like
zones. E, The posterior lobules of control mice have weak tyrosine hydroxylase expression in a
subset of Purkinje cells. F, L7Cre;Vgatflox/flox mice heavily express tyrosine hydroxylase through-
out the posterior cerebellum in a striking array of zones. G, H, ZebrinII and tyrosine hydroxylase
merged images from control and mutant mice, respectively. G�, H�, Tyrosine hydroxylase ex-
pression in control and L7Cre;Vgatflox/flox mutant mice, respectively. G�, H�, ZebrinII expression
in control and L7Cre;Vgatflox/flox mutant mice, respectively. Scale bar, 200 �m.
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between our genetic approach and these previous manipulations
is that our method alters the cerebellar circuit starting during
development. Thus, complex spike–simple spike interactions
may be altered throughout life and the defective Purkinje cell
responses that we detected may reflect a combination of develop-
mental and compensatory changes in circuit function. Our re-
sults are partly in agreement with previous work since we did
detect a significant decrease in simple spike regularity in a subset
of Purkinje cells (Fig. 10), which fits with the increased oscillatory
discharge of simple spikes seen after long-term inactivation of the
inferior olive (Cerminara and Rawson, 2004).

Loss of Purkinje cell GABA neurotransmission caused cere-
bellar nuclear neurons and Purkinje cells to fire irregularly at
either a low or a high CV. The magnitude of change may be
dependent upon the zone that is analyzed, since Purkinje cell
zones are topographically connected to discrete cohorts of cere-
bellar nuclear neurons (Sugihara and Shinoda, 2007; Sugihara et
al., 2009). Alternatively, Purkinje cell zones plus their glutamatergic
versus GABAergic cerebellar nuclear phenotypes may influence the
magnitude of high versus low CV defects. Our study examined cells
in the anterior and central lobules of the vermis, and in CrusI and II
of the hemispheres, but likely from zebrinII-positive and -negative
cells. In future studies it will be important to use a combination of
electrophysiology, juxtacellular labeling, and zonal marker analysis
to resolve these possibilities. Based on our current data we can con-
clude that neuronal activity is essential for patterning the cerebellum
into sharp zonal compartments.

Notes
Supplemental material for this article is available at https://www.bcm.
edu/departments/pathology-and-immunology/sillitoe/index.cfm?PMID�
22682. This material has not been peer reviewed.
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