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Prior learning of a motor skill creates motor memories that can facilitate or interfere with learning of new, but related, motor skills. One
hypothesis of motor learning posits that for a sensorimotor task with redundant degrees of freedom, the nervous system learns the
geometric structure of the task and improves performance by selectively operating within that task space. We tested this hypothesis by
examining if transfer of learning between two tasks depends on shared dimensionality between their respective task spaces. Human
participants wore a data glove and learned to manipulate a computer cursor by moving their fingers. Separate groups of participants
learned two tasks: a prior task that was unique to each group and a criterion task that was common to all groups. We manipulated the
mapping between finger motions and cursor positions in the prior task to define task spaces that either shared or did not share the task
space dimensions (x-y axes) of the criterion task. We found that if the prior task shared task dimensions with the criterion task, there was
an initial facilitation in criterion task performance. However, if the prior task did not share task dimensions with the criterion task, there
was prolonged interference in learning the criterion task due to participants finding inefficient task solutions. These results show that the
nervous system learns the task space through practice, and that the degree of shared task space dimensionality influences the extent to
which prior experience transfers to subsequent learning of related motor skills.
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Introduction
Skill is the ability to bring about some end result with maximum
certainty and minimum outlay of time and energy (Guthrie,
1952). In acquiring skill, previously learned tasks can profoundly
influence the learning of new tasks and this transfer of skill be-
tween tasks can be positive (resulting in facilitation of learning
the new task) or negative (resulting in interference). Although
traditional accounts of skill transfer depend on notions of task
similarity that cover a wide range of tasks, e.g., theory of identical
elements (Woodworth and Thorndike, 1901) or stimulus-
response compatibility (Osgood, 1949), a critical issue is to un-
derstand what specific task characteristics need to be “similar” or
“dissimilar” for positive or negative transfer to occur between
motor tasks.

The structural learning hypothesis (Braun et al., 2009, 2010)
proposes that when learning a motor task, the brain gradually
learns the structure of the task by identifying the subset of avail-
able motor control variables that influence task performance and
by restricting exploration to stay within this subspace of control.
We refer to this subspace as the task space. The structural learning
hypothesis also predicts that the motor system should avoid con-
trol variable changes that do not affect performance. We refer to
this second subspace as the task’s null space. Structural learning is
supported by experimental observations from diverse tasks in-
cluding goal-directed reaching (Braun et al., 2009), acquisition of
sensorimotor associations (Braun et al., 2010), and learning of
novel finger coordination patterns (Mosier et al., 2005).

Another prediction of this hypothesis is that the amount of
positive or negative transfer between two tasks should depend on
whether the structures in the two tasks are similar or dissimilar
(Braun et al., 2009; Kobak and Mehring, 2012). This prediction
appears to be supported by studies of goal-directed reaching that
require hand path compensations for visual feedback distortions
(e.g., learning a visuomotor rotation after exposure to similar
rotations or dissimilar shear distortions). However, given that the
measure of similarity in such tasks remains unclear, we tested if
the similarity could be captured by the degree to which the two
task spaces share dimensions.
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We sought to clarify conditions under which people exhibit
skill transfer in a novel experiment wherein the task space (i.e.,
the coordination patterns that influence task performance) could
be manipulated carefully. Participants wore a data glove and
learned to control a virtual object (a cursor) by finger motions
(Mosier et al., 2005). Participants learned two tasks: a prior task
and a criterion task. We manipulated the mapping between finger
and cursor motions so that the task space of the prior task either
shared or did not share the task space dimensions (x-y axes) of the
criterion task. We observed positive transfer when the two tasks
shared task space dimensions and negative transfer when they did
not. The results show that similarity in task space dimensions
between two tasks is a critical variable that influences skill transfer
and that this transfer is caused by preferential exploration along
previously learned task spaces.

Materials and Methods
Fifty healthy adults (aged 18 –35, 22 female) participated in this study,
which was comprised of three experimental sessions conducted on sep-
arate days within a 7 d period (44/50 participants came to the lab on 3
consecutive days and the remaining six participants visited the lab three
times within a period spanning 4 – 6 d). All participants were right-
handed. Participants provided written, informed consent to procedures
approved by the Institutional Review Board at Marquette University.
Participants were randomly assigned to one of five groups (n � 10/
group), which differed in the task practiced on day 1 (the prior task). All
subjects performed the same task on days 2 and 3 (the criterion task).

Participants were seated 100 cm in front of a 22 inch (55.8 cm) mon-
itor. Vision of the participants’ arm and hand was obscured using a
plastic barrier (Fig. 1A). Participants wore a data glove on their right
hand (CyberGlove; Immersion Technologies). We recorded signals from
19 bend sensors from the fingers and thumb at a rate of 60 samples per
second and used these signals to control the position of a “virtual point”
on a computer screen. The participants’ task was to coordinate finger
motions so as to move the point between targets comprising a 5 � 5 grid
(Fig. 1B). The point was “virtual” in that it determined the position of a
visual cursor (which was displayed by highlighting the grid cell that the
point was in) during movement in training trials (described below) but
was invisible otherwise.

We sought to quantify the extent to which prior practice of a virtual
reaching task influences the subsequent learning and performance of a
second criterion task that either shared or did not share the task space
dimensions with the first task. For example, we defined a 2D task space by
mapping the 19-dimensional vector h representing the hand posture
onto the 2D (x,y) position p of a virtual point through homogeneous
transformation matrix A (Eq. 1) having 2 rows and 20 columns (cf.
Mosier et al., 2005; Liu and Scheidt, 2008):

�x
y� � � a1,1 a1,2 a1,19 a1,20

. . .
a2,1 a2,2 a2,19 a2,20

� �h1 h2 . . . h19 1�T

and

i.e., p � Ah (1)

Figure 1. Experimental setup. A, Participants wore a data glove and performed a virtual reaching task wherein hand posture was mapped onto cursor position on a screen. Participants moved
the cursor to capture targets on the screen. B, Variations of tasks for different groups. In 1D tasks, the cursor (highlighted in blue) only moved in one dimension and participants had to capture targets
(shown in green) arranged in a single row. In 2D tasks, the cursor could move in two dimensions and participants had to capture targets arranged in a square grid. In the 3D task, the cursor could move
in two dimensions and also change size. Participants had to match both the target location and size.
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Values for the elements of matrix A were determined from an initial
calibration procedure described below. A 1D task such as the mapping of
hand postures onto the x coordinate of the point requires A to have a
single row of 20 elements. Similarly, a 3D task requires A to have 3 rows
and 20 columns. In this case, hand postures could be mapped onto the
x,y,z position of the point (with the z-dimension representing size). We
exploited the possibility of embedding the 1D and 2D tasks into a more
complex 3D task using judicious definitions of the A matrices to assess
the extent to which the brain capitalizes on recently acquired knowledge
of task space structure to facilitate learning of novel tasks. Throughout
this manuscript, vectors are represented by lower-case bold typeface
characters whereas matrices are represented by characters in upper-case
bold typeface.

Procedure
Figure 2 depicts the sequence of experimental testing conditions exam-
ined over the three testing sessions. Day 1 testing included a calibration
phase, which yielded data that we used to establish the hand-to-screen
mappings during experimental testing (i.e., matrix A).

Calibration. Each participant generated a calibration dataset by repli-
cating each of the 24 hand postures corresponding to the static characters
of the American Manual Alphabet (i.e., all but J and Z, which require
hand motion; cf. Liu and Scheidt, 2008). Subjects were provided photo-
graphic images of the desired hand postures on the computer screen.
Gesture formation was coached by the investigator who ensured minimal

difference between desired and realized hand shapes at the moment of
data sampling. The sequence of calibration postures was recorded three
times and the average of the three was used to establish subject-specific
hand-to-screen mappings using principal component analysis (PCA; cf.
Liu and Scheidt, 2008). For the purposes of this study, we were most
interested in the first four principal components, which accounted for an
average of 71% (range 63– 85%) of the hand-shape variance within the
calibration datasets. For each subject on testing days 2 and 3, the A matrix
was constructed by appending their first two principal components as
row vectors. Each row of the matrix was then scaled so that all targets in
the workspace were reachable. The last column of the A matrix imple-
mented a translation that shifted the hand’s mean posture during cali-
bration to the center of the visual display.

Participant groups. All groups performed two tasks: a prior task and a
criterion task. The participant’s goal in both tasks was to make hand
gestures that would move the visual cursor between target locations on
the screen (a virtual reaching task). The five participant groups differed
in the prior task that they practiced during the experimental testing phase
of day 1 (Fig. 2). The different tasks were obtained by manipulating both
the number of principal components embedded in the A matrix (i.e.,
whether the task was 1D, 2D, or 3D) and also which principal compo-
nents were used; i.e., whether A contained the task space components of
the criterion task (PC1 or PC2) or the null space components of the
criterion task (PC3 or PC4). The 2D group, which served as the control

Figure 2. Practice schedule. Participants were divided into five groups. On day 1, all participants performed an initial calibration and a prior task that differed between groups. On days 2 and 3,
all participants performed a common criterion task (the 2D task using PC1-PC2). For the 2D group, the prior task was the same as the criterion task and served as a control group. All comparisons
between groups were made during the first 2 d of practice at the criterion task; i.e., days 1 and 2 for the 2D group and days 2 and 3 for the remaining groups (indicated by the gray shading in the
background).
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group, practiced the 2D task using PC1 and PC2 on all 3 d. For this group,
the prior task was the same as the criterion task. The remaining four test
groups practiced a different prior task on day 1. The 1D group practiced
a 1D task using PC1. The 1D-Null group practiced a 1D task using PC3.
The 2D-Null group practiced a 2D task using PC3-PC4. Finally, the 3D
group practiced a 3D task using PC1-PC2-PC3. On days 2 and 3, the four
test groups all switched to the criterion 2D task wherein PC1 and PC2
were embedded in the A matrix.

Training. Each day’s testing session lasted between 1.5 and 2 h and each
included three blocks of 125 target-capture trials. In each block, 100
training trials were performed with full, ongoing visual cursor feedback
and 25 blind trials were performed without cursor feedback. The se-
quence of trials was pseudorandomized such that blind trials sampled the
entire target set at a rate of one target per every five trials. Two blind trials
were never performed consecutively.

For the 2D tasks (Fig. 1B, middle), participants saw a square grid of 25
targets. During training trials, feedback of cursor position was provided
by highlighting in blue the square that contained the cursor location p
(Eq. 1). Participants were instructed to reach to the target (highlighted
green) as quickly and accurately as possible, using all available informa-
tion. Trials ended in one of two ways: (1) if the participant successfully
moved the cursor to the target, the target turned yellow for 1 s and a
pleasant auditory tone was provided and (2) if the participant failed to
capture the target square when they stopped moving their hand, the
target turned black and a different auditory tone was provided. For blind
trials, the target was presented but no cursor feedback was provided
during movement. However, after hand motion ceased, the square con-
taining the cursor was highlighted for 1 s as in training trials.

For the 1D tasks, participants saw a single row of five targets and cursor
motion was constrained to the horizontal screen axis (i.e., there was no
y-axis motion of the cursor). For the 3D task, we imposed an additional
size constraint on the cursor and on the 25 targets from the 2D task (i.e.,
both the target and cursor could be one of five different sizes correspond-
ing to a tiling of the z-axis identical to the tilting of the x- and y-axes). The
third row in the A matrix mapped hand gestures onto the size of the
cursor. Participants were instructed to match the size of the target as well
as its location (Fig. 1B, right).

Data analysis. In the text that follows, we considered each target square
on the screen to be one unit in size. We then defined three measures of
kinematic performance. Movement time was computed as the time be-
tween movement initiation (i.e., when the virtual point’s displacement
first exceeded a threshold of 0.3 units for at least 9 of 12 consecutive
samples) to the time when the trial ended (i.e., when the target was
acquired or the participant stopped moving their hand). Stopping was
defined as the when the Euclidean distance between successive glove data
samples fell below a threshold of 2 sensor bit values (�1°) for at least 9 of
12 samples). Because participants had no information about how close
the cursor was to the center of the highlighted square during training or
with knowledge of results (KR) feedback, we computed Endpoint Error as
the number of squares between the target and the cursor when the trial
ended (i.e., the chessboard distance). If the participant reached the target,
endpoint error was 0; if the participant landed on a square adjacent to the
target, endpoint error had a value of 1, etc. Endpoint error was computed
separately for training trials and blind trials. Because we allowed partic-
ipants unlimited time to reach a target, our primary metric for assessing
motor skill learning and transfer during training trials was the movement
time. To examine trajectory straightness, we defined Normalized Path
Length as the distance traveled between the starting and final position
divided by the straight line distance between the starting and final
point. For a straight-line cursor trajectory, the normalized path
length would be 1.

In addition to these task performance metrics in the space of visual
cursor motion, we also computed three performance metrics in the hand
posture space to quantify the strategies used by the participant. First, we
evaluated an Exploration index by computing the ratio of the path length
in the primary null space plane (PC3-PC4 of the calibration data) to the
path length in the task space plane (PC1-PC2 of the calibration data). In
this metric, the hand posture was projected to the two planes and the path
length was computed separately in each plane (Fig. 3A). Before project-

ing, all principal components were made unit length so that there was no
difference due to different scaling factors. A smaller value of the explo-
ration index indicated that participants were exploring more selectively
along the task space.

Second, because the 2D task can be solved most efficiently if finger
motions are limited only to a plane, we computed hand posture planarity
by examining how much of hand posture variance during training was
captured by the first two PCs obtained by applying PCA to the training
trial data (not the calibration data). These new PCs generally were dis-
tinct from the PC1 and PC2 obtained using the calibration data. Perfectly
planar exploration would result in a planarity value of 100% (Fig. 3B).
Finally, we evaluated the extent to which training trial hand postures
upon target capture were aligned to the task space by computing the null
space dispersion. This performance measure was computed as the ratio
of hand posture variance accounted for (VAF) within the task’s null space
(here evaluated within the plane spanned by calibration dataset PC3 and
PC4) to the hand posture variance accounted for by the task space (i.e.,
the plane spanned by calibration dataset PC1 and PC2). Low values of
null space dispersion indicate that hand postures at target capture are
aligned primarily along the task space of the criterion task (Fig. 3C). It is
important to note that the null space dispersion and exploration index
give related but complementary information since the null space disper-
sion was computed only when participants reached a target (i.e., it did
not take into account the path that the participants used), whereas the
exploration index was computed based on the path length.

Statistical analysis. We used these six performance measures to exam-
ine whether prior practice in each of the five training conditions would
influence learning and performance of a novel 2D target capture task
(i.e., the criterion task). To do so, we compared the first 2 d of practice on
the criterion task (i.e., the 2D task) for each of the five groups (i.e., days 1
and 2 for the 2D group, and days 2 and 3 for the remaining groups). These
2 d are referred to as the day 1 and day 2 of practice in the criterion task.
The third day of practice in the 2D group and the first day of practice (i.e.,
the prior task) in the remaining groups were not used for statistical
analysis.

All dependent variables during the criterion task were analyzed using a
Practice block (4) � Group (5) mixed model repeated-measures
ANOVA. Practice block had four levels and was comprised of the first
and last block of each of the first two exposure days. For the planarity and
null space dispersion measures, we analyzed the first and last 100 training
trials on each day to obtain more robust variance estimates. For train-
ing trial performance on the remaining measures, we analyzed the
average performance in first and last 20 training trials of each day. In
evaluating blind trial performance, we analyzed the first and last five
blind trials each day.

To minimize the number of pairwise comparisons, post hoc compari-
sons for practice block were restricted to comparing the first block of the
first day and the last block of the second day. For investigating the effect
of group, we made the following planned comparisons: (1) each group
was compared individually to the 2D group (which served as the control
group) to determine how prior practice influenced learning the 2D task
when compared with naive learning (i.e., to determine the amount of
transfer) and (2) the 1D group was compared with the 3D group to
examine the effect of practicing reduced versus augmented dimension-
ality tasks on subsequent learning of the criterion task. Where applicable,
violations of sphericity were corrected using the Greenhouse–Geisser
correction (denoted by �).

Results
We excluded from analysis those training trials in the criterion
task where participants “gave up” and landed further than one
square from the target (i.e., where endpoint error �1 unit). We
also excluded the occasional training trial where by happen-
stance, the distance traveled between targets was �0.1 units
(since normalized path length was divided by this distance, spu-
rious results could be obtained if this distance were too small).
One participant in the 3D group was excluded from further anal-
ysis because of an uncharacteristically large number of such trials
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during the criterion task training (20 of 600 trials). For the re-
maining participants, the average number of training trials ex-
cluded was 2 of 600 trials (0.33%). No blind trials were excluded
from analysis. Also, none of the trials were excluded from the
prior training because applying this criterion would result in a
significant portion of trials being excluded in the 3D task, which
was extremely difficult.

Movement time in training trials
Twenty sample trajectories from one participant in the 2D group
at the beginning and end of 2 d of practice in the criterion task
reveal a dramatic reduction in searching behavior as the partici-
pant learned the task (Fig. 4).

Performance in the prior task
Performance in the prior tasks for all groups except the 2D group
(which did not have a prior task) is shown in Figures 4 – 6. The
biggest effect that was evident was that the task difficulty corre-
lated with the dimensionality of the task (i.e., the 1D tasks were

the easiest to perform, the 2D task was of intermediate difficulty,
and the 3D task was the most difficult). This pattern was reflected
in the movement time, endpoint error, and path length. In terms
of the exploration index, the results indicated that participants
were exploring the appropriate spaces as defined by the prior
task. Thus, the 1D group explored the null space the least whereas
the 1D-Null and 2D-Null groups explored it the most. Planarity
was also lower in the 3D task (since the task cannot be achieved by
simply moving along a plane) and highest in the 1D tasks. The
null space dispersion showed a tendency for the 1D-Null and 3D
groups to have solutions that were more distributed along the
null space than the 2D-Null and 1D groups. The performance in
the prior tasks was not used for statistical analyses.

Performance in the criterion task
All five participant groups reduced movement time with practice
and we found significant differences between groups both early
and late in training (Fig. 5A). Figure 5B reveals a main effect of
practice block (F(3,132) � 146.00, p � 0.001, � � 0.386) and of

Figure 3. Representation of computation of exploration index, planarity, and null space dispersion. A, For the exploration index, the hand posture was projected on to two planes: the task space
(indicated in blue), and the null space (indicated in red). The path length was calculated separately in each plane and the exploration index was computed as ratio of the null space path length to the
task space path length. B, C, The schematic represents a simplified version with a 2D task space (i.e., the floor of the graph) and a 1D null space (the height dimension). B, For planarity, we used all
the hand postures in the corresponding block (shown by the black circles) and computed the VAF by the first two PCs (i.e., represented by the best fitting plane in blue). C, For the null space dispersion,
we used only the hand postures during target capture (five targets are shown for simplicity) and we computed the ratio of the variance along the null space to the variance along the task space. Two
possible strategies for achieving the same five targets in the task plane are shown in blue and yellow. In this scenario, the null space dispersion would be higher for a strategy represented by the
yellow plane compared with the strategy represented by the blue plane.
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group (F(4,44) � 10.28, p � 0.001) as well as a significant block �
group interaction (F(12,132) � 6.32, p � 0.001, � � 0.386). Post hoc
analysis of this interaction revealed that at the beginning of cri-
terion task, movement times from the 1D and 3D groups were
smaller than those from the 2D group (p � 0.05 in both cases),
which demonstrates a clear performance benefit from prior
training with shared dimensionality (both reduced and aug-
mented) with the criterion task. In contrast, initial performances
in the criterion task in the 1D-Null and 2D-Null groups (that did
not share task dimensions with the criterion task) were not sig-
nificantly different from initial exposure performance in the 2D
group suggesting that the performance benefits of reduced and
augmented practice were specific to the type of information pro-
vided during training and not merely due to exposure to the
target capture task. At the end of practice, movement times in the
3D and 1D groups were not significantly different from those in
the 2D group, whereas movement times in the 2D-Null and 1-D
Null groups were significantly greater than the 2D group (p �
0.05 in both cases). This finding demonstrates the potential for
long-lasting interference between null space and task space train-
ing. Also, the difference between the 1D and the 1D-Null groups
was statistically significant both early and late in practice, indicating
that the transfer effects were not simply due to task familiarity. For
the comparison of reduced versus augmented dimensionality,
although initial movement times in the 3D group tended to be less
than those in the 1D group, the difference did not quite reach statis-
tical significance (p � 0.059).

Endpoint error in training trials
All groups reduced training trial endpoint errors over 2 d of
criterion task exposure (Fig. 5B, right). We found significant dif-
ferences between groups early in practice such that groups with
longer movement times also had larger endpoint errors. This
eliminated the possibility that participants in certain groups had
longer movement times simply because they were trading off
speed for accuracy. There was a main effect of practice block
(F(3,132) � 14.32, p � 0.001, � � 0.547), a main effect of group
(F(4,44) � 4.63, p � 0.003), and a significant interaction between
these factors (F(12,132) � 2.72, p � 0.016, � � 0.547). Analysis of

this interaction revealed that at the beginning of practice, the 1D
and 3D groups had smaller endpoint errors than did the 2D
group (p � 0.05 in both cases). At the end of practice, however,
there were no differences between groups. We also found no
significant differences between endpoint errors made by the 1D
and 3D groups at any time during the criterion task practice.

Endpoint error and movement time in blind trials
Endpoint errors in criterion task blind trials also decreased sig-
nificantly with practice in all groups (Fig. 6). Thus, concurrent
visual feedback was not necessary to perform the task and all
groups were able to form task-appropriate feedforward move-
ment commands. There was a main effect of practice block
(F(3,132) � 53.40, p � 0.001) but no effect of group (F(4,44) � 1.59,
p � 0.19) nor block � group interaction (F(12,132) � 0.68, p �
0.77). We also found no significant differences between the nor-
malized path lengths made by the 1D and 3D groups at any time
during criterion task exposure.

Movement time in the blind trials reflected a task familiarity
effect wherein initial movement times in the 2D group were sig-
nificantly higher from the rest of the groups (2D group: 10.3 	
4.7 s; other groups combined: 4.7 	 1.2 s). By the end of practice,
however, none of the groups had movement times significantly
different from the others (2D group: 3.7 	 1.6 s; other groups
combined: 3.5 	 1.2 s).

Normalized path length in training trials
The pattern of results for normalized path length was similar to
that for endpoint error. While participants took straighter and
shorter paths to the target with practice, there were significant
differences between groups on initial exposure to the criterion
task but not at the end of 2 d of practice (Fig. 5C). Specifically, we
found a main effect of practice block (F(3,132) � 100.27, p � 0.001,
� � 0.449), a main effect of group (F(4,44) � 6.75, p � 0.001), and
a significant block � group interaction (F(12,132) � 5.09, p �
0.001, � � 0.449). Analysis of the interaction revealed that nor-
malized path lengths were shorter in the 3D and 1D groups com-
pared with the 2D group at the beginning of practice (p � 0.05 in
both cases). However, at the end of practice, none of the test

Figure 4. Sample trajectories from a typical participant in the 2D group: early in practice (i.e., first 20 training trials of day 1) and after 2 d of practice (last 20 training trials of day 2). The filled circles
represent the points where participants stopped moving their hand. Notice that cursor trajectories become straighter with practice even though visual feedback of cursor motion was limited to
highlighting of individual tiles in the 5 � 5 grid.
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groups made movements that were systematically longer or
shorter than those made by the 2D group. We also found no
significant differences between the normalized path lengths
made by the 1D and 3D groups at any time during criterion
task exposure.

Exploration of task space in training trials
Across groups, the exploration index of the task space decreased
with learning, showing that participants reorganized their finger
motions so as to move preferentially along the task space. How-
ever, there was a significant difference between groups in this

Figure 5. A, Mean movement time, and (B) endpoint error in training trials of all groups during the prior task and the first 2 d of practice at the criterion task. C, Endpoint error in blind trials of
all groups during the prior task and the first 2 d of practice at the criterion task. A–C, The bar graph on the right shows the comparison of all groups on the 2D criterion task at first exposure and after
2 d of practice. Error bars represent 1 SE (between-participant). * indicates significantly different from 2D group ( p � 0.05), ° indicates not significantly different from 2D group.
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regard. We observed a main effect of practice block (F(3,132) �
13.02, p � 0.001), and a main effect of group (F(4,44) � 3.81, p �
0.01). Post hoc comparisons of the group effect indicated that the
2D-Null group had a higher exploration index than the 2D group
both initially in practice and after 2 d of practice. In contrast, all
other groups decreased null space exploration with learning.

Planarity of hand postures in training trials
Across groups, the variance accounted by the first 2 PCs increased
with practice in the criterion task, indicating that participants
increasingly aligned their finger movements along the task space.
However, task space VAF differed across groups early in practice
(Fig. 7A). We found a main effect of practice block (F(3,132) �
60.92, p � 0.001, � � 0.75) and a main effect of group (F(4,44) �
3.23, p � 0.021) as well as a significant block � group interaction
(F(12,132) � 2.69, p � 0.008, � � 0.75). Analysis of the interaction
revealed that, early in practice, the 1D and 3D groups had higher
VAF than did the 2D group (p � 0.05 in both cases), whereas
VAFs in the 2D-Null and 1D-Null groups did not differ signifi-
cantly from that in the 2D group. By the end of practice, however,
none of the groups differed significantly from the 2D group. We
also found no significant differences between the 1D and 3D
groups.

Null space dispersion in training trials
Across groups, the null space dispersion decreased with practice
in the criterion task, further supporting the idea that participants
increasingly aligned their finger motions along the task space
with practice. Here, however, we observed significant differences
between groups late in practice (Fig. 7B). In particular, we ob-
served a main effect of practice block (F(3,132) � 15.09, p � 0.001,
� � 0.719) as well as a significant block � group interaction
(F(12,132) � 2.067, p � 0.042, � � 0.719). Whereas analysis of the
interaction showed that none of the groups were significantly
different from the 2D group at the beginning of criterion task
practice, the null space dispersion was significantly higher in the
2D-Null group compared with the 2D group by the end of prac-
tice. We found no significant differences between the 1D and 3D
groups.

Discussion
The aim of the study was to examine how transfer of skill between
two motor tasks might depend on the degree of similarity be-
tween their task spaces. By careful specification of task space
dimensions (defined by the matrix A in Eq. 1), we manipulated
the extent to which task dimensions of the prior task were
“shared” or “not shared” with the criterion task. The results
showed that there was positive transfer (i.e., facilitation) when

Figure 6. A, Path length and (B) exploration index of all groups during prior practice and the first 2 d of practice at the criterion task. A, B, The bar graph on the right shows the comparison of all
groups on the 2D criterion task at first exposure and after 2 d of practice. Error bars represent 1 SE (between-participant). * indicates significantly different from 2D group ( p � 0.05), ° indicates not
significantly different from 2D group.
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the task spaces had shared dimensions, whereas we found evi-
dence of negative transfer (i.e., interference) when the task spaces
did not share dimensions. Participants in the 1D and 3D groups
(who had a map that was either a subset or a superset of the map
in the criterion task) showed shorter movement times and path
lengths compared with the naive performance when initially ex-
posed to the criterion task, indicating that they were able to trans-
fer the skill learned in the prior task to facilitate performance. In
contrast, the initial performance of the 1D-Null and 2D-Null
groups, whose prior task was in the null space of the 2D task, was
not significantly different from naive performance.

Moreover, in terms of movement time, we also found evi-
dence for sustained interference even after extensive practice on
the criterion task (600 trials spread over 2 d; Fig. 3A). While all
groups increased planarity of hand postures with practice (indic-
ative of learning the criterion task space), the exploration index
and the null space dispersion metrics showed that the 2D-Null
group in particular continued to explore the null space and set-
tled on movement solutions that were dispersed more along the

null space of the criterion task than the 2D group (suggesting that
representation of the prior task space persisted over days despite
extensive practice on the criterion task). Thus, prior practice in
the null space of the criterion task created a motor memory that
constrained exploration to this space and eventually biased the
movement solutions used when learning the criterion task. Our
use of the term “motor memory” does not imply that the same
movement kinematics were repeated, but rather that the explo-
ration space in the criterion task was constrained by learning the
prior task. Also, it is important to note that while the primary
metric of movement time showed long-lasting effects, other pa-
rameters such as the normalized path length, endpoint error on
blind trials, and planarity did not show any significant group
differences by the end of 2 d of practice. These suggest that prior
practice in the null space of the task did not directly impair learn-
ing or generalization per se, but instead created conditions for
learning suboptimal solutions (as shown by the longer move-
ment times required to achieve the task).

Figure 7. A, Planarity and (B) null space dispersion of all groups during prior practice and the first 2 d of practice at the criterion task. Right, The bar graph shows the comparison of all groups on
the 2D criterion task at first exposure and after 2 d of practice. Error bars represent 1 SE (between-participant). * indicates significantly different from 2D group ( p �0.05), ° indicates not significantly
different from 2D group.
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In addition, when comparing the 1D and 3D groups that
shared task space dimensions with the criterion task, we found
no evidence to suggest any long-term benefit to reduced-
dimensional (i.e., the 1D group) or augmented-dimensional
practice (i.e., the 3D group) compared with practicing the crite-
rion task itself. We also found that the transfer effects due to the
prior task were not simply due to a general facilitation due to task
familiarity because groups differed systematically depending on
prior practice (e.g., 1D vs 1D-Null).Together, our results demon-
strate how task space dimensions learned while practicing one
task can subsequently bias exploration, performance, and skill in
subsequent tasks having either similar or dissimilar task space
dimensions.

Structural learning
The finding that the 1D and 3D participant groups extracted a
low-dimensional structure in the prior task that constrained ex-
ploration when solving the 2D criterion task is consistent with the
idea of structural learning described previously (Braun et al.,
2009; Kobak and Mehring, 2012). Previous tests of structural
learning have also shown that a prior learned structure influences
transfer to novel perturbations (Braun et al., 2009; Kobak and
Mehring, 2012), but these have focused primarily on short-term
adaptations (over a few tens of trials). In contrast, by using a
novel task that was also redundant (i.e., having multiple solu-
tions), we found that a prior learned structure influenced the
movement solutions adopted for the criterion task, which re-
sulted in performance differences that lasted several hundred
trials. These results support the idea that the structure represen-
tations are flexible and can be influenced by prior experience
(Yousif and Diedrichsen, 2012; Berger et al., 2013).

The idea that exploration favors the task space over the null
space when coordinating multiple degrees of freedom is also con-
sistent with models that emphasize the minimization of both task
error and movement effort (Todorov and Jordan, 2002; Todorov,
2004). In this view, any exploration along the null space could
effectively be considered “wasted effort” because it does not con-
tribute to cursor motion. It is important to note, however, that
this finding is not at odds with studies demonstrating preferential
exploration along the null space (i.e., variance in the null space is
typically larger than the task space; Scholz and Schöner, 1999;
Latash et al., 2002; Nazarpour et al., 2012). If the task goal is to
explore different parts of the workspace (e.g., acquiring different
spatial targets as in the present study or different force levels as in
Park et al., 2010), then the motor system needs to be able to
restrict its exploration to the task space to produce different
movement outcomes. However, when the goal is to maintain
stability (i.e., maintain a posture or force level in the presence of
perturbations, or achieve a consistent outcome over repeated
trial attempts), then selectively exploring the null space may be-
come a more important consideration since the goal is to avoid
any changes in the movement outcome. In other words, whether
the motor system explores the task space or the null space de-
pends on the stability requirements of the task, and recent studies
have found evidence that both phenomena can occur concur-
rently in the same task (Park et al., 2010; Ranganathan et al.,
2013).

Influence of prior learned coordination patterns on
motor learning
Transfer paradigms have been used extensively to explore motor
memory and consolidation in tasks where movement patterns to
be generated are already well learned and the amount of interfer-

ence between tasks depends primarily on the extent to which the
learned movement patterns conflict with those required to per-
form the novel task in the same experimental context. Examples
include learning to compensate a reversal in the relation between
the motion of a control interface and the motion of a visual
display (Lewis et al., 1951), learning to compensate a reversal in
the direction of an external force field (Brashers-Krug et al.,
1996), compensation for opposing visuomotor rotations
(Krakauer et al., 1999), and the learning of nonoverlapping se-
quences (Walker et al., 2003). In these cases, interference between
motor tasks is typically observed as a performance decrement in
the learning of the second task. Here, by using a task that had
considerable motor redundancy, we showed that learning a prior
task not only influenced performance of the second task, but also
that the movement solutions used to solve the second task were
contingent upon those learned in first task (as indicated by the
null space dispersion). The results support the hypothesis that
learning rarely occurs on a blank slate (Zanone and Kelso, 1992;
Kelso, 1995) and that learning can be influenced by previously
learned (or intrinsic) patterns of coordination (Ranganathan and
Newell, 2009; Ganesh et al., 2010; Liu et al., 2011; de Rugy et al.,
2012), and may include even compensatory coordination pat-
terns such as those seen after stroke (Raghavan et al., 2010). These
results further suggest that models of motor learning and skill
transfer need to account for the influence of existing repertoire of
coordination patterns in addition to more common consider-
ations of optimality (e.g., the minimization of effort or kinematic
errors).

Summary and conclusions
We found that the transfer between two tasks requiring the coor-
dination of multiple degrees of freedom was related to the simi-
larity in task space dimensions of the two tasks. Moreover, we
found evidence that the movement solutions used to solve a given
motor task were contingent on the task space dimensions of pre-
viously learned tasks. These results are consistent with the idea
that the nervous system uses learned task structure to constrain
motor exploration to low-dimensional task spaces and that pref-
erential exploration along previously learned structures can lead
to positive as well as negative biases in the learning and long-term
performance of related tasks.
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